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ABSTRACT

The performance of piezoelectric tube scanner in Atomic Force Microscope (AFM) is

limited by vibrations and nonlinearities exhibited by the piezoelectric material such as hys-

teresis and creep. The aforementioned limitations restrict the use of the piezoelectric tube

scanner for fast and high resolution operations. As such, this thesis presents several ways

of improving the speed and accuracy of piezoelectric tube scanner for the use in Atomic

Force Microscopy. In this thesis, two types of feedback control approaches are designed

and implemented experimentally in order to improve the performance of piezoelectric tube

scanners. The first approach uses strain voltage signal induced in the piezoelectric tube to

measure of high frequency displacements of the scanner. Together with capacitive sensor,

the use of strain voltage signal allows the closed-loop bandwidth to be increased for fast

scans without the additional sensor noise otherwise contributed by the capacitive sensor

during fast operation of the scanner. In the second approach, a Positive Position Feedback

(PPF) control scheme is implemented on a commercially available AFM to compensate for

scan-induced vibration and cross-coupling of its piezoelectric tube scanner. As a result of

the implementation of the PPF control scheme, the scanning speed is doubled in compari-

son to the scanning speed obtained from the standard controller supplied with the commer-

cial AFM. Finally, a spiral scanning method is comprehensively described and evaluated

for the use in AFM. Two modes of spiral scanning method, Constant Angular Velocity

(CAV) and Constant Linear Velocity (CLV) modes, are presented and compared with the

widely used raster scanning method. The use of the spiral scan in CAV mode is shown to

allow the scanning speed to be increased very high, approaching the mechanical bandwidth

of the scanner. The use of the spiral scan in CLV mode allows scanning of samples to be

done at linear velocity, a property shared with the raster scan.
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Chapter 1

Introduction

In recent years, Atomic Force Microscope (AFM) has become animportant tool in nan-

otechnology research [11, 50]. AFM was first conceived to generate three-dimensional

(3D) images of conducting and nonconducting surfaces with extremely high resolutions

down to the atomic level. Recently, AFM is also being used in applications that involve

manipulation of matter at a nanoscale [55, 57, 73]. A critical component of an AFM is

the scanner which is used to move either the sample or the micro-cantilever in a raster

pattern in thex-y plane. The scanner also controls the tip-sample distance through thez

axis servo. Today, the majority of commercially available AFMs use a piezoelectric tube

scanner for the three-dimensional (3D) positioning [52], although flexure-based nanoposi-

tioners [4,65,70] are emerging as a viable, albeit more expensive alternative. However, the

positioning precision and scanning speed of the piezoelectric tube can be adversely affected

by vibrations and nonlinearities exhibited by the piezoelectric material such as hysteresis

and creep [16]. Therefore, the following section details out the objectives of this thesis.

1.1 Thesis Objectives

The first objective considered in this thesis is to use feedback control approach to im-

prove positioning precision and scanning speed of piezoelectric tube scanners. Feedback

controllers are designed to achieve good damping ratio for the first resonant mode of the

scanner and to achieve a high closed-loop bandwidth for fastand accurate tracking of input

signals. Additionally, charge sources are used to drive thepiezoelectric tube scanner in-

stead of the widely used voltage source in order to reduce theeffect of hysteresis. Nonethe-
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less, when capacitive sensors are used to provide the scanner’s displacement measurements

for these feedback controllers, the effect of sensor noise on the overall system increases

as the closed-loop bandwidth increases. This trade-off is minimized in this thesis by us-

ing a low-noise strain voltage signal induced in the piezoelectric tube instead of using the

measurements from capacitive sensors for high-frequency displacement measurements. A

two-input one-outputH∞ controller is designed for a prototype piezoelectric tube scanner

to utilize these two sources of scanner displacement measurements.

Another feedback controller which utilizes only capacitive sensor measurements is

designed for implementation on a commercial AFM. Here, a Positive Position Feedback

(PPF) controller that was initially used to suppress mechanical vibrations of highly reso-

nant aerospace structures [22] is designed to bring about improvements in term of scanning

speed and scanned image accuracy to the commercial AFM. The PPF controller is used

to compensate for vibration in the piezoelectric tube scanner of the commercial AFM by

shifting its closed-loop poles further into the left-half plane (LHP). A high-gain integral

controller is also used to provide tracking and to compensate for cross-coupling between

lateral axes of the piezoelectric tube scanner.

