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A Family of Irregular LDPC Codes With Low
Encoding Complexity
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Abstract—We consider in this letter irregular quasi-cyclic low-
density parity-check (LDPC) codes derived from difference fami-
lies. The resulting codes can be encoded with low complexity and
perform well when iteratively decoded with the sum-product algo-
rithm.

Index Terms—Difference families, low-density parity-check
codes, quasi-cyclic codes.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes were first pre-
sented by Gallager [4] in 1962 and have created much

interest recently when rediscovered and shown to perform re-
markably close to the Shannon limit. Decoding is with the sum-
product algorithm with complexity linear in the code length
[8]. Decoding with the sum-product algorithm requires only
that the parity-check matrix, , be sparse. However, decoding
performance can often be improved if the code is also free of
4-cycles, which occur if two code bits are both checked by the
same pair of parity-check equations. Gallager described regular
codes, defined by parity-check matrices with constant column
and row weights, which were constructed pseudo-randomly to
avoid 4-cycles [4].

Recently, Lubyet al.extended Gallager’s results to consider
irregular codes, that is, codes with nonconstant row and column
weights in , and showed that these codes are capable of outper-
forming regular codes [6].The irregular codes are constructed
via a pseudo-random process which usually involves discarding
codes which contain 4-cycles.

While optimized irregular codes are capable of excellent per-
formance with reasonable decoding complexity, one of the main
hurdles in the implementation of LDPC codes is the compu-
tational complexity of theencodingalgorithm. Encoding is, in
general, performed by matrix multiplication and so complexity
is quadratic in the code length.

One option for efficient encoding is to use algebraic code con-
structions and exploit the subsequent code structure. In the case
of regular codes a number of algebraic constructions have been
presented, such as in [7], [5], [12]. Less consideration however
has been given to structured irregular codes. The aim of this
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letter is to determine if the gains achieved by irregular random
codes over the regular random codes translate into similar gains
for quasi-cyclic irregular codes. To this end we consider irreg-
ular quasi-cyclic codes free of 4-cycles constructed using differ-
ence families. The design of codes using difference structures is
not a new idea; see for example the self-orthogonal quasi-cyclic
codes of [11], or the difference-set cyclic codes [13], which give
the powerful cyclic regular LDPC codes of [7]. In this work we
are interested in the design of quasi-cyclic codes with irregular
degree distributions selected to improve their performance with
sum-product decoding.

II. QUASI-CYCLIC CODES

A code is quasi-cyclic if, for any cyclic shift of a codeword
by places, the resulting word is also a codeword [10]. A cyclic
code is a quasi-cyclic code with . We consider binary
quasi-cyclic codes described by a parity-check matrix

(1)

where are binary circulant matrices. Provided
that one of the circulant matrices is invertible (say) the gen-
erator matrix for the code can be constructed in systematic form

(2)

resulting in a quasi-cyclic code of lengthand dimension
. Encoding can be achieved with linear complexity using a

-stage shift register in much the same way as for cyclic
codes [10].

The algebra of ( ) binary circulant matrices is isomor-
phic to the algebra of polynomials modulo over GF(2)
[10]. A circulant matrix is completely characterized by the
polynomial with coeffi-
cients from its first row, and a code with parity-check matrix
of the form (1) is completely characterized by the polynomials

. Polynomial transpose is defined as

For a binary [ ] code, length and dimension
, the -bit message [ ] is described by the

polynomial and the codeword
for this message is , , where is given by

(3)
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Fig. 1. A rate-1/2 quasi-cyclic code from circulants,a (x) = 1 + x anda (x) = 1 + x + x .

is the polynomial representation of the information bits
to

and polynomial multiplication () is mod .
As an example, consider a rate-1/2 quasi-cyclic code with

, , first circulant described by , and
second circulant described by , which is
invertible

The generator matrix contains a 55 identity matrix and the
5 5 matrix described by the polynomial

Fig. 1 shows the parity-check matrix, generator matrix and
Tanner graph of this code. For this example the code is not
4-cycle free. To construct a quasi-cyclic code for sum-product
decoding we shall require that is sparse and that the Tanner
graph of the code is free of 4-cycles. In the following we
present constructions for such codes using difference families.

III. QUASI-CYCLIC CODES FORSUM-PRODUCTDECODING

A difference family is an arrangement of a group of
elements, such as , into not necessarily disjoint subsets of
equal size which meet certain difference requirements. More
precisely:

Definition 1 [1]: The -element subsets of the group
, with form a

difference family if the differences ,
give each nonzero

element of exactly times.
For example, the subsets , of

form a (13,3,1) difference family with differences

From

From

In this work we are interested in difference families with
which, as we will see in the following, allows the de-

sign of codes free of 4-cycles. The existence of differ-
ence families has long been established for all ,
a prime power [1]. Recently, existence results for (, 4, 1) and

difference families, and ,

respectively, have been proven for alla prime power [3]. In
the following we describe the construction we propose for ir-
regular quasi-cyclic codes using these difference families. For
an irregular quasi-cyclic code we define the column weight dis-
tribution of a length rate code as the vector

, where is the column weight of the columns
in the th circulant. We denote by the maximum column
weight of

Construction 1: To construct a length rate
irregular quasi-cyclic code, ,
with weight distribution , take sets

of a difference family with ,
such that is defined, using of the elements of , as

To ensure invertibility at least one must divide .

For a regular code all of the elements in each set are included
in each circulant, while for an irregular code the choice of which
elements in the set to use is arbitrary, and in fact a single set
can be used to construct two circulants provided that different
elements are chosen for each. The row weight,, of the parity-
check matrix is constant, and given by

(4)

To demonstrate that the quasi-cyclic codes are free of 4-cycles
we need a well known result of difference families:

Lemma 1 [1]: A pair of elements from occur together
exactly times in the set of translates of every set in a
difference family.

Lemma 2: The codes of Construction 1 have Tanner graphs
free of 4-cycles.

Proof: Follows from the choice of . First consider
the regular case. Each column of
is a translate of one of the sets in the difference family. To
show that there can be no 4-cycles inwe need to show that
no two columns of can have a nonzero entry in the same two
rows, which is equivalent to requiring that two elements of
can occur together in at most one of all the translates of the sets
in the difference family. Since two elements occur together in
exactly translates, we need only choose to avoid 4-cy-
cles. The argument follows naturally to the irregular construc-
tion. By considering only of the elements in a given set of
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Fig. 2. Error correction performance of LDPC codes on an AWGN channel
using sum-product decoding with max.iterations= 50. The rate-3/4, [404, 303]
irregular quasi-cyclic code withW = [5; 5; 3; 2], and the rate-5/6, [606, 505]
irregular quasi-cyclic code withW = [5; 5; 5; 3; 3; 2] are compared to
randomly constructed codes with the same rate and length and to similar length
regular quasi-cyclic codes.

the difference family we are in effect removing elements from
the set of translates and 4-cycles cannot be added by removing
entries from .

IV. SIMULATION RESULTS

Using the (101,5,1) difference family from [2],

four quasi-cyclic irregular LDPC codes have been constructed:

• a rate-3/4, [404, 303] code with , ,
, ;

• a rate-4/5, [505, 404] code with , ,
, , ;

• a rate-5/6, [606, 505] code with , ,
, , ,

;
• a rate-6/7, [707, 606] code with , ,

, , ,
, ;

where .
These new codes are compared to randomly constructed

codes [8], [9], and regular column weight three quasi-cyclic
codes with similar parameters. The quasi-cyclic codes can be
encoded with a shift register circuit of size equal to the code
dimension while encoding of the random codes is via matrix
multiplication. For example, encoding of the quasi-cyclic
codes requires binary operations, is one less than
the row weight of , while matrix multiplication requires

binary operations.
The decoding performance of the quasi-cyclic codes, shown

in Figs. 2 and 3, demonstrates that there is a modest performance

Fig. 3. Error correction performance of LDPC codes on an AWGN channel
using sum-product decoding with max.iterations= 50. The rate-4/5, [505, 404]
irregular quasi-cyclic code withW = [5; 5; 3; 3; 2], and the rate-6/7, [707, 606]
irregular quasi-cyclic code withW = [5; 5; 5; 3; 3; 2; 2] are compared to
randomly constructed codes with the same rate and length and to similar length
regular quasi-cyclic codes.

gain to be made over the regular quasi-cyclic codes by using ir-
regular quasi-cyclic codes. Further, for reasonably short lengths
and high rates, the quasi-cyclic LDPC codes show an improved
decoding performance over the standard randomly constructed
LDPC codes. Although it is not expected that the codes pre-
sented will outperform randomly constructed optimized irreg-
ular codes they have the advantage of a reduced encoding com-
plexity.
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