
 

Quantile Maximum Likelihood 

Estimation of Response Time 

Distributions 
 

Andrew Heathcote1 

Scott Brown1 

& 

D. J. K. Mewhort2 

 

1The School of Behavioural Science, 
The University of Newcastle, Australia 

 
2Department of Psychology 

The Queen's University, Canada 
 

Address for Correspondence 
 

Dr. Andrew Heathcote 
The School of Behavioural Science, 

Building W, The University of Newcastle, 
University Avenue, Callaghan, 2308, Australia 

Email: heathcote@psychology.newcastle.edu.au 

Phone: 61-2-49215952 

Suggested running head: Quantile maximum likelihood estimation 

mailto:heathcote@psychology.newcastle.edu.au


Quantile maximum likelihood estimation 

1 

Abstract 

We introduce and evaluate via a Monte Carlo study a robust new estimation technique 

that fits distribution functions to grouped response time (RT) data, where the grouping 

is determined by sample quantiles. The new estimator, Quantile Maximum Likelihood 

(QML), is more efficient and less biased than the best alternative estimation technique 

when fitting the commonly used ex-Gaussian distribution.  Limitations of the Monte 

Carlo results are discussed and guidance provided for the practical application of the 

new technique. Because QML estimation can be computationally costly, we make fast 

open source code for fitting available that can be easily modified to use QML in the 

estimation of any distribution function.  
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Recently, psychological researchers have shown increasing interest in 

characterising the shape of response time (RT) distributions, rather than addressing 

only a measure of the distribution’s central tendency, such as the mean. Ratcliff 

(1979) demonstrated that moment based estimators, such as skew and kurtosis, are not 

suitable for characterising the shape of empirical distributions because they suffer 

from problems with efficiency (i.e., very large sample sizes are required) and 

robustness (i.e., higher order moments are very sensitive to outliers). He suggested an 

alternative strategy, characterising shape by fitting an explicit distribution function, 

most commonly the ex-Gaussian distribution (McGill, 1963), that has been widely 

adopted (e.g., Andrews & Heathcote, 2001; Balota & Spieler, 1999; Heathcote, Popiel 

& Mewhort, 1991; Hockley, 1984; Leth-Steenson, Elbaz, & Douglas, 2000; Mewhort, 

Braun & Heathcote, 1992; Ratcliff & Murdock, 1976; Smith & Mewhort, 1998; 

Spieler, Balota & Faust, 1996; Wixted & Roher, 1993). In this paper we propose and 

evaluate a new robust method of fitting distribution functions. 

Van Zandt (2000) examined a variety of methods for fitting a distribution 

function, f, with parameter vector θθθθ, to RT data. She concluded that, for a range of 

distribution functions commonly used in RT analysis, the generally least variable and 

biased parameter estimates were obtained by maximum likelihood (ML) estimation. 

The likelihood of θθθθ given a data vector RT, L(θθθθ|RT) is proportional to the probability 

of the data given θθθθ, p(RT|θθθθ) (likelihood is only defined up to an arbitrary scale factor, 

Edwards, 1972). For RT data measured with precision 2L (i.e., RTi falls in the range 

RTi ± L, i = 1 … n), the probability of observing RTi is: 

( ) ( )dxxfRTp
LRT

LRTi
i

i
∫

+

−
= θθ ,|  
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Assuming independent observations, the joint probability of RT is the product of the 

individual probabilities. Using a continuous approximation, ( ) ( ) LRTfRTp ii 2,| θ≈θ : 

( ) ( )∏
=

∝
n

i
iRTfL

1

,| θRTθ    (1) 

Note that the common factor 2L was absorbed into the arbitrary scale factor (not 

shown in Equation 1, which is expressed as a proportional relationship) because its 

value is unrelated to θθθθ. We will call estimates obtained by maximising the right hand 

side of Equation 1 “Continuous Maximum Likelihood ” (CML) estimates.  Van 

Zandt’s (2000) results on ML estimation were obtained using the CML method. 

 While Van Zandt (2000) found CML estimation to be the best method overall, 

her least-squares CDF estimation method, which minimises the sum of squared 

deviations between observed and theoretical cumulative probabilities at a set of data 

quantiles, was almost equally effective. Data quantiles are values below which a given 

proportion of the observed RT distribution lies, with the median being the most 

common example. Quantile based methods may actually be superior CML in real 

data, because appropriately chosen quantiles will not be influenced by outliers. 

Consistent with superior robustness, Van Zandt, Colonius and Proctor (2000) found 

that the least-squares CDF method provided more stable estimates of the parameters 

of the diffusion model (Ratcliff, 1978) than CML fitting for their RT data.  

Quantile Maximum Likelihood Estimation 

In this paper we evaluate a new estimation approach, called Quantile 

Maximum Likelihood (QML) estimation, which combines the robustness of quantiles 

and the efficiency and consistency of maximum likelihood estimation1. While ML 

estimation based on grouped data is not new (e.g., Kulldorff, 1961), QML differs 

from earlier approaches in that grouping is determined by sample quantiles. The first 
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step in QML estimation transforms the data vector RT, of dimensionality n, into a 

vector of quantile estimates ( q̂ ) and a vector of counts (N) of the number of RTs that 

occur in each inter-quantile range. We used the following algorithm to calculate 

quantiles2. 

1. Choose an increasing set of proportions p, 0 = p0 < p1 < … pm-1 < pm = 1, m ≤ 

n, that correspond to the cumulative probabilities for each quantile.  

2. Calculate Nj = (pj – pj-1)n for j = 1 … m, and the quantile estimates 

( ) ( ) ( )( )( )−−−+= −+− jjIIIj IIRTRTRTq
jjj

.ˆ  , for j = 1 … (m-1). 

( )kRT is the k’th order statistic of RT (i.e., the k’th value of RT sorted in ascending 

order), 2
1+= npI jj , −

jI is the largest integer less than or equal to jI and +
jI is the 

smallest integer greater than or equal to jI . For example, for the ordered sample (2, 4, 

6), and p = (0, 0.3, 0.7, 1): 

1I  = 0.3 x 3 + 0.5 = 1.4, −
jI  = 1, +

jI = 2.  1q̂ = 2 + (4-2)(1.4-1) = 2.8 

2I  = 0.7 x 3 + 0.5 = 2.6, −
jI  = 2, +

jI = 3.  2q̂  = 4 + (6-4)(2.6-2) = 5.2 

We set ( oq̂ , mq̂ ) equal to the domain of the distribution function, which is (−∞, +∞) for 

the commonly used ex-Gaussian.  

Maximum likelihood estimation is performed with respect to the transformed 

data T = (N, q̂ ). The joint probability of T follows a multinomial distribution:  

( ) ( )∏ ∫
= 
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Hence the likelihood of the grouped data is:  

( ) ( )∏ ∫
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Note that the multinomial coefficient has been absorbed into the arbitrary scale factor.  

We do not claim that QML provides maximum likelihood estimates of θθθθ 

conditional on RT, because it is not generally true that T is a jointly sufficient set of 

statistics for the estimation of θθθθ. Depending on the choice of p, some information 

relevant to the estimation of θθθθ may be lost in going from RT to T. Hence, the QML 

estimates may differ from ML estimates conditional on RT, such as those provided by 

CML (cf. Example 6.3.1, Edwards, 1972, pp.112-114). However, maximising the 

right hand side of Equation 2 does provide maximum likelihood estimates of θθθθ 

conditional on T, so QML estimates have the useful properties of ML estimates, such 

as consistency. For real data, QML estimates of θθθθ may be superior to estimates based 

on CML, because of the robust properties of quantiles.  

QML is robust because any RT less than ( )−
1I

RT  or greater than ( )+
−1mI

RT will have 

no influence on the quantile likelihood. Selecting p involves a trade-off between 

robustness and a potential loss of information. As the number of quantiles approaches 

the number of data points, information loss is reduced, as q̂  approaches RT, and 

hence CML and QML estimates converge, but outlying observations can have 

increasing influence. The next section reports the results of a Monte Carlo study that 

compared the performance of the CML and QML estimators for the ex-Gaussian 

distribution. Effects of sample size and numbers of quantiles were also examined. We 

then discuss the limitations of these results, and the application of QML estimation to 

alternative RT distribution functions.  

Monte Carlo study 

The Monte Carlo study used samples from seven different ex-Gaussian 

distributions with parameters given in Table 1. The ex-Gaussian distribution is the 
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convolution of a normal distribution (with mean µ and standard deviation σ) and an 

exponential distribution (with mean τ). All distributions had the same mean (1000) 

and standard deviation (SD = 100) because these values merely fix the measurement 

units, which are irrelevant to the issue of estimating distribution shape. As in Van 

Zandt (2000), the value of the standard deviation was chosen to be representative of 

results in choice RT experiments using milliseconds units, so the results of the 

simulations can be approximately treated as if they had units of milliseconds.  

The shape of a density function may be defined generally as what is left when 

location and scale are standardized. For the ex-Gaussian distribution, shape can be 

quantified by the ratio K = τ/σ. K was varied systematically across the seven 

distributions. The µ parameter was varied to maintain a constant overall mean (µ + τ 

= 1000) and the magnitudes of τ and σ parameters chosen to maintain a constant 

standard deviation ( 22 τσ + = 100). A useful non-parametric characterization of 

distribution asymmetry is given by A = (Mean – Median)/SD (see Heathcote, 1996 for 

details). For symmetric distributions, such as the normal, A = 0, whereas, for choice 

RT distributions, which are usually positively skewed, A > 0. For the exponential 

distribution A = 0.31, which is also the upper bound for the ex-Gaussian distribution. 

As shown in Table 1, the simulated ex-Gaussian distribution’s shapes varied from 

almost normal to almost exponential. 

------------------------------- 
Insert Table 1 about here 
------------------------------- 

Three sample sizes (n) were examined, 40, 80, and 160. For each of the 21 

combinations of n and K, 35840 separate samples were generated using the normal 

and exponential random number generators in the Minitab statistical package (Version 

12). Both the CML and QML methods were used to estimate ex-Gaussian parameters 
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for each sample. Three different equally spaced sets of quantile estimates were fit 

using the QML algorithm, so that there were 1 (QML-1, pj = j/n, j = 1 … n-1), 2 

(QML-2, pj = 2j/n, j = 1 … n/2-1), or 4 (QML-4, pj = 4j/n, j = 1 … n/4-1) sampled 

values per inter-quantile range at each sample size.  

Fits were obtained by maximising Equation 3 (CML) and Equation 4 (QML) 

using a conjugate gradients algorithm with a Polak-Ribiere conjugate adjustment to 

the gradient, and the adaptive Rhomberg method was used to perform numerical 

integration for the QML objective function (see Press, Teukolsky, Vetterling & 

Flannery, 1992). Analytic derivatives were used as they greatly reduced the 

computational cost of QML estimation, which can be expensive for the ex-Gaussian 

distribution due to the need for numerical integration (see Brown & Heathcote, 

submitted, for further details of the fitting program, QMLE).  

( )( ) ( )∑
=

∝
n

i
iRTfL

1

,ln|ln θRTθ    (3) 

( )( ) ( )∑ ∫
=

−

∝
m

j

q

q
j

j

j

dttfNL
1

ˆ

ˆ 1

,ln|ln θTθ    (4) 

Start points for optimisations were determined by heuristics applied to sample 

values as described in Heathcote (1996). Generally, this produced faster convergence 

than using the true values. Less than 1% of fits were removed from further 

consideration because of failed evaluations of the log-likelihood at convergence. Such 

results were not due to local maxima and could not be avoided by using alternative 

start points. Instead, they represented global maxima where either the τ or σ estimates 

converged to zero because the sampled distribution has no right tail or body 

respectively. The maxima for the QML method were generally more sharply defined 

than the maxima for the CML method, as indicated by a lower percentage of fits that 
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terminated due to exceeding the maximum number of iterations allowed by the fitting 

algorithm (75 iterations, a large value, usually well in excess of the number of 

iterations required for convergence). Increasing the maximum number of iterations 

did not result in any improvement in these parameter estimates. The following 

analyses were carried out both with and without the non-convergent estimates, and the 

pattern of results was the same, except that variability was reduced slightly when they 

were excluded. We report the results of analyses with these estimates retained, as that 

is more representative of the practice with real data, where censoring runs the risk of 

inducing sampling bias. 

QML Results 

Figure 1 presents the results for QML estimation with one observation per 

inter-quantile range. Performance was excellent for all parameters, especially σ, and 

especially in the K = 2 … 5 range that is most representative of real choice RT data. 