The second objective of this thesis is to describe and evaluate spiral scanning method

for fast AFM. Here, the piezoelectric tube scanner is forcedto follow a spiral pattern instead

of the well established raster pattern. The spiral scan is generated in two modes, a constant

angular velocity (CAV) mode and a constant linear velocity (CLV) mode. Equations for

generating the spiral scan in CAV and CLV modes and equations for calculating total scan-

ning time associated with both modes of the spiral scan are derived. The advantages and

disadvantages of spiral scan in both modes over raster scan are also explored. One obvious

advantage of CAV spiral scan over raster scan is that the use ofthe single-tone input signals

allows for scanning to be performed at very high speeds without exciting the resonance of

the scanner and with relatively small control efforts. Spiral-scanned images are obtained
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using both modes to determine the viability and the effectiveness of spiral scanning method

for fast AFM.

1.2 Thesis Outline

This thesis begins with an overview of atomic force microscopy in Chapter 2, that includes

the working principle of AFM and its various operating modes. In this chapter, a detail

description encompasses the construction and mechanics ofpiezoelectric tube scanner, a

major component in AFM, is also discussed. This is then followed by an in-depth discus-

sion on the limiting factors for high-precision positioning of the piezoelectric tube scanner,

namely, the effects of hysteresis, creep and scan-induced vibration.

In Chapter 3 the first objective of the thesis is addressed. Specifically, a two-input one-

outputH∞ controller is designed to utilize a capacitive sensor and a low-noise strain voltage

signal induced in the piezoelectric tube to provide low-frequency and high-frequency mea-

surements of the scanner’s displacement respectively. Theclosed-loop bandwidth of the

system and its tracking performance are evaluated to illustrate the effectiveness of the pro-

posed control scheme.

Chapter 4 continues to address the use of feedback control approach in a piezoelec-

tric tube scanner. This chapter describes necessary steps for the implementation of the

PPF control scheme which include integration of a dSPACE system into an AFM system

and procedures for modeling the piezoelectric tube scannerand designing the PPF control

scheme. The effectiveness of the PPF control scheme is evaluated at the end of this chapter

by comparing AFM images obtained using this control scheme with the one obtained using

a standard AFM controller, i.e., a well tune PI controller.

The focus of Chapter 5 is on the second objective of this thesisthat is using spiral

scanning method for fast AFM. This chapter begins with derivation of equations for gen-
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erating the spiral scan in CAV and CLV modes and calculating total scanning time asso-

ciated with both modes. Additionally, spiral scan parameters such asspiral radiusand

number o f curvesare defined. Procedures for mapping sampling points on a spiral trajec-

tory to pixels that make up a raster-scanned image are discussed. This includes calculation

of the error introduced by these mapping procedures on the generated AFM images. In the

Results section tracking performance of CAV and CLV spirals andobtained spiral-scanned

AFM images are presented. The AFM images are obtained using apiezoelectric tube scan-

ner in closed-loop and open-loop.

In the final chapter, concluding remarks and a note on proposed future works are pre-

sented. In Appendix, three publications from the author’s early PhD studies are attached in

order to show a more complete picture of his PhD work. The outcomes are not included in

the present thesis as they are in a different field.
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Chapter 2

Atomic Force Microscopy

This chapter describes one aspect of Scanning Probe Microscopy (SPM), i.e., Atomic Force

Microscopy (AFM), which has become the main subject matter of this thesis. In order to

provide an overview of AFM, the first section briefly discusses different types of SPM

and their applications. Section 2.2 presents the working principle of AFM that includes

descriptions of the tip-sample interaction used in AFM and the basic components of this

microscope. In Section 2.3, various available operating modes in AFM are presented. Sec-

tion 2.4 provides an in-depth description of a piezoelectric tube scanner which is a critical

component in AFMs. This description encompasses the construction and mechanics of

the scanner. Finally, Section 2.5 discusses in detail threemajor effects, namely hysteresis,

creep and vibration that limit the positioning precision ofthe scanner especially for high

speed AFM and long scanning range operations. This discussion also includes distortions

observed in AFM images as results of these effects.

2.1 Introduction

The invention of scanning tunneling microscopy (STM) [12,13] by G. Binnig and his col-

leagues in 1982 has led to the development of various kinds ofscanning probe microscopies

(SPMs) such as Scanning Near-field Optical Microscopy (SNOM) [60], Atomic Force Mi-

croscopy (AFM) [11] and Scanning Magnetic Microscopy (SMM)[45]. These group of

microscopies are referred to as SPM due to the use of probe in these devices for investi-

gation and manipulation of material surfaces down to the atomic scale. Attached to the

probe’s free end is an extremely sharp tip whose geometricalshape determines the lateral

resolution limit of the microscope [50]. Ideally, the tip should be atomically sharp in order
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to achieve the atomic resolution. The tip is positioned veryclose to the sample surface

during a scan. At such a close distance, there exist some highly localized tip-sample inter-

action that can be used to obtain local information and SPM images of the material surfaces.

For example, the type of tip-sample interaction used in STM is the tunneling current that

flows between a conductive tip and a conductive surface; in AFM is the interactive forces

between a tip and a sample surface; and in SMM is the magnetic force between a magnetic

coated tip with local magnetic field of a sample surface.

Since their invention, SPMs have become important researchinstruments in various

applications of nanoscience and nanotechnology due to their capabilities to examine sam-

ple surfaces down to the atomic scale. Example of these applications include imaging of

surface topography of Si(111)7× 7 at atomic resolution using STM [13] and AFM [32],

measuring of magnetic forces in recording media using SMM [63] and imaging of molec-

ular topography of a deoxyribonucleic acid (DNA) helix using AFM [76]. STM and AFM

are also used in applications that involve manipulation of matter at nanoscale. In [19], op-

erating under low temperature, an STM was used to position individual xenon atoms on a

single-crystal nickel surface with atomic precision. The AFM capability to position indi-

vidual atoms at the desired atomic positions was also demonstrated in [57,73].

Among the family of SPMs, AFM has become the most widely used microscope to

produce topographic images of material surfaces at nanoscale. This is mainly because it

can be used to image any material surface, unlike STM where the sample is required to be

conductive and most SNOMs where the sample is required to be optically transparent [10].

The AFM’s ability to measure the interactive forces also hasled to the modification of the

AFM probe for measuring other type of forces such as magneticforce, electrostatic force

and acoustic force. These modifications have resulted in SMM, scanning electrostatic force

microscope (SEFM) and scanning force acoustic microscope (SFAM).
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2.2 Working principle of Atomic Force Microscope

AFM was invented by G. Binnig and his colleagues in 1986 [11] based on their design of

STM. In line with this, AFM is also known as scanning force microscopy (SFM). AFM

is mainly used for imaging surface topography and measuringsurface forces of samples

with a very high precision. Since its invention, AFM has emerged as a standard tool in

nanotechnology research. This is because AFM can be used on conducting as well as non-

conducting sample surfaces in any environment including air, various gases, vacuum and

fluid. Additionally, AFM can also operate at high and low temperatures.

The working principle of AFM is based on the use of interactive forces between a tip

and a sample surface to sense the proximity of the tip to the sample [10]. Generally, the

interactive forces can be attractive or repulsive depending on the tip-sample distance. At

large tip-sample distances, the interactive forces are attractive and they turn repulsive at

small tip-sample distances. The interactive forces are composed of long and short-range

components. These interactive forces include electrostatic, magnetic, van-der-Waals and

chemical forces [50]. All of these forces, except for the chemical forces, have strong long-

range components that conceal the short-range components which change at atomic scale.

In order to obtain AFM images with atomic resolution, the long-range force contributions

need to be filtered out and only the short-range contributions need to be measured [10].

The basic components of AFM, as illustrated in Fig. 2.1, include a micro-cantilever

(probe) with a sharp tip on the free end, a laser-photodetector sensor and a scanner. During

operation, a sample is placed on the scanner and the tip of themicro-cantilever is brought

very close to the sample surface at a distance of the order of afew nanometers, or less. At

such a distance, depending on AFM operating mode, the interactive forces change static or

dynamic properties of the micro-cantilever. The changes inthe micro-cantilever are often

measured using a beam-deflection technique that utilizes a laser-photodetector sensor [50].

In this technique, as illustrated in Fig. 2.1, the laser beamis pointed at the rear side of the
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Figure 2.1 : Basic AFM schematic with feedback controllers.



9

micro-cantilever and its reflection is sensed by the photodetector. In order to generate an

AFM image, the sample is typically scanned in a raster pattern.

2.3 Operating modes in Atomic Force Microscopy

The operating modes in AFM can be classified into static and dynamic modes. This clas-

sification is based on the different measurement parametersused in sensing the interactive

forces. In static mode, the interactive forces are measuredusing static bending of the micro-

cantilever. Whereas, in dynamic mode, the micro-cantileveris excited to vibrate at or near

its resonance frequency and its dynamics properties which change under influence of the

interactive forces are used as the measurement parameters.Apart from this difference, the

basic operation of AFM in both modes remain the same.

2.3.1 Static mode

Static mode is also known as repulsive or contact mode due to the position of the tip rel-

ative to the sample surface during measurement. In this mode, the tip is brought into the

repulsive force region and into contact with the sample surface [10]. At this position, the

repulsive interactive force acting on the tip causes the micro-cantilever to deflect. AFM

images can be generated by scanning the tip at a constant height over the entire area of

interest on the sample surface. During scan, the measurements from the photodetector will

vary according to the topographic features of the sample. These measurements are recorded

and plotted as a function of the scanner’s lateral positionsto produce an AFM image of the

interactive force distribution over the sample surface. Acquisition of the AFM image in

this manner is called constant-height mode.

AFM images can also be obtained in constant-force mode. In this mode, the repul-

sive interactive force is kept constant during scan by varying the input voltage applied to

the high-voltage amplifier for thez-electrode in order to vary the scanner’s height. The

variation in the input voltage is achieved through a feedback loop that makes use of the
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measurement from the photodetector as a feedback signal. By keeping the repulsive inter-

active force constant, the tip-sample distance is kept constant regardless of the change in

the sample surface. In this mode, the variation in the input voltage is proportional to the

surface topography of the sample. Consequently, by plottingthe input voltage as a function

of the scanner’s lateral position, a surface topography image of the sample can be obtained.

In static mode, the resolution of the obtained AFM images is limited by the tip-sample

contact area. The diameter of the tip-sample contact area istypically in the range of 1 -

10 nm [50]. This dimension, which is larger than the atomic dimensions, rules out achiev-

ing atomic resolution in AFM images when the tip is in contactwith the sample surface. In

order to achieve atomic resolution in AFM images, the tip needs to be in non-contact with

the sample surface but positioned very closed within tenth of a nanometer to the sample

surface. This is to allow the changes in the short-range attractive force that varies at atomic

scale to be measured. However, such small tip-sample distance is very difficult to achieve

in static mode due to mechanical instability called jump-to-contact phenomenon [10]. This

phenomenon can be explained by referring to the deflection-displacement curve as illus-

trated in Fig. 2.2. The flat portion of the curve indicates that the tip is in mid-air and

not under influence of any interactive forces. But as the sample approaches closer to the

tip, at point A, the attractive interactive force starts to pull the tip and causes the micro-

cantilever to deflect toward the sample. At point B, upon further approaches toward the tip,

the gradient of the attractive interactive force becomes larger than the spring constant of the

micro-cantilever. Here, the mechanical instability occurs where the tip suddenly jump to

be in contact with sample surface at point C. From here on, as the sample approach further,

the tip experiences repulsive interactive force and deflects away from the sample. This is

represented by the sloped portion of the curve. During retraction of the sample, at point D,

the tip suddenly jump out of contact and return to free air again. This is because at point

D, the gradient of the attractive interactive force becomesweaker than the spring constant.
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Figure 2.2 : Curves illustrating micro-cantilever deflection corresponding to the scanner
vertical displacement during approach and retraction of the tip in static mode. During
retraction, the tip is affected by an additional surface tension force from the ambient water
layer on the sample surface which caused the tip-sample separation to occur at a longer
distance.

In general, static mode can be used easily to obtain nanometer to micrometer resolution

AFM imaging. However due to the jump-to-contact phenomenon, this mode is not suitable

for atomic resolution imaging. Additionally, in this mode,the tip exerts a relatively large

normal force and a considerable lateral force on the sample.Consequently, the probe is

subject to significant wear. Hence, this mode may not also be suitable for soft samples that

can be damaged easily, e.g., biological samples.

2.3.2 Dynamic mode

Dynamic mode is also known as attractive force imaging or non-contact imaging mode.

During measurement, the tip is brought close but without coming in contact to the sam-

ple surface in order to assess the short-range attractive interactive force [10]. Note that at
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such small tip-sample distance, in static mode, the tip would have likely to come in contact

with the sample surface due to the jump-to-contact mechanical instability. However, this

is avoided in dynamic mode by vibrating the micro-cantilever at its resonant frequency,

thereby increasing its stiffness. The tip-sample distancecould be further reduced in order

to achieve AFM images with atomic resolution by operating dynamic mode in ultra-high

vacuum (UHV) condition instead of in ambient conditions. Operating in ambient condi-

tions, the tip-sample distance must be set at a larger distance to avoid the tip from being

trapped in the ambient water layer on the sample surface. In [32] and [21], AFM images

with atomic resolution were obtained using dynamic mode under UHV condition.

Dynamic mode can be operated in two basic operating regimes,namely amplitude-

modulation (AM) mode and frequency-modulation (FM) mode. In AM mode [46], the

micro-cantilever is excited to vibrate by applying an external signal with constant amplitude

and frequency to a piezoactuator located at the base of the micro-cantilever. The frequency

of the external signal is set close to the resonance frequency of the micro-cantilever. As the

tip approaches the sample surface, a shift in the gradient ofthe interactive forces causes a

shift in the resonance frequency and hence a corresponding shift in the oscillation amplitude

of the micro-cantilever as illustrated in Fig. 2.3. The tip approach is stopped once the

amplitude reaches to a specified set-point. Here, a lock-in amplifier [49] is used to obtain

the amplitude and phase information from the output of the photodetector. During a scan,

the amplitude is kept constant to this set-point through a feedback loop by varying the

height of the scanner. This feedback loop keeps the tip-sample distance constant regardless

of the change in the sample surface. In a similar technique undertaken in the constant-force

static mode, a surface topography image of the sample is obtained by plotting the input

voltage applied to the high-voltage amplifier for thez-electrode as a function of the scanner

lateral position. The tip can be brought much closer to the sample surface such that it

makes an intermittent contact with the sample surface during each oscillation cycle. This

method of measurement is known as tapping mode [79]. In this mode, the amplitude the



13

A
m

p
li
tu

d
e

Frequency

∆F

∆A

ω̃o ωo ωf

Figure 2.3 : Amplitude-frequency curve illustrating a shift in the resonant frequency of the
micro-cantilever fromωo to ω̃o due to a shift in the gradient of the interactive forces. In
AM mode, the micro-cantilever is driven at a fixed frequencyω f and the change in the
resonant frequency∆F resulted in a change in the oscillating amplitude∆A. In FM mode,
the oscillating amplitude remain unchanged as the micro-cantilever is always driven at its
resonant frequency.

micro-cantilever is also affected by the repulsive interactive force acting on the tip during

the intermittent contacts.

In FM mode [1, 32], the micro-cantilever is always excited tovibrate at its resonance

frequency. This is achieved by amplifying and phase-shifting the micro-cantilever oscilla-

tion signal (from the photodetector) by 90 degrees before using it to drive the piezoactuator.

In doing so, a shift in the resonance frequency does not change the oscillation amplitude

as the micro-cantilever is always vibrating at that frequency. This is illustrated in Fig. 2.3.

However, the oscillation amplitude can still vary due to theinfluence of the interactive

forces on the micro-cantilever. In order to fix the oscillation amplitude, an additional feed-

back loop is used to maintain it at a constant preset value. InFM mode, the change in the
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resonance frequency are measured using a frequency demodulator [1] and used as a set-

point signal for keeping the tip-sample distance constant during surface topography scan.

A major advantage of FM mode over the AM mode is that the changein the gradient

of the interactive forces can be detected almost instantaneously in FM mode. The change

in the resonance frequency settles on a timescale ofτFM ≈ 1
fo

, where fo is the resonance

frequency of the micro-cantilever. However, the change in the amplitude in AM mode does

not occur instantaneously with the change in the gradient ofthe interactive forces. The

change in the oscillation amplitude settles on a timescale of τAM ≈ 2Q
fo

, where Q is quality

factor of the micro-cantilever. The value of Q for a micro-machined micro-cantilever is

typically a few hundred when operated in air and can reach hundreds of thousands when

operated in vacuum [10].

2.4 Piezoelectric Tube Scanner

The use of the piezoelectric tube as a 3D scanner was first proposed in Ref. [14] to replace

the use of tripod scanner in STM. The piezoelectric tube scanner was found to provide a

faster response and a better positioning precision in comparison to the tripod scanner owing

to its simpler and smaller construction. The piezoelectrictube scanner typically consists

of a cylindrical tube made of radially poled piezoelectric material fixed at one end and free

at the other. The piezoelectric tube is plated with a layer ofelectrode on the inner and

outer surfaces of the tube. As shown in Fig. 2.4, the inner electrode is continuous and

grounded, and the outer layer electrode is segmented into four equal sized electrode sectors

of 90 degrees referred individually as+x,−x,+y, and−y electrodes. However, the top part

of the external electrode is not segmented. It is left as a circumferential electrode referred

as+z electrode. An aluminum or a stainless steel cube is fixed to the top of the tube to

serve as a sample holder and also to provide capacitive sensors flat surfaces so that the tube

deflection can be measured accurately in the case of a closed-loop scanner.
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Figure 2.4 : (a) Front view and (b) Bottom view drawing of the piezoelectric tube scanner
featuring the labels for each electrodes. (Both drawings arenot to scale and the thickness
of the electrodes is exaggerated.)
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The motions of the scanner in thex axis andy axis are each controlled by a pair of

external electrodes,+x,−x and+y, −y electrode pair respectively, that are driven by volt-

age signals of the equal magnitude but with opposite signs. When these voltage signals are

applied to the electrode pairs, the piezoelectric materialunderneath those electrodes will

expand or contract radially depending on the polarity of theapplied voltage signal with

respect to the polling direction of the piezoelectric material. If the polarity of the voltage

signal coincides with the polling direction, the piezoelectric material will expand in the

radial direction and causes the tube to reduce in length. If the polarity of the voltage signal

is opposite to the polling direction, the piezoelectric material will contracts in the radial

direction and causes the tube to increase in length. As opposite voltage signals are always

applied to each electrode pair, the length of the tube on one side of the electrode pair will

reduce, while the length on the opposite side will increase.This leads to a bend in the tube

which produces a lateral deflection of the tube’s free end in thex or y axis. The motion of

the scanner in thez axis is produced by applying a voltage signal to the+z electrode. Ap-

plying a positive or a negative voltage signal to the+z electrode will respectively increase

or decrease the tube length.

In AFM, the piezoelectric tube scanner is scanned in a rasterpattern as illustrated in

Fig. 2.5 (c). A raster scan is normally performed by moving the piezoelectric tube along

the x axis (fast-axis) in forward and reversed directions (line scan), and then moving the

piezoelectric tube along they axis (slow-axis) in a small step to reach the next line scan.

This movement is attained by applying a triangular wave signal to thex axis and a slowly

increasing staircase signal to they axis of the scanner as illustrated in Fig. 2.5 (a) and (b)

respectively. During the forward pass of the line scan, the surface topographic information

gathered by the probe is typically stored for image processing [51]. An AFM image is

normally comprised of 256× 256 data points. These data points are attained by performing

256 line scans and in each forward pass of the line scan, 256 data points are taken at an

equal spacing.
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Figure 2.5 : Illustration of (a) staircase and (b) triangular wave signals applied to they axis
andx axis respectively to obtain (c) a raster pattern with 5 x 5 data points.

2.5 Limiting factors for high-precision positioning

As mentioned previously, AFM images of sample surface topography are typically gen-

erated by plotting the input voltage to the high-voltage amplifier for the z-electrode as a

function of the scanner’s lateral positions. In AFM imaging, the scanner’s lateral positions

are determined from the reference signals to thex andy axes instead of the scanner’s true

displacements. Hence, the accuracy of the scanner in tracking these reference signals is

crucial for generating accurate AFM images. However, the positioning precision of piezo-

electric tube scanner is limited by hysteresis, creep, and vibration [16]. These issues are

further elaborated in the following sections.

2.5.1 Hysteresis

Piezoelectric materials are ferroelectric materials and for this reason they exhibit hysteretic

behavior when driven by a voltage source [56]. The effect of the hysteresis increases as the
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amplitude or the frequency of the applied voltage signal increases [2, 6]. In piezoelectric

tube scanner, the hysteresis becomes the main source for nonlinear distortions. When a

triangular wave signal is applied to a piezoelectric tube scanner, the resulting displacement

can deviate from linear by as much as 15 % between the forward and backward movements

due to the presence of hysteresis [50]. In order to minimize this effect, it is a common prac-

tice to limit the scan range to a small percentage of the scanner’s maximum scan range.

Although this method allows the scanner to operates within its linear range, it severely

limits the scanner’s ability to be used for long-range scans. Earlier AFMs compensate for

hysteresis effect by perturbing the input triangular signal to achieve an acceptable trajec-

tory, thus minimizing the effect of this particular form of nonlinearity [50]. Modeling a

piezoelectric actuator as a linear dynamic system cascadedwith a static nonlinearity and

then compensating for the nonlinearity through inversion is another approach that has been

researched [6,31,41]. However, we are not aware if it has been incorporated into an exist-

ing AFM.

Fig. 2.6 (a) illustrates a 13µm displacement in thex axis of a piezoelectric tube scanner

when driven by a 5 Hz triangular wave voltage signal in open loop. It should be noted that

the 13µm displacement is about 10 % of the scanner maximum scan range. The figure

illustrates, the scanner’s displacement deviations from linear due to the effect of hysteresis.

In Fig. 2.6 (b), the scanner’s displacement is plotted against the reference signal to form

a hysteresis curve. The hysteresis level can be quantified from this curve by taking the

maximum verticle divergence between the foward and reversecurve as a percentage of the

scanner’s displacement. In this case, the hysteresis is about 8.5 %. Fig. 2.6 (c) illustrates

an AFM image of a calibration grating surface topography that features arrays of cubes

obtained using the same scanner at 5 Hz scan frequency. It canbe observed from this

image that the presence of nolinearity in thex axis scan has caused the features of the

calibration grating along thex axis to appear curved.



19

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−6.5

−3.25

0

3.25

6.5

(a)

x
(µ

m
)

t (s)

−6.5 −3.25 0 3.25 6.5
−6.5

−3.25

0

3.25

6.5

(b)

x
(µ

m
)

ref (µm)

0

0-3.25 3.25 6.5-6.5
-6.5

-3.25

3.25

6.5

Reference line

(c)

x (µm)

y
(µ

m
)

Figure 2.6 : The effect of hysteresis on the piezoelectric tube scanner when driven by a
voltage source. (a) Measured scanner’s displacement (solid line) due to 5 Hz triangular
wave input signal (dashed line). (b) Hysteresis curve illustrating the relationship between
the scanner’s displacement and the reference input signal.(c) The resulting surface topog-
raphy image of a calibration grating obtained using the samepiezoelectric tube scanner.
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2.5.2 Creep

The positioning precision of the piezoelectric tube scanners can also be significantly af-

fected by creep, especially when positioning is required over extended periods of time

[16, 23]. In piezoelectric tube scanners, when the applied voltage signal goes through an

abrupt change such as a step change, the scanner experiencestwo stages of dimensional

change. In the first stage, the scanner undergoes an instantaneous dimensional change

within less than a millisecond. In the second stage, after the input voltage change has

completed, the scanner continues to undergo a relatively smaller dimensional change in the

same direction but at a much longer time scale. This slow dimensional change behavior in

the second stage is known as creep [55]. In AFM imaging, especially during slow operation

of atomic force microscopes, the effects of creep can resultin significant distortions in the

generated image [62]. Creep exacerbates the effect of hysteresis at the turning point of the

scanning trajectory, and it has an adverse effect on the vertical positioning of the sample.

While a number of methods have been proposed to deal with this phenomenon [16,35,66],

the most widely used approach in earlier AFMs has been to allow sufficient time for the

effect of creep to disappear after each abrupt change of the applied voltage signal or by al-

ways performing fast scans. However, these methods are not always practical and possible.

Figs. 2.7 (a)-(d) illustrate the effect of creep on AFM images of a calibration grating

generated successively. These images were generated at a 2 Hz scan frequency and 256

× 256 image resolution. Before these images were generated, the scanner was applied

with a voltage step corresponding to 4µm displacement in each axis to offset the scanner

to (-4 µm,-4 µm). Fig. 2.7 (a) shows that due to creep, the features of the calibration

grating were imaged at uneven magnifications. This image distortion occurred because

during scanning, although the reference signals have directed the scanner to move in a

raster pattern, the scanner continued moving in the direction of the applied voltage step. As

a result of this, certain areas of the grating were scanned more than once and consequently

causing that part of the calibration grating to appear larger. Figs. 2.7 (b)-(d) show that the
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Figure 2.7 : Successive AFM images of a calibration grating taken after the scanner was
applied with a step voltage to offset each axis of the scannerby 4 µm. The images was
scanned horizontally with the image origin at bottom-left of each image.
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image distortion decreased as the effect of creep diminished with time. After about 10

minutes, Fig. 2.7 (d) illustrates the features of the calibration grating were imaged at an

approximately equal magnification.

2.5.3 Vibrations

The main source of vibrations in a piezoelectric tube scanner is scan-induced vibrations due

to excitation of its lightly damped first resonant mode by higher harmonics of the triangular

wave signal. In an AFM, in order to perform a high-speed scan,a high frequency triangular

wave signal needs to be used. A triangular wave signal contains all odd harmonics of the

fundamental frequency. The amplitudes of these harmonic signals attenuate as1
n2 , with n

being the harmonic number [37]. If a fast triangular waveform is applied to the scanner, it

will inevitably excite the mechanical resonance of the scanner. Consequently, this causes

the scanner to vibrate and trace a distorted triangular waveform which can significantly

distort the generated AFM image. To avoid this complication, the scan frequency of AFMs

is often limited to about 10 to 100 times lower than the scanners first resonance frequency

[16]. During fast scans, a widely used approach to deal with this issue is to shape the

tracking signal such that it does not excite the tube’s resonance [16,42]. A downside of this

approach is that the tube is still mechanically very lightlydamped, and thus susceptible to

external disturbances and noise.

Fig. 2.8 (a) illustrates the effect of the scan-induced vibrations on a scanner’s displace-

ment when driven by 10 Hz triangular wave signals. This figureshows that instead of

following a perfect triangle, the scanner traced a distorted triangular waveform. The dis-

tortion in the scanner’s displacement was due the excitation of the scanner’s first resonant

mode which is at about 580 Hz by the higher harmonics of the triangular wave signal.

Figs. 2.8 (c) illustrates an AFM image of a calibration grating generated at 10 Hz scan fre-

quency. This figure shows that the distortion in the scanner’s displacement has resulted in a

ripple-like artifact in the AFM image. Figs. 2.8 (b) and (d) illustrate that the distortions due
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Figure 2.8 : The effect of scan-induced vibration on piezoelectric tube scanner. Scanner’s
displacements (solid line) when driven by (a) 10 Hz and (b) 30Hz triangular wave signals
(dashed line). AFM images of a calibration grating generated at scan frequency of (c) 10 Hz
and (d) 30 Hz.
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to the effect of the scan-induced vibration exacerbated when the frequency of the triangular

wave signal was increased to 30 Hz. This is because at a higherscan frequency, the ampli-

tude of the harmonics which excite the scanner’s first resonant mode are larger. It should

be noted that the scanner’s displacements and the AFM imagesshown in Figs. 2.8 (a) -

(d) were generated using a scanner driven by a charge source [25, 26] instead of a voltage

source. The use of a charge source explains the reduction in the effect of hysteresis seen in

Figs. 2.8 (a) and (c). A more detailed discussion on the use ofcharge source to reduce the

effect of hysteresis in piezoelectric tube scanner will be presented in subsequent chapters.

2.6 Summary

In this chapter the working principle of AFM and its various operating modes were pre-

sented. This was subsequently followed by an in depth description of an important compo-

nent in AFMs, i.e., the piezoelectric tube scanner. Then, this chapter continued to discuss

in detail the effects of hysteresis, creep and scan-inducedvibration on the positioning preci-

sion of the piezoelectric tube scanner. It was pointed out that as a result of these effects, the

scanner’s positioning precision deteriorates when the scanner is used for high speed AFM

and long scanning range operations. In the following chapters, we will focus on the use of

feedback control approaches to increase the scanner’s positioning precision in high-speed

AFM. Feedback controllers will be designed to achieve high closed-loop bandwidth as well

as to compensate the effects of hysteresis, creep and scan-induced vibration.
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Chapter 3

Feedback Control of a Piezoelectric Tube Scanner using
Complementary Sensors

This chapter describes the use of a feedback control approach to achieve high-speed and

high-precision positioning in a piezoelectric tube scