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Abstract: Recent studies have shown that flood data from eastern Australian catchments may 
demonstrate variability in flood risk over multidecadal time scales, characterised by crossings of the 
Interdecadal Pacific Oscillation (IPO) climate index.  This nonhomogeneity of flood risk may lead to a 
significant prospect of biased long-run flood risk from at-site flood data with insufficient coverage of 
both IPO epochs.  This paper develops a Bayesian hierarchical regional model, implemented using 
the Gibbs sampler, to overcome this possible bias in flood risk.  The hierarchical model proposes that 
the parameters of the flood frequency distribution at any site are random samples from a regional 
probability model, allowing for intersite variability, while also permitting spatial correlation between 
concurrent floods.  An outcome is that the predictive uncertainty at an ungauged or gauged site may 
be quantified. 
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1. INTRODUCTION 
 
A basic assumption of flood frequency analysis 
is that flood peaks are independent and 
identically distributed.  However, recent studies 
have questioned the validity of this assumption 
with evidence showing the existence of more 
than one distribution within eastern Australian 
flood data, especially for New South Wales 
(NSW) [Erskine and Warner 1988; Franks 
2002; Franks and Kuczera 2002]. 
 
The association between El Nino/Southern 
Oscillation (ENSO) and Australian climate was 
found [Power et al. 1999] to be modulated by 
the Interdecadal Pacific Oscillation (IPO), a 
climate index of multidecadal Pacific Ocean sea 
surface temperature anomalies (see Section 2).  
Kiem et al. [2003] analysed IPO-stratified flood 
data from NSW and found that the IPO 
modulated both the magnitude and frequency of 
ENSO events (El Nino and La Nina) resulting in 
multidecadal periods of elevated and reduced 
flood risk.  La Nina events were found to be the 
primary drivers of flood risk and this was further 
enhanced under negative IPO phases.  These 
results have obvious consequences for 
Australian flood risk.  Micevski et al. [2006] 
performed flood frequency analyses on IPO-
stratified flood data from eastern Australia.  The 
IPO was found to modulate the flood risk in 
NSW and southern Qld, with flood quantiles 
being increased by a factor of approximately 
1.7 during negative IPO epochs.  Thus, there is 
a large prospect of significant bias in long-run 
flood risk when using at-site data with poor 
coverage of one of the IPO epochs. 
 
This study describes a Bayesian regional 
hierarchical flood model to overcome the 

possible bias in long-run flood risk associated 
with a nonhomogeneous flood record.  The 
hierarchical model proposed in Micevski et al. 
[2003] is refined and implemented using the 
Gibbs sampler.  Results are presented for 
eastern Australian flood data.  
 
2. DATA 
 
2.1 Interdecadal Pacific Oscillation (IPO) 
 
The IPO is the coherent pattern of SST 
variability occurring on interdecadal time scales 
over the (entire) Pacific Ocean [Power et al. 
1999; Folland et al. 2002].  It is characterised 
by the third empirical orthogonal function of 13-
year low-pass filtered global SSTs, projected 
onto annual data [Folland et al. 2002].  Note 
that the IPO has a similar time series to that of 
the Pacific Decadal Oscillation (PDO) [Mantua 
et al. 1997], which is defined as the leading 
principal component of North Pacific Ocean 
SST anomalies, poleward of 20°N. 
 
The annual IPO time series is presented in 
Figure 1 and represents an average of four 
seasonal values — the IPO data were obtained 
directly from the United Kingdom Met Office.  
Note that the time series reveals extended 
epochs above and below the long-term 
average. 
 
2.2 Flood data 
 
Annual maximum flood data from NSW and Qld 
were used in this study.  The NSW data was 
obtained from the NSW Department of Land 
and Water Conservation Pinneena database, 
while the Qld data was provided directly by the 
Qld Department of Natural Resources and 
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Mines.  Flood data was obtained for a total of 
127 sites, with Qld having 85 sites and NSW 42 
sites.  The locations of the sites are shown in 
Figure 2.  The yearly peak flows were extracted 
using a water year from April to March, which 
corresponds to the typical ENSO cycle. 
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Figure 1. Annual IPO time series. 
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Figure 2. Location of sites and regions. 

