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et �(ω) denote the
power spectral den-
sity of a discrete-
time stationary
Gaussian signal,

where ω ∈ [−π, π] is the normalized
angular frequency variable. Let �̂(ω)

denote a windowed periodogram
estimate of �(ω). Under mild condi-
tions on �(ω), the large-sample rela-
tive variance of �̂(ω) is given by

relative variance
[
�̂(ω)

]

�= var[�̂(ω)]
�2(ω)

= M
N

(for N � 1) (1)

where N is the number of data sam-
ples and M denotes the effective time
length of the window used (with
M = N for the unwindowed peri-
odogram and usually M � N for the
windowed versions) (see,  e.g.,
[1]–[3]). Under the simplifying
assumption that �(ω) is a piecewise
constant function over M subinter-
vals of the frequency interval
[−π, π], it was shown in [4] that (1)
can in fact be viewed as a type of
Cramér-Rao bound (CRB) on the

relative variance of a much larger class
of nonparametric spectral estimation
methods than just the windowed
periodograms. In particular, this dis-
cussion implies that the (large-sam-
ple) average relative variance of a
nonparametric spectral estimation
method may be lower bounded by an
expression of the form:

average relative variance
[
�̂(ω)

]

�= 1
2π

∫ π

−π

var
[
�̂(ω)

]

�2(ω)
dω

= M
N

. (2)

Next, consider the parametric spectral
estimation of �(ω) . Let �(ω, θθθ)

denote a known parameterization of
�(ω) , where θθθ is the vector of
unknown parameters of dimension m,

dim (θθθ) = m. (3)

Also, let �(ω, θ̂θθ) denote the para-
metric estimate of �(ω) correspond-
ing to the estimate θ̂θθ of  θθθ . Under
the assumption that �(ω) is a ratio-
nal function of  ω and that

m � 1 (but m/N � 1) (4)

it follows from results in [5] (for the
all-pole signal case) and [6] (for
mixed pole-zero signals) that large-
sample CRBs, similar to (1) and (2),
hold true:

var[�(ω, θ̂θθ)]
�2(ω)

= 2m
N

(for m � 1,N � 1, m/N � 1)

(5)

and, as a corollary,

1
2π

∫ π

−π

var[�(ω, θ̂θθ)]
�2(ω)

dω = 2m
N

(for m � 1,N � 1, m/N � 1).

(6)

However, the assumption that
m � 1 made above is often imprac-
tical. Indeed, in many applications of
parametric spectral estimation m
takes on fairly small values (such as
m ≤ 10). This drawback of the anal-
ysis in [5] and [6] was noted in the
recent paper [7] whose main goal
was to verify whether the CRBs in
(5) and (6) hold also for small m val-
ues. As shown in [7], (5) may be a
poor approximation for small values
of m . However, interestingly
enough, (6) was shown to hold true
for any value of m:

1
2π

∫ π

−π

var[�(ω, θ̂θθ)]
�2(ω)

dω = 2m
N

for m ≥ 1 (and N � 1). (7)

In particular, the above discussion
implies that, while the curve of the
CRB on the relative variance of
�(ω, θ̂θθ) may change with the param-
eter values in θθθ , for small values of
m , the area of this curve remains
constant regardless of its shape. This
behavior has been suggestively called
a waterbed effect in [7].

In this lecture note, we present a
textbook-like derivation of the
waterbed effect result in (7). Com-
pared with [7], our analysis is much
simpler and yet slightly more general
in that it is not limited to rational
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spectral densities as in [7] (note,
however, that [7] has also derived a
closed-form expression for the finite-
m CRB on the relative variance of
�(ω, θ̂θθ), which we do not).