Bias, as indicated by the absolute deviation of both the mean and median from the 

true values, generally decreased with increasing sample size. Hence, QML estimation 

appears to be consistent (i.e., bias approaches zero with increasing sample size). 

Generally, bias was positive for µ and negative for τ (as they sum to give the mean 

such tradeoffs are to be expected) except for K = 1/3, where the reverse held.  

-------------------------------- 
Insert Figure 1 about here 
-------------------------------- 

 Sampling variability, indicated by both the range containing 95% of parameter 

estimates and the inter-quartile range in Figure 1, decreased with sample size. 

Efficiency improved with increasing K, especially for µ estimates, and was 

particularly good in the important K = 2 … 5 range. Generally, σ estimates were the 

most efficient, although µ estimates were equally good for higher values of K (note 
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that the ranges for the panels in Figure 1 differ in order to represent results clearly). 

The 95% ranges and inter-quartile ranges indicate that the parameter sampling 

distributions were quite symmetric, which is desirable when parameter estimates are 

subjected to normal theory analysis, such as ANOVA. Clear exceptions occur for τ 

estimates for K = 1/2 and 1/3, which produced positively skewed sampling 

distributions, as τ is bounded below, and its true value is close to zero in these cases.  

QML vs. CML Estimation 

 Figure 2 compares the bias and efficiency of the CML and QML-1 estimates. 

The difference in bias is indicated as the absolute deviation from the true value for the 

CML estimate minus the absolute deviation for the QML-l estimate. The difference in 

efficiency is indicated by the standard deviation of the CML estimates minus the 

standard deviation of the QML-1 estimate. Positive values indicate superior 

performance (less biased, more efficient) for the QML-1 estimates. For almost all 

cases, except K = 1/3, the QML-1 estimates were less biased than the CML estimates. 

The difference was most marked of the µ parameter, and for the τ parameter in small 

samples. A small reversal occurred in τ for larger samples when K = 4. The difference 

was smaller for σ, but QML-1 clearly did better in the important K = 2 … 5 range. 

-------------------------------- 
Insert Figure 2 about here 
-------------------------------- 

 The superior performance for QML-1 was more marked in terms of efficiency, 

particularly for estimates of µ, where the increase in efficiency for larger K was very 

large. This reflects the strong decrease in parameter estimate variability with K noted 

in Figure 1, and shows that the same decrease does not occur for CML estimates. 

QML-1 σ estimate were also more efficient, especially for larger K, whereas QML-1 
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τ estimates are only marginally more efficient, although they were still better in 

almost all cases.  

Figure 3 compares the QML-4 estimates (with four observations in each inter-

quantile range), with the CML estimates. The pattern of results is essentially identical 

to the pattern for the QML-1 estimates, except that the advantage over CML estimates 

is slightly reduced. The results for QML-2 estimates, which are not shown for brevity, 

fall between those for QML-1 and QML-4. Hence, it appears that robust estimates can 

be obtained with little cost in terms of bias or efficiency.  

-------------------------------- 
Insert Figure 3 about here 
-------------------------------- 

Results were also obtained for 8 observations per inter-quantile range, in 

samples of 80 and 160, and for 16 observations per inter-quantile range, for samples 

of 160. These findings omitted previously to facilitate the display of results. The 

results for 8 and 16 observations per inter-quantile range followed a similar pattern to 

those for 1-4 observations per range; both bias and sampling variability increased only 

slightly as more observations were included in each inter-quantile range. Even with 

the larger numbers of observations per inter-quantile range, QML retained its marked 

superiority over CML in the efficiency of µ estimates. Bias differences were also 

negligible, although QML maintained a slight superiority, on average. 

Overall, parameter estimation was markedly more biased and somewhat less 

efficient for the more symmetric ex-Gaussian distributions. However, for the range 

K = 2 … 5, bias was negligible even for the smaller sample sizes, particularly for the 

σ parameter. Bias was stronger for the µ and τ estimates, but was still small even for 

n = 40. The bias in µ and τ estimates was complementary, with µ being slightly 

overestimated and τ being slightly underestimated. Tables of bias, both in means and 
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medians, and efficiency, as standard deviations, for the entire simulation study are 

available via the web3.  The web site provides examples of how to use the tables to 

determine the magnitude of potential confounding due to bias and to estimate the 

sample size required to find an effect of a given magnitude in ex-Gaussian parameter 

estimates. Due to the large number of replicates used in the Monte Carlo study, the 

tabled values are precise, and so appropriate for this purpose. 

Discussion 

The Monte Carlo study found that QML was generally less biased and much 

more efficient than CML estimation. These findings support QML as the method of 

choice for estimating ex-Gaussian distribution parameters. The advantage for QML 

over CML was largely maintained when the QML estimates were based on up to 

sixteen times fewer quantiles than the number of data points. This finding indicates 

that the advantages of QML estimation in terms of robustness against outliers can be 

exploited with only a small cost in bias and efficiency. Note that no outliers were 

included in the simulated data. Hence, the QML may enjoy an even greater advantage 

over the CML in real RT data.  

The largest advantage for QML over CML was for estimates of µ, particularly 

for more asymmetric distributions. The µ parameter approximately indicates the 

location of the ex-Gaussian mode. More variable estimates of µ for more asymmetric 

distributions occur because the mode is less well defined when the shape of the ex-

Gaussian distribution becomes dominated by the exponential component. The 

improved performance for µ estimates did not appear to be associated with a cost for τ 

estimates, an important finding because studies often focus on both µ and τ estimates 

(e.g., Andrews & Heathcote, in press; Balota & Spieler, 1999; Spieler et al., 1996). 

The excellent results for estimation of the σ parameter suggest that it deserves more 
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attention in characterising RT distribution effects. For example, the relative 

proportions of observations in the body and right tail of the distribution may be 

examined through estimates of the K = τ/σ ratio used in the Monte Carlo study.  

 The simulation results indicate that the ex-Gaussian distribution is less useful 

for estimating shape when RT distributions are close to symmetric. The A measure 

provides a practical way of determining asymmetry prior to fitting, as it requires only 

estimates of the mean, median, and standard deviation. A reasonable heuristic is that 

estimation of distribution shape using the ex-Gaussian is safe for A > 0.15, 

corresponding to simulation results in the range K = 2 … 5.  

An important issue in the application of QML estimation is choosing the 

number of quantiles. The choice represents a trade-off between estimation accuracy 

and robustness. Using lesser numbers of quantiles provides protection against outliers. 

However, the simulation results indicate that bias is minimised and efficiency 

maximised by using the largest number of quantiles compatible with sample size. 

Fortunately, QML estimates were still superior to CML estimates for up to 16 

observations per inter-quantile range, at least when a minimum of ten quantiles was 

enforced. A strategy that could protect against outliers while minimising bias and 

efficiency costs, is to use larger numbers of observations in the first and last inter-

quantile ranges than are used for the body of the distribution. Larger first and last 

ranges will reduce information about the tails of the distribution, but where outliers 

are suspected, parameter estimates may still benefit. The simulation reported here 

always used equal numbers of observations in each range, so some caution is 

warranted in extrapolating from the present results.   
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Limitations and Extensions 

The ex-Gaussian distribution was chosen for the present investigation because 

it is widely used and usually provides a better characterisation of choice RT 

distribution than most other simple three-parameter distribution functions (except 

perhaps the shifted lognormal distribution, see Ratcliff & Murdock, 1976; Wixted & 

Roher, 1993). Some caution should be exercised in generalising the results of the 

Monte Carlo study to other distribution functions, as the properties of QML estimates 

depend on the specific distribution function and quantiles employed. In particular, the 

Monte Carlo results do not demonstrate that QML estimation will be less biased and 

more efficient than CML estimates for all distribution functions. Van Zandt (personal 

communication) found QML-4 parameter estimates for samples of 160 from an 

exponential distribution with a mean of 100 to be slightly more biased and variable 

than CML estimates. While the advantage for CML was relatively minor, this case 

demonstrates the need for further investigation to determine the relative efficiency and 

bias of CML and QML for other distribution functions. Even in cases where QML is 

slightly more biased or less efficient than CML, it may still be preferred because any 

loss of information resulting from reducing the raw data to quantiles may be more 

than compensated for by increased robustness.  

An apriori implausible assumption made by the ex-Gaussian is that RT is not 

bounded below. While unrealistic, this feature provides robustness against fast 

anticipatory responses, which can greatly distort parameter estimates for a distribution 

function that is bounded below. Densities with parameter dependent domains, such as 

the shifted lognormal or Weibull distributions, are more plausible in this regard, but 

require the lower bound to be estimated. Where a densities’ domain is parameter 

dependent, the first and last quantiles must be chosen differently than in the Monte 
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Carlo study, such as by setting the first quantile equal to the minimum observation 

(i.e., oq̂  = RT(1)). The cost is that QML will no longer be robust to anticipatory 

responses. A more robust approach, but one which is unlikely to be unbiased, or even 

consistent, is to omit the probability of an observation in the first and/or last inter-

quantile range in the calculation of Equation 4. Further investigation is required in 

order to determine the best method.  

The limitations of the Monte Carlo results should not be taken to mean that 

QML cannot be applied to distribution functions other than the ex-Gaussian. The 

QML approach is very general, and can even be applied, via Monte Carlo methods, 

where the distribution function is not known analytically or difficult to evaluate 

directly due to its complexity. In particular, any RT distribution model, no matter how 

complex, can be fit by QML if independent samples can be obtained from the model. 

For any given parameter setting, θθθθ, the model probabilities, πj = ( )dttfj

j

q

q∫ −

ˆ

ˆ 1

,θ  can be 

obtained by counting the proportion of samples that fall between each data quantile4. 

For example, for a k choice model (i = 1 … k) specifying RT distributions for both 

correct and error responses, Monte Carlo estimates of the probability of each type of 

response in each inter-quantile range (e.g., πi,j,Correct and πi,j,Error) can be used to 

construct the likelihood : ∑ ∑∑ ∑
= == =

+
k

i

m

j
ErrorjiErrorji

k

i

m

j
CorrectjiCorrectji

ErroriCorrecti

NN
1 1

,,,,
1 1

,,,,

,,

lnln ππ . The 

number of quantiles for each response type, mi,Correct and mi,Error, can be chosen to suit 

the sample sizes available, with fewer quantiles employed for rare responses.  Even 

when the model specifies a mixture that is not identifiable in the data (e.g. a small 

proportion of distracted or anticipatory responses), QML can still be used to fit the 

mixture distribution with the π values reflecting the effect of the mixture.  
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QML fitting is also ideal for the estimation of group RT distributions (Ratcliff, 

1979) in paradigms that do not allow sufficient observations to be collected to 

estimate RT distribution for each subject and condition. The estimation method used 

by Ratcliff (1979) applied CML to quantiles as if they were raw data. This is only 

exact when the number of quantiles equals the number of RTs, and so is not suitable 

for use with the larger inter-quantile ranges required for robustness. QML estimation 

is, therefore, more appropriate, and it was this problem that motivated the initial 

development of QML. However, unless the components of the group form a scale-

location family (Thomas & Ross, 1980) the quantitative form of the group distribution 

may be distorted. Ratcliff’s (1979) results indicate that the distortion is relatively 

small for the ex-Gaussian distribution in parameter ranges typical of data. The QML 

approach removes some of the motivation for examining group distribution functions 

because its robustness, and improved efficiency for the ex-Gaussian, allows it to be 

applied to smaller samples than CML. However, a group distribution approach will 

still be necessary for some paradigms. The Monte Carlo results reported here come 

from a larger study that examined group distribution estimation using CML and QML. 

QML estimation is computationally costly because the evaluation of 

cumulative distribution functions, such as for the ex-Gaussian, often involves 

numerical integration. Hence, efficient implementations of fitting algorithms, and 

ideally analytic derivatives for the QML objective function, are required. Brown and 

Heathcote (submitted) make the Fortran 90 program used in the Monte Carlo study, 

QMLE, available as open source code3. Although approximately an order of 

magnitude slower than CML, this efficient implementation of QML is fast enough to 

fit most empirical data sets on a PC. For larger data sets and Monte Carlo studies, 

QMLE can be compiled for parallel execution, and so can take advantage of multiple-
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processor workstations (see Pollard, Mewhort & Weaver, 2000 for discussions of 

parallel programming issues). The open source approach taken with QMLE allows 

researchers to augment the code to fit other distribution functions. Brown and 

Heathcote (submitted) also provide formulae for the derivative and Hessian of a QML 

objective function that require only knowledge of the derivative and Hessian of the 

probability density function. Given a specification of the latter, QMLE automatically 

provides the former, so implementing QML fitting is no harder than implementing 

CML fitting. 

QML estimation is ideally suited to graphical examination of misfit through 

QQ plots (Cleveland, 1985) of observed versus fitted quantiles. The contribution of 

each quantile to the overall misfit can be quantified by examining the corresponding 

terms in the sum in Equation 4. Because QML is a ML method, parameter standard 

errors and correlations can be estimated through inversion of the Hessian (second 

partial derivative) matrix of the likelihood function. The Hessian measures the 

likelihood surface’s curvature at the maximum, and so quantifies how sharply the 

maximum is defined, and consequently how precisely parameters are estimated (see 

Edwards, 1972 for details and Roher & Wixted, 1994, for an example of this 

approach)5. Brown and Heathcote’s (submitted) QMLE program provides parameter 

standard errors and correlations based on the Hessian, as well as observed and fitted 

quantiles, and the corresponding terms from Equation 4. 

More generally, analytic techniques based on quantiles are now available that 

rival the scope of classical least-squares methods. Quantile regression (Bassett & 

Koenker, 1978; Rosseeuw & Leory, 1987) provides robust estimation of covariate 

models of the median, using the fact that the median minimises the sum of absolute 

deviations. The latter property can be used to generalise the regression approach to 
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arbitrary quantiles and to provide quantile estimates for large data sets without sorting 

(Hunter & Lange, 2000). In an approach similar to the Pearson system of 

distributions, which is estimated by matching the first four moments, Morgenthaller 

and Tukey (2000) describe a flexible family of distributional shapes that can be easily 

fit to quantiles. This family can encompass not only variations in symmetry, but also 

heavy and light tailed cases, so that it is not only more robust, but also more flexible, 

than the Pearson approach. QML estimation provides one more tool in this growing 

collection of robust quantile-based methods.  
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Table 

Table 1. Parameters and statistics of the simulated ex-Gaussian distributions. 

Mean SD      µ    σ    τ K= τ/ σ A 
1000 100 968.377 94.868 31.623 1/3 0.0098 
1000 100 955.279 89.443 44.721 1/2 0.0245 
1000 100 929.289 70.711 70.711 1 0.0880 
1000 100 910.557 44.721 89.443 2 0.1890 
1000 100 905.132 31.623 94.868 3 0.2420 
1000 100 902.986 24.254 97.014 4 0.2675 
1000 100 901.942 19.611 98.058 5 0.2810 
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Figure Captions 

Figure 1. Deviations from the true parameter values for QML-1 estimates of the ex-

Gaussian parameters: (a) µ, (b) σ, and (c) τ. Rectangles indicate the inter-quartile 

range, the horizontal lines with rectangles indicate the median, stars indicate the 

mean, and the long vertical lines span 95% of parameter estimates.  

 

Figure 2. CML minus QML-1 Bias (absolute deviation from the true value) and 

Standard Deviation (SD) 

 

Figure 3. CML minus QML-4 Bias (absolute deviation from the true value) and 

Standard Deviation (SD) 
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Footnotes 
                                                 

1Ulrich and Miller (1994) also suggested a robust likelihood function that combines aspects of 

Equations 1 and 2. It is used when r1 samples below a lower cut-off, a, and r2 samples above an upper 

cut-off b have been censored from a sample:  
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Ulrich and Miller’s approach is implemented in RTSYS (Heathcote, 1996). 

2 The algorithm defines a linearly interpolated quantile estimate. Other estimates are possible, e.g. 

using ( ) 11 +−= npI jj , which converges with the definition used here for large n.  

3Go to http://psychology.newcastle.edu.au and follow the links to Heathcote’s home page. 

4 More sophisticated approaches could use smoothed cumulative distribution function estimates (e.g. 

Wand & Jones, 1995) and more frugal sampling schemes (e.g., Tanner, 1993).  

5Note that statistics based on the Hessian are only approximate when estimation is nonlinear. More 

accurate results can be obtained via bootstrapping (e.g., Davison & Hinkley, 1997). 
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