 
3. HIERARCHICAL MODEL 
 
A hierarchical model has observable outcomes 
that are modelled conditionally on certain 
parameters, which themselves are given a 
probabilistic specification in terms of further 
parameters [Gelman et al. 1995, p. 119].  That 
is, the observable outcomes (annual floods) are 
sampled from a site’s own flood model whose 
parameters (eg. mean and standard deviation) 
are considered to be sampled from a regional 
flood model.  Thus, the hierarchical model 
consists of a two-level structure (see Figure 3), 
the two levels being the regional and site 
models, and can be thus parameterised Θ = 
{θR, θS}, where Θ is the vector of all regional 
model parameters, and θR and θS are the 
vectors of regional and site model parameters, 
respectively. 

 

regional model
µi ~ N(β1logAi+β2IFDi+β3,σε

2)
log σi ∼ N(γ,σδ

2)

site model 1
y1t ~ N(µ1,σ1

2)

flood data 1
y1t

flood data i
yit

ρi j

site model i
yit ~ N(µi,σi

2)

 
Figure 3. Hierarchical model structure. 

 
Assume that the annual maximum flood is 
lognormally distributed, yit ~ N(µi, σi

2), for 
i=1,…,n and t=1,…,Ti; where yit is the (natural) 
logarithm of the flood for site i at time t, n and Ti 
are the number of gauged sites and years of 
data at each site respectively, and µi and σi are 
respectively the mean and standard deviation of 
yi.  Also, assume that the floods at each site are 
independent in time, but are spatially 
correlated.  This is important because the 
information content of the flood data is reduced 
when floods are spatially correlated.  Often 
spatial correlation is ignored, which may then 
overestimate the predictive power of the 
regional model — the generalised least squares 
procedure [Stedinger and Tasker 1985] is a 
notable exception. The intersite correlation may 
be described using an exponential decay 
function: 
 
ρij = exp(-[dij/A]B) [1] 
 
where ρij is the correlation coefficient between 
sites i and j, dij is the distance between the 
sites, and A and B are correlation parameters to 
be estimated.   
 
In this study, the regional model took the form 
of a normal linear model, with the site mean 
being assumed to be a function of the logarithm 
of catchment area (log A) and the 2-year, 12-
hour rainfall intensity (IFD), while the site 
standard deviation is assumed to have no 
dependent variables.  Note that the approach is 
quite general allowing other catchment 
descriptors to be used.  Thus, the hierarchical 
model consists of the regional model 
 
µi ~ N(β1 log Ai + β2 IFDi + β3, σ2

ε) [2] 
log σi ~ N(γ, σ2

δ) [3] 
 
and the site model, for independent sites 
 
yit ~ N(µi, σi

2) [4] 
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or, for correlated sites 
 
yt ~ N(µt, Σt) [5] 
 
where yt is the vector of flood data, µt is the 
vector of site means, and Σt is the covariance 
matrix (for the current year t), where the  
elements of the covariance matrix are formed 
using Σij = ρijσiσj, where ρij is defined in [1].    
Note that the regional flood model `sits above’ 
the gauged sites and furnishes different means 
µi and standard deviations σi to each site, 
allowing for variation between sites (see Figure 
3).  Also, note that θR = {σ2

ε, β, σ2
δ, γ} and θS = 

{µ, log σ}. 
 
4. MODEL CALIBRATION 
 
A Bayesian approach is used to infer the 
parameters of the hierarchical model (model 
calibration) — Bayesian methods explicitly 
account for parameter uncertainty, allowing for 
a rigorous treatment of the flood regionalisation 
problem.  Thus, the use of Bayes Theorem is 
essential in this analysis.  Bayes Theorem is 
expressed: 
 
p(Θ|Y) = f(Y|Θ)p(Θ) / p(Y) ∝ f(Y|Θ)p(Θ) [6] 
 
where p(Θ|Y) is the posterior density describing 
the current knowledge about the model 
parameter vector Θ, given the observed data Y, 
f(Y| Θ) is the likelihood function that defines the 
model fit for a particular set of model 
parameters, p(Θ) is the prior density that 
contains our subjective belief about the true 
value of Θ, and p(Y) is the marginal likelihood 
(a normalising constant). 
 
The Gibbs sampler [eg. Gelman et al. 1995] is 
particularly well suited to hierarchical models 
and is used for parameter inference.  The 
hierarchical model is partitioned into two 
subvectors Θ = {θR, θS}, and each iteration of 
the Gibbs sampler cycles through the two 
subvectors of Θ, randomly sampling each 
subvector from its conditional posterior 
distribution.  The conditional posteriors can be 
simplified: 
 
p(ΘR|ΘS, Y) = p(Y|ΘR, ΘS)p(ΘR|ΘS) / p(Y|ΘS) 
 = p(Y|ΘS)p(ΘR|ΘS) / p(Y|ΘS) 
 = p(ΘR|ΘS) [7]  
 
using Bayes Theorem and exploiting the 
hierarchical structure (the regional parameters 
θR only affect the data Y indirectly through the 
site parameters θS).  Similarly, 
 
p(ΘS|ΘR, Y) = p(Y|ΘS, ΘR)p(ΘS|ΘR) / p(Y|ΘR) 

 = p(Y|ΘS)p(ΘS|ΘR) / p(Y|ΘR) [8] 
 
The algorithm for the Gibbs sampler is: 
 
(0) Assign starting value θS

(0) 

(1) Randomly sample regional subvector: 
θR

(j) ← p(θR|θS
(j-1), Y) = p(θR|θS

(j-1)) 
(2) Randomly sample site subvector: 
θS

(j) ← p(θS|θR
(j), Y) = p(Y|θS)p(θS|θR

(j))/p(Y|θR
(j)) 

(3) Iterate steps (1) and (2), j=1,…,N times. 
 
Some important Gibbs sampler implementation 
issues are now outlined. 
 
4.1 Regional parameters 
 
Since the components of the regional model 
consist of normal linear models, standard 
regression results may be used to sample these 
parameters [eg. Gelman et al. 1995, pp. 235-7]. 
 
4.2 Site parameters 
 
No standard results are available for the site 
model parameters, so a `Metropolis-within-
Gibbs’ step [eg. Gelman et al. 1995] must be 
used to sample the site parameters.  The 
conditional posterior is used for the Metropolis-
within-Gibbs algorithm: 
 
p(θS|θR, Y) ∝ p(Y|θS) p(θS|θR) [9] 
 
where these terms are evaluated using: 
 
p(Y|ΘS) = p(Y|µ, log σ) = ΠT

t=1 N(yt|µt, Σt) 
p(ΘS|ΘR) = p(µ|ΘR)p(log σ|ΘR) 
p(µ|ΘR)=Πn

t=1 N(µi|β1
(j)log Ai+β2

(j)IFDi+β3
(j), σ2

ε
(j)I) 

p(log σ|ΘR) = Πn
t=1 N(log σi|γ(j), σ2

δ
(j)I) [10] 

 
where N(x|a,b) denotes a normal (Gaussian) 
density evaluated at x with mean a and 
variance b, and I is the identity matrix.  Note 
that using a `single-block’ Metropolis-within-
Gibbs step for the θS vector may lead to poor 
acceptance rates because some components of 
θS may be poorly sampled in each Gibbs 
sampler iteration, leading to the entire θS 
proposal being rejected.  This problem may be 
overcome by modifying the Metropolis 
procedure so that the parameters of each site 
are sampled individually, rather than all in a 
single block, using n Metropolis-within-Gibbs 
steps instead of one only.  This modification 
increases the computational effort required. 
 
 
4.3 Starting value 
 
The starting value θS

(0) is obtained using a 
mode searching algorithm (eg. quasi-Newton 
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method) on the likelihood component of the 
p(Y|θS) unnormalised conditional posterior [9].  
The two correlation parameters (A and B) are 
also determined at this time, if required. 
 
5. RESULTS 
 
The IPO-stratified flood data were analysed 
using the hierarchical model, using four regions 
(see Figure 2).  The regional posterior 
parameters for the independent-site analyses 
are given in Table 1. 
  

Table 1. Regional posterior parameters 
(independent-site analysis). 

Parameter IPO-  IPO+  
 Mean SD Mean SD 
Region 1     
β1 0.67 0.06 0.63 0.06 
β2 0.13 0.03 0.13 0.03 
β3 4.72 0.65 4.85 0.59 
σ2

ε 0.29 0.08 0.25 0.07 
γ -0.21 0.07 0.03 0.05 
σ2

δ 0.19 0.05 0.11 0.03 
Region 2     
β1 0.52 0.06 0.52 0.06 
β2 0.27 0.06 0.29 0.06 
β3 4.24 0.74 3.74 0.79 
σ2

ε 0.19 0.09 0.33 0.10 
γ 0.31 0.04 0.25 0.04 
σ2

δ 0.02 0.02 0.05 0.02 
Region 3     
β1 0.65 0.06 0.67 0.06 
β2 0.46 0.08 0.43 0.07 
β3 2.56 0.84 2.12 0.75 
σ2

ε 0.27 0.10 0.20 0.08 
γ 0.10 0.05 0.06 0.05 
σ2

δ 0.04 0.02 0.04 0.02 
Region 4     
β1 0.56 0.10 0.58 0.10 
β2 0.20 0.10 0.22 0.10 
β3 4.62 1.10 4.01 1.15 
σ2

ε 0.34 0.19 0.37 0.21 
γ 0.11 0.08 0.09 0.09 
σ2

δ 0.08 0.04 0.11 0.05 
 
Table 1 displays no apparent significant 
difference for the regional parameters between 
the IPO- and IPO+ epochs, after consideration 
of the associated standard deviations.  Similar 
results were also achieved for the correlated-
site model (not shown).  This appears to 
contradict previous studies showing that at-site 
flood risk in eastern Australian is affected by 
IPO modulation (see Section 1).  However, the 
regional model appears to be affected by 
considerable noise, due to the large areal 
extent of the regions and the small number of 
sites (see Figure 2) — the noise in the regional 
model swamps any differences due to IPO.  
This can be demonstrated by considering the 
equivalent gauged record length of the regional 
model for the mean, which is summarised in 
Table 2.  The equivalent record lengths range 
from 2-12 years, so it is not surprising that the 

regional model has difficulty detecting any IPO-
related differences in regional parameters. 
 

Table 2. Equivalent record lengths (years). 
Reg. Independent-site anal. Correlated-site anal. 
 IPO- IPO+ IPO- IPO+ 
1 2 4 4 4 
2 10 5 12 5 
3 5 6 6 6 
4 4 3 4 5 
 
The regional parameters also show little 
discernible difference between the 
independent- and correlated-site analyses.  The 
most likely explanation for the apparent lack of 
difference is that the considerable noise in the 
regional model masks any possible correlation 
effects.  This lack of difference can be 
confirmed through plots of the independent- 
and correlated-site residuals.  Figure 4 presents 
a scatter plot of the independent- and 
correlated-model mean residuals for region 1 
(for the IPO- epoch), which is representative of 
the scatter plots for the other regions (and the 
IPO+ epoch and also for the standard-deviation 
residual).  The plots show some scatter, but the 
majority of residuals plot near the `45° line’.  
The differences in the residuals between the 
independent- and correlated-site analyses are 
judged sufficiently small to warrant the use of 
the independent-site analysis for the remainder 
of this study. 
 
Finally, note that this Gibbs sampler-based 
approach did not suffer from the sampling 
difficulties that were experienced with the 
Metropolis algorithm-based approach of 
Micevski et al. [2003]. 
 
6. PREDICTION AT A NEW SITE 
 
The regional posterior distribution (the Gibbs 
samples) can be used to predict the flood 
frequency distribution at a new site, which may 
be ungauged or gauged, where this site was 
not used in the development of the regional 
model.  The procedure is derived using Monte 
Carlo importance (particle) sampling, with the 
final algorithm summarised (for a gauged site 
with data G): 
 
(1) Randomly sample the IPO epoch: IPO(j) ← 
P(IPO), where P(IPO) is the probability of 
sampling an IPO epoch (IPO- or IPO+). 
(2) Randomly sample θS

(j) = {µ(j), log σ(j)} from 
the regional model in two steps (sample θR

(j) 
using the Gibbs samples from the appropriate 
IPO epoch and then sample θS

(j) (see [2] and 
[3])). 
(3) Compute the T-year flood: qT

(j) = µ(j) + zTσ(j), 
where zT is the standard normal deviate. 
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(4) Compute the (unnormalised) particle weight: 
p(G| θS

(j)). 
(5) Repeat steps (1)-(4) for all j=1,…,N posterior 
samples. 
(6) Compute the normalised particle weights for 
all j=1,…,N: w(j) = p(G| θS

(j)) / ΣN
k=1 p(G| θS

(k)). 
(7) Sort qT and compute the (sorted) cumulative 
particle weights W(j) for all j=1,…,N. 
(8) Extract probability limits using the 
cumulative particle weights. 
 
Note, if the ungauged distribution is required, 
then the steps involving particle weights can be 
ignored. 
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Figure 4. Region 1 residual plots for the site 

mean comparing (top) independent- and 
(bottom) correlated-site analyses (IPO- epoch). 
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Figure 5. Posterior distribution of selected flood 
quantiles for an ungauged site in region 2 (90% 

limits are shown). 
 
The algorithm is illustrated for an ungauged site 
in Figure 5, which gives the at-site flood 
frequency curves for the IPO- and IPO+ 
epochs.  The figure corresponds to a site in 

region 2 with an observed IPO modulation of 
flood risk of about 1.7, with the mean discharge 
being commensurately larger during the IPO- 
epoch.  The probability limits for the two IPO 
epochs largely overlap, which indicates that the 
uncertainty and noise of the regional model 
have masked any possible IPO-related 
difference. 
 
This procedure is now used to examine the 
improvements, if any, from augmenting the 
regional flood distribution with some at-site 
gauged data.  Gauged data (5 or 10 years) is 
randomly sampled from an existing site’s full 
gauged record and is used to augment the 
regional distribution.  Figure 6 compares 2 
sites, from regions 1 and 2, for the following 
flood frequency distributions: G(full) — full 
gauged record (of length x years); G(10) — 
shortened 10-year gauged record; UG — 
`ungauged’ record (regional distribution only); 
UG(5) —  ungauged record + 5 years of 
gauged data; UG(10) — ungauged record + 10 
years of gauged data.  Note that the same 
gauged data is used for both G(10) and 
UG(10), with UG(5) using the first 5 of 10 years. 
 
The top panel has a shortened (10-year) 
gauged record which is consistent with the 
long-run (full) record.  The augmented 
distribution had reduced variability (smaller 
probability limits), even with a noisy regional 
model.  The bottom panel has a shortened 
record which is inconsistent with the long-run 
record (most years are sampled from the IPO+ 
epoch).  The augmented distribution had 
slightly increased variability; however, it 
remains consistent with the full record and the 
resultant bias is less than that associated with 
the 10-year record alone.  These results 
suggest that combining regional and gauged 
data may have significant benefits when used 
to predict at-site flood frequency distributions 
with limited gauged data. 
 
7. CONCLUSIONS 
 
A Bayesian hierarchical flood regionalisation 
procedure of Micevski et al [2003] was further 
developed in this paper.  The use of regional 
flood methods was motivated by an attempt to 
help overcome the possible bias in long-run 
flood risk associated with a nonhomogeneous 
flood record, such as that associated with the 
IPO modulation of flood risk.  The regional 
model was used to analyse IPO-stratified flood 
data from eastern Australia.  The regional 
model could not detect any IPO-related 
difference, most likely due to considerable 
noise in the regional model.  An algorithm to 
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combine regional and gauged information was 
presented.  Of importance is the rigorous 
handling of uncertainty in the regional and site 
models.  The results suggest that the use of a 
regional model may help protect against bias in 
long-run flood risk at sites with short records 
which largely sample from one IPO epoch. 
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Figure 6. Posterior distribution of selected flood 
quantiles for gauged sites in regions (top) 1 and 

(bottom) 2 (90% limits are shown). 
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Motivation

• Regionalisation 
– Estimate flood at a new site using records from 

‘nearby’ gauged sites
– Used in 3 circumstances

• Ungauged site
• Poorly-gauged site (short record)
• Gauged sites affected by nonhomogeneity of flood 

risk

• We will concentrate on 3rd point
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IPO

• Interdecadal Pacific Oscillation
• Long-term (multidecadal) sea surface 

temperature anomalies
• Low-pass filtered
• Similar to PDO

– Mantua et al. (1997)
• Extended epochs
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Aims

• Develop a regional flood model
– To allow for dependence on IPO
– To allow for missing data
– To incorporate spatial correlation

• Loss of information?

– To allow for (and quantify) uncertainty
• At both ungauged and gauged sites

1:30

Regional model

• Mechanism used to transfer info from 
gauged sites to new (ungauged/gauged) site

• Transfer is noisy
– Data errors
– Sampling variability
– Use a probability model

• Bayesian hierarchical model
– Conditional modelling

0:30
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obs flows

site model
(distribution)

site obs
(flow)

y = log Q

regional model
(distribution)
given catchment
variables

site parameters
(mean and sd)

{µ, σ}

 
regional model

µi ~ N(β1logAi+β2IFDi+β3,σε
2)

log σi ∼ N(γ,σδ
2)

site model 1
y1t ~ N(µ1,σ1

2)

flood data 1
y1t

flood data i
yit

ρi j

site model i
yit ~ N(µi,σ i

2)

Hierarchical model for each IPO epoch

• Observed data ← site distribution
log Q = yit ~ N(µi, σi

2)

• Site mean and sd ← regional distribution
µi ~ N(β1logAi + β2IFDi + β3, σε2) 
log σi ~ N(γ, σδ2)

• Correlation
ρij = exp( -[dij / A]B )
yt ~ N(µt, Σt)

3:40

 
regional model

µi ~ N(β1logAi+β2IFDi+β3,σε
2)

log σi ∼ N(γ,σδ
2)

site model 1
y1t ~ N(µ1,σ1

2)

flood data 1
y1t

flood data i
yit

ρi j

site model i
yit ~ N(µi,σ i

2)
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Model calibration using Gibbs sampler

• Bayesian approach

• Conditional sampling (updating) using Gibbs sampler
– Partition entire parameter vector: Θ = {θR, θS}
– θR = {σε2, β , σδ2, γ}
– θS = {µ, log σ}

• Gibbs sampler algorithm:
– (0) Assign starting value θS

(0)

– (1) Randomly sample regional subvector:
θR

(j) ← p(θR|θS
(j-1), Y) = p(θR|θS

(j-1))
– (2) Randomly sample site subvector:

θS
(j) ← p(θS|θR

(j), Y) = p(Y|θS) p(θS|θR
(j)) / p(Y|θR

(j))
– Repeat steps (1) and (2) many times (say 10000)

5:30
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Par IPO- IPO+
Region 1
β1 0.67 (0.06) 0.63 (0.06)
β2 0.13 (0.03) 0.13 (0.03)
β3 4.72 (0.65) 4.85 (0.59)
σ2

ε 0.29 (0.08) 0.25 (0.07)
γ -0.21 (0.07) 0.03 (0.05)
σ2

δ 0.19 (0.05) 0.11 (0.03)
Region 2
β1 0.52 (0.06) 0.52 (0.06)
β2 0.27 (0.06) 0.29 (0.06)
β3 4.24 (0.74) 3.74 (0.79)
σ2

ε 0.19 (0.09) 0.33 (0.10)
γ 0.31 (0.04) 0.25 (0.04)
σ2

δ 0.02 (0.02) 0.05 (0.02)

Results
• Independent-site analysis
• Differences between 

individual IPO+/- pars not 
‘statistically significant’

• Noise in regional model
– Large regions
– Few sites
– Varying size of sites

• Swamps differences
– Due to IPO dependence

• Equivalent record lengths
– 2–12 years

Prediction at a new (gauged) site

• Site flood frequency curve and its 90% 
probability limits
– Derived from regional model (Gibbs samples)
– Allows for (incorporates) variability of both the 

regional model and its parameters
• Rigorous method to combine regional and 

gauged information
– Monte Carlo importance (particle) sampling

8:20



7

Prediction at a new (gauged) site
NEW SITE: g = gauged record, x = {log A, IFD, …}
* regional posterior (previous calibration: 2 × 10000)
* IPO probs: Pr(being in either IPO epoch) ≈ 0.50

Sample IPO epoch: IPO(j) ← p(IPO)

Sample θS
(j) from regional model for current IPO epoch

2 steps: θR
(j) ← p(θR|Y, IPO(j)); θS

(j) ← p(θS|θR
(j), x)

Compute T-year flood: log QT
(j) = µ(j)+ zTσ(j)

Compute particle weight: p(g|θS
(j)) = Πk N(gk| µ(j), σ(j)2)

Extract quantiles for QT (using cumulative particle weights)

9:00

Normalise particle weights: w(j) = p(g|θS
(j)) / [Σ p(g|θS)]

}

 
regional model

µi ~ N(β1logAi+β2IFDi+β3,σε
2)

log σi ∼ N(γ,σδ
2)

site model 1
y1t ~ N(µ1,σ1

2)

flood data 1
y1t

flood data i
yit

ρi j

site model i
yit ~ N(µi,σ i

2)

Ungauged site
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Conclusions

• Nonhomogeneity (IPO dependence) of 
flood record in eastern Australia
– Possible bias in long-run flood risk
– Overcome using regional flood distribution

• Use many sites with adequate samples from both 
IPO epochs

14:30
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Conclusions (cont.)

• Bayesian hierarchical regional flood 
methodology can handle
– IPO dependence of flood risk 
– Intersite correlation
– Missing data
– Rigorous estimate of predictive uncertainty at 

both ungauged and gauged sites!

14:30

Thank you

• Questions?