Derivation of the 
Waterbed Effect Result
Under fairly general conditions on
�(ω) and θ̂θθ , we can use a Taylor
series expansion of �(ω, θ̂θθ) around
the true parameter vector to obtain

�(ω, θ̂θθ) ≈ �(ω, θθθ)

+ ∂�(ω, θθθ)

∂θθθT (θ̂θθ − θθθ)

(for N � 1) (8)

where (·)T denotes the transpose,
and (∂�(ω, θθθ))/(∂θθθT ) denotes the
1 × m gradient vector. Hence,
asymptotically in N, the CRB on the
variance of �(ω, θ̂θθ) is given by

var[�(ω, θ̂θθ)] = ∂�(ω, θθθ)

∂θθθT

× C
∂�(ω, θθθ)

∂θθθ
(9)

where C denotes the CRB on the
covariance matrix of the parameter
estimate vector, θ̂θθ . Under the Gaus-
sianity assumption made above and
some regularity conditions on �(ω),
the matrix C is given by the so-called
Whittle’s formula (see, e.g., [8], [3]):

C =
{

N
4π

∫ π

−π

1
�2(ω)

× ∂�(ω, θθθ)

∂θθθ

∂�(ω, θθθ)

∂θθθT dω

}−1

.

(10)

Combining (9) (rewritten as

var[�(ω, θ̂θθ)] =tr
[
C

∂�(ω, θθθ)

∂θθθ

×∂�(ω, θθθ)

∂θθθT

]
,

where tr(·) denotes the trace oper-
ator) and (10) yields the following
expression for the average relative
variance:

1
2π

∫ π

−π

var[�(ω, θ̂θθ)]
�2(ω)

dω

= tr
{

C
1

2π

∫ π

−π

1
�2(ω)

× ∂�(ω, θθθ)

∂θθθ

∂�(ω, θθθ)

∂θθθT dω

}

= 2
N

tr
(
CC−1) = 2m

N
(11)

which proves the waterbed effect
result in (7).

An Example
To emphasize the nature of this
waterbed effect, we present a simple
example. In the interest of clarity,
consider the restricted case of a
first-order real-valued AR model.
Then drawing on the results in [7],
we get

var[�(ω, θ̂θθ)]
�2(ω)

= 2
N

[
1 − |ξ1|2

|e jω − ξ1|2

+ Re
{

1 − ξ2
1

(e jω − ξ1)2

}]

(12)

where ξ1 is the true real-valued autore-
gregrssive model pole. Note that this

expression is different from (5), since
the latter is an approximation that
assumes m is large, while (12) does not.

In this case, the right-hand side
of (12) makes explicit the nature of
the waterbed effect. In particular,
the denominator terms in (12) indi-
cate that a pole near the unit circle
will introduce peaks in the relative
variance at frequencies near that
pole. By the waterbed effect, these
peaks will need to be balanced by
smaller relative variance in other fre-
quency regions. For instance, for the
two cases of ξ1 = 0.95 and ξ1 = 0.2,
the relative variances are shown in
Figure 1. Note that, as just dis-
cussed, a pole at ξ1 = 0.95 near the
unit circle produces a large peak in
relative variance, especially in com-
parison to the case ξ1 = 0.2 where
the pole is away from the unit circle.
Furthermore, by the waterbed effect,
the large peak in variance in the
ξ1 = 0.95 case is balanced by a
smaller variance at other frequencies,
and again especially in comparison
to the case ξ1 = 0.2.

▲ 1. Relative variance of first-order real-valued AR spectral estimates for two cases of pole posi-
tion ξ1. Note the waterbed effect, in which increased variance at one frequency is balanced
by decreased variance at others.  Here the case of data length N = 1, 000 is shown.
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(continued on page 100)
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dsp history continued

Charles: I’m now working half
time (or rather, half effort). I don’t
know when I will fully retire. My
wife has been renovating a property
on Cape Cod, which is nearly fin-

ished. I like to joke that it’s rising,
Phoenixlike, from the ashes of our
savings. When I can spend some
more time there, I want to try writ-
ing about how public policy deci-

sions are made when they are based
on technology. 

SPM: It has been an honor. Thank
you and hope we will do it again.

dsp tips & tricks  continued from page 97

If the reader has any comments
regarding this article, please e-mail
one of the authors. Feedback from
our readers, either positive or nega-
tive, is most welcome.

Richard Lyons is a consulting systems
engineer and lecturer with Besser
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the author of Understanding Digital
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Concluding Remarks
In view of (2) and (7), the waterbed
effect result, also called an uncer-
tainty conservation result in [7],
appears to be a fundamental proper-
ty of both nonparametric and para-
metric spectral estimation methods.
Consequently, an even “more intu-
itive” or “higher-level” derivation of
this property than the one presented
herein might exist, but it remains to
be discovered.
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