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ABSTRACT. In this overview, we introduce the recently developed Lattice Monte Carlo method 
for addressing and solving phenomenologically-based mass and thermal diffusion problems 
especially for composite and porous materials. With examples, we describe the application of this 
numerical method to calculate effective mass diffusivities and concentration profiles. Next, we 
describe the application of this method to the calculation of effective thermal conductivities/thermal 
diffusivities and temperature profiles.  
 
I
TRODUCTIO
 

The solving of phenomenological mass or thermal diffusion problems is often required in 
developing many technological processes. When exact solutions are unavailable, such problems are 
generally solved with finite element or finite-difference numerical methods. This is generally 
facilitated by the widespread availability of commercial software dedicated to the purpose. 
However, there are still many occasions when such numerical methods are almost impossible to 
implement for these problems. Recently, a Lattice Monte Carlo (LMC) method has been intensively 
developed for addressing phenomenological mass and thermal diffusion problems[1-4]. Although 
the Monte Carlo method has a reputation for being a computationally very demanding one, this is 
now much less of a problem as computers have become faster, less expensive and more accessible. 
The special advantage of the LMC method over the other methods above is that it can be used to 
address virtually any phenomenological diffusion problem. The LMC method makes use of a very 
fine-grained lattice that is overlaid on the phenomenological problem. This lattice is then explored 
by virtual mass or thermal particles to represent mass or thermal diffusion phenomena respectively. 
In this sense, the LMC method is a form of finite-difference method that is embedded in a quasi-
simulation of the diffusion process. In this review paper, we trace the history of applications of the 
LMC method with reference to phenomenological mass and thermal diffusion problems.  
       As examples of application to mass diffusion problems we discuss the calculation of effective 
diffusion coefficients in grain boundary diffusion (Harrison Type-A kinetics regime), the effective 
diffusivity in two-phase systems and the effective ionic conductivity of composite electrolytes. 
Next, we discuss the determination of concentration profiles for grain boundary diffusion and the 
segregation of oxygen at interfaces during in-diffusion and out-diffusion of oxygen in cer-mets. For 
phenomenologically-based thermal diffusion problems, we discuss the calculation of the effective 
thermal conductivity/diffusivity in some model composites and porous metals and transient 
temperature profiles in composites.  
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MASS DIFFUSIO
 

The effective mass diffusivity represents the long time limit mass diffusivity in a ‘composite 
material’. This effective diffusivity is probably best known as the diffusivity measured in a tracer 
diffusion experiment made on a polycrystalline material in the Harrison Type-A kinetics regime[5]. 
In this regime, the diffusion length of the lattice diffusivity is of the order of the grain size and the 
effective diffusivity is some weighted average of the lattice diffusivity of the diffusant and the grain 
boundary diffusivity. Other examples are the effective ionic conductivity of a composite solid 
electrolyte[6] and the effective diffusivity of a diffusant in a two-phase material[7].  
 
The LMC Method for Determining the Effective Mass Diffusivity.  Mass diffusion is a random 
process that can be represented by random walks of particles. The century-old Einstein-
Smoluchowski (ES) Equation[9,10] (often referred to simply as the Einstein Equation) describes the 
self-diffusivity D of randomly walking particles in d dimensions (d = 1,2,3): 
 

dt
R

D
2

2 ><
=                                                                                                                                   (1) 

(where R is the vector displacement of a given particle after some long time t and the Dirac brackets 
< > refer to an average over a very large number (�) of particles).  

The ES Equation refers to a system already at equilibrium. In a mass diffusion context, the 
ES Equation refers then to the diffusivity of individual particles that can be followed or traced in a 
system that is already at chemical equilibrium, i.e. with no concentration gradient acting or external 
field(s) acting. Each particle is followed for some long time t in order to determine its displacement 
R from its original position.        

For complete i.e. uncorrelated random walks on a simple cubic lattice the diffusivity can be 
partitioned from the ES Equation (eq. (1)) as; see, for example, ref [10]: 
 

6

2r
D

Γ
=                                                                                                                                       (2) 

 
where Γ is the particle jump rate, r is the jump distance (the distance between sites).  
  It is important to recognize that eq. (1) remains valid for long times even when the material 
has different diffusivities in different regions of the material (for example in a composite), provided 
that the material remains isotropic in its diffusion properties overall. The implication also is that 
each particle ‘explores’ a sufficiently large portion of the composite structure to be representative of 
the structure. The diffusivity represented in the ES equation is then the effective diffusivity Deff of 
the structure.  
  By mapping a very fine grained lattice over the composite structure, and keeping the jump 
distance r the same everywhere (in principle this can be varied however), the diffusivities D in 
different regions of the structure can be simply represented by correspondingly different jump rates 
Г. It should be noted that since each particle is released independently and diffuses independently 
there are no correlation effects to be concerned with. Thus these LMC calculations are rather 
different in concept from atomistic Monte Carlo simulations; see, for example, ref [11]. Because the 
size of the jump distance r can be varied LMC calculations can be considered as spatially multi-
scale calculations.  

In many mass diffusion problems apart from spatially different diffusivities there may also 
be segregation of the diffusant between regions of the structure. This is readily represented by 
different rates in and out of the different regions. Thus if the segregation factor s between two 
regions 1 and 2 is defined as: 

 
s = C2/C1                                                                                                                                      (3)  
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where C1 and C2 are the concentrations of the diffusant in regions 1 and 2 respectively,  then the 
jump rate (Г12) into region 1 from region 2 and vice versa (Г21) are related to s by: 
 

s = Г12 / Г21                                                                                                                                   (4) 
 
The simulation of actual time is not realizable in any Monte Carlo kinetics calculation. A discrete 
quantity that is proportional to actual time is generally used. This quantity is the number of jump 
attempts per particle during the calculation. Using the ES Equation, with this quantity acting as 
‘time’, one can then calculate a relative diffusivity, i.e. a diffusivity that is relative to one of the 
specified diffusivities (usually the highest) in the system. 

Further details on how these multi-scale modelling LMC calculations are performed can be 
found in refs 1 and 2. Here, we describe several examples of applications to mass diffusion.  
 
Examples of the Effective Mass Diffusivity Calculated by the LMC method. The effective 
diffusivity of a diffusant in a material with grain boundaries is very important, especially for 
describing the rate of penetration of solute in (and out) of the material. As contributions to the 
effective diffusivity in a microcrystalline or nanocrystalline material, we can identify the diffusivity 
of the diffusant in the grains: this is the bulk or lattice diffusivity Dl and the diffusivity Dgb of the 
diffusant in the grain boundaries.  In the well-known tracer diffusion experiment, a very thin layer 
of tracer (the diffusant) is deposited at the surface at time t = 0, the tracer is then permitted to 
diffuse into the material for some diffusion anneal time t. In this scenario it has been traditional to 
represent grain boundaries as parallel ‘slabs’ that are normal to the surface5. In the Harrison Type-A 
kinetics regime, the diffusivity that is determined experimentally from the (Gaussian) tracer 
concentration depth profile is the effective diffusivity of the material. (In this regime, the tracer 
diffusion length is of the order of the grain size.) The effective diffusivity is given exactly (for 
parallel slabs) by the (corrected) Hart-Mortlock Equation[5]:  
 

)1/())1(( sggDgsgDD lgbeff +−−+=                                                                                   (5) 
 
where g is the grain boundary volume fraction. For self diffusion s = 1. However, eq. (5) had never 
been tested for more realistic grain structures. In Fig. 1 the effective diffusivity as calculated by 
LMC is shown as a function of grain boundary fraction g for a cubic grain model[12]. It is clear that 
the Hart-Mortlock Equation does not in fact provide a good description of the effective diffusivity 
in this situation.  

Perhaps surprisingly, the century-old Maxwell-Garnett Equation with the recent correction 
for possible segregation[13]: 
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provides very good agreement with the LMC data, as can be seen in Fig. 1. For other grain models, 
a similar finding is obtained. For microcrystalline materials the Hart-Mortlock Equation 
overestimates the actual effective diffusivity by between 10 and 50% depending on the volume 
fraction of material in the grain boundaries and the degree of solute segregation. On the other hand, 
for nanocrystalline materials the use of the Hart-Mortlock equation would overestimate the effective 
diffusivity by about 45% and this is largely independent of the degree of solute segregation[14].  
The Maxwell-Garnett Equation always does very well in all of the cases that have been examined so 
far and should therefore routinely replace the Hart-Mortlock Equation.  
 
 

Defect and Diffusion Forum Vol. 279 15

http://www.scientific.net/feedback/65942
http://www.scientific.net/feedback/65942


  

 

 

Figure 1. Dependence of the effective diffusivity Deff/Dl on the volume fraction of grain boundaries 
g for the grain model for a solute segregation factor s = 10 and Dgb /Dl = 103 . Data points 
are LMC estimates.  

 

Engineering materials are frequently used in multiphase form. Their microstructural stability 
and resulting longevity at high temperatures are determined by mass transport associated with the 
interphase boundaries (where the diffusivity is the highest). Addressing this problem requires in the 
first instance the calculation of the effective diffusivity in a three ‘phase’ system (the two different 
grains and the interphase boundary). An equation analogous to the Hart-Mortlock equation can be 
readily derived for this situation[15]: 
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and where DA and DB are the bulk diffusivities, gA and gB are the volume fractions in the two types 
of grain A and B and sA and sB are the corresponding two (in general, different) segregation factors. 
An equation directly in the spirit of the Maxwell-Garnett Equation for the effective diffusivity has 
also been derived[15]:  
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and a very useful version of this: 
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For a model of cubic alternating A and B grains, the effective diffusivity has been calculated by the 
LMC method. eq. (7) was found to be in poor agreement with the results but on the other hand eq. 
(8) and (9), (10) were shown to describe the effective diffusivity very well[15].  

It is well-known that very considerable enhancement of the ionic conductivity of a material 
is possible by the addition of small, insulating and insoluble particles[6]. In these ‘composite 
electrolytes,’ it is believed a highly conducting space-charge layer develops at the interface between 
the matrix and the insulating particles and this is responsible for the conductivity enhancement. A 
phenomenological treatment of the problem can shed light on the role of the shape, distribution and 
size of the insulating particles on the effective conductivity of the material. The ionic conductivity 
of each of the three ‘phases’ (matrix, insulating particles, highly conducting layer) is related to the 
diffusivity of that phase by the Nernst-Einstein Equation:  
 

σi= Ciq2Di /kT                                                                                                                             (11) 
 
where q is the charge on the ion, C is the concentration (of charge carriers), k is the Boltzmann 
constant and T is the absolute temperature.   

A Maxwell-Garnett type equation can be derived to describe the effective ionic 
conductivity[16]: 
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and {σ0, g0}, {σ1, g1} and {σ2, g2} are the ionic conductivities and the fractions of the whole 
occupied by the insulating core (usually σ0 → 0), highly conducting layer (coating phase) and the 
matrix respectively. LMC calculations[16] of the effective ionic conductivity show that this 
equation well describes the enhancement of the effective ionic conductivity for both cubic and 
spherical insulating particles at relatively low volume fractions of the insulating phase. At higher 
volume fractions of the insulating particles, the LMC calculations clearly show that the highly 
conducting coatings of adjacent particles start to touch. This percolation-type behaviour then results 
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in a very rapid increase of the ionic conductivity as the percolation threshold is approached. Then 
there are substantial deviations from the predictions of eq. (12). 
 
The LMC Method for Determining Concentration Profiles. Obtaining the concentration profile 
using the LMC method is equivalent to solving the Diffusion Equation (Fick’s Second Law) for the 
diffusion problem once initial and boundary conditions have been specified for the problem. The 
basic LMC procedure to generate concentration profiles has a many similarities to that described 
already for determining the effective diffusivity. We illustrate the procedure with the well-known 
tracer diffusion situation mentioned above wherein a very thin layer of tracer (the diffusant) is 
deposited at the surface at time t = 0 and then permitted to diffuse into the material for some 
diffusion anneal time t.  A source of particles is established from which � particles are released 
sequentially. Each particle is permitted to diffuse for the (anneal) time t, at which time the final 
position of is recorded. This process is repeated. The final positions of all of the particles are then 
simply assembled to form a concentration penetration profile. The example presented in Fig. 2 
shows the familiar Gaussian profile for tracer diffusion into a semi-infinite solid from a very thin 
source at the surface (x = 0).  Here we plot the concentration ratio C/C0 as function of the distance 
from the source, C0 is the initial concentration at the source. 

In order to simulate a constant source at the surface, all particles are released simultaneously 
at t = 0 but are still allowed to diffuse completely independently. As each particle leaves the source 
it is immediately replaced. On the other hand, if a particle returns to the source it is immediately 
annihilated. 

 
  

              

Fig. 2. Typical Gaussian concentration profiles obtained by LMC for diffusion into a semi-infinite 
solid from a thin-film source at x = 0 for two different diffusion anneal times.  

Examples of Concentration Profiles Calculated by the LMC Method. The determination of 
concentration profiles in the presence of grain boundaries for diffusion from the thin-film tracer 
source is of interest to determine the transition between the Harrison Type-A kinetics regime, where 
the (Gaussian) concentration depth profile provides the effective diffusivity as discussed above, and 
the Harrison Type-B kinetics regime, where the concentration depth profile has two sections: the 
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first section providing Dl and the second or tail-section providing sδDgb where δ is the grain 
boundary ‘width’. Analysis of profiles computed by the LMC method enabled the transition point 
between the two regimes to be estimated to occur at  Λ  = L/(Dl t )1/2 =  0.4 (L is the average spacing 
between the grain boundaries) for the parallel slabs model, which is much higher then had been 
estimated previously[17]. Other grain models have also been analyzed with LMC and have shown 
transition points at Λ = 0.4 for the square grains model and Λ = 1.5 for the cubic grains model[18].  

The oxygen that diffuses into metal/metal-oxide cer-mets in-service or during the initial cer-
met synthesis can strongly segregate to the interfaces between the metal and the metal oxide 
inclusions. As a consequence of this there can be serious degradation of mechanical properties of 
the composite. High temperature annealing can remove the oxygen from the cer-met by the process 
of diffusion-limited evaporation (out-diffusion).  Both processes have been modelled by the LMC 
method[19]. A typical example profile is shown in Fig. 3 for oxygen diffusion into a Ag/MgO cer-
met from a constant oxygen source at the surface.  
                               

                      

Fig. 3. A typical distribution map of oxygen in a model Ag/MgO cer-met with randomly distributed 
inclusions of MgO with allowance made for segregation of oxygen at the metal-ceramic 
interface (s = 1000). The (constant) source of oxygen is at plane x = 1 here. Time is 544.2 
Monte Carlo time units. Np is the number of particles which is linearly related to the oxygen 
concentration. 

THERMAL DIFFUSIO
 

The LMC Method for Determining the Effective Thermal Diffusivity and Conductivity. 
Thermal diffusion, like mass diffusion, is a random process that can be represented by random 
walks of particles. In the case of thermal diffusion, the particles are virtual thermal ‘particles’. The 
ES Equation also describes the thermal diffusivity Κ in d dimensions (d = 1,2,3): 

 

dt
R
2

2 ><
=Κ                                                                                                                                (13) 

 
It should be noted that the thermal conductivity λi in a phase i is directly related to the thermal 
diffusivity Ki in that phase by the well-known expression Ki = λi / ρi Cp,i where ρi is the density of 
phase i and Cp,i is its specific heat. It has been shown[19] that for the purposes of a LMC calculation 
the following procedure of calculating effective thermal conductivity indeed works very well. In a 
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model composite, the conductivities λi are treated in exactly the same way as if they were thermal 
diffusivities (λi ⇒ K'i) and calculate effective thermal conductivity λeff  which is then simply equal 
to the calculated effective thermal diffusivity K'eff in the same model. In the general case, the actual 
effective thermal diffusivity in a composite is related to the effective thermal conductivity using the 
following equation that can be derived by inspection: 

effp

eff
eff C

K
)(ρ

λ
=                                                                                                                          (14) 

where 
 

∑=
i

ip,iieffp gCC
  phases  all

)( ρρ  

 
Examples of the Effective Thermal Diffusivity/Conductivity Calculated by the LMC method.  
In a model of a composite the LMC method for the calculation of the effective mass diffusivity (but 
without segregation) is thus exactly the same as the calculation of the effective thermal 
conductivity. Several recent LMC calculations of the effective thermal conductivity include 
calculations of the effective thermal conductivity of models of syntactic metallic hollow sphere 
structures (MHSS materials)[20] and compact heat sinks based on cellular metals[21,22]. An 
example of the results of a LMC calculation of the effective thermal conductivity is shown in Fig. 4 
for the case of circular inclusions in a matrix[4]. In the same figure are also the results for the 
effective thermal conductivity using finite element analysis. The agreement is seen to be excellent.   

 

                                             Area fraction of inclusions, g 

Fig. 4. Comparison of results from LMC and Finite Element calculations of the relative effective 
thermal conductivity of a composite with circular inclusions (subscript 0)  in a matrix 
(subscript 1) in a square planar arrangement as a function of area fraction of inclusions for 
several values of the matrix and dispersed phase thermal conductivities. 
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The LMC Method for Determining Temperature Profiles. Obtaining the temperature profile 
using the LMC method is equivalent to solving the Heat Equation for the problem once initial and 
boundary conditions have been set. Because of the special role of the density and specific heat in 
transient thermal transport problems, the determination of temperature profiles requires a rather 
more involved procedure from that described for concentration profiles given above.   
       For the common situation where the surface temperature is held constant at T0, the number of 
virtual thermal particles at the source is held at �n. The results of the LMC analyses after some time 
t are virtual thermal particle distributions. In order to obtain temperature profiles, the thermal 
particles are translated into site temperatures T according to: 
 

minp,
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minp,
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where n is the number of virtual thermal particles currently located at the site in a phase with 
density ρ and thermal capacity Cp, (n relates to the concentration of the virtual thermal particles as n 
= Ctherm ·�n); and (ρi · Cp,i )min is the minimum value of that product over all phases. Further details 
can be found in ref [2].  

Fig. 5 shows an example temperature profile obtained by LMC in a layered composite of 
aluminium and paraffin with the layers arranged normal to the heat flow. The thermal parameters of 
the two phases here are of course very different. In the same figure are the results of a determination 
of the temperature profile using finite element analysis. It can be seen that there is excellent 
agreement between these two methods.  
 

 

Fig. 5 The temperature profile determined by LMC and the finite element method for a layered 
aluminium – paraffin composite for a constant surface temperature. 

 

CO
CLUSIO
S 

In this overview, we introduced the recently developed Lattice Monte Carlo method for addressing 
and solving phenomenologically-based mass and thermal diffusion problems especially for 
composite materials. With examples, we describe the application of this numerical method to 
calculate effective mass diffusivities and concentration profiles. Next, we describe the application 
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of this method to the calculation of effective thermal conductivities/thermal diffusivities and 
temperature profiles.  
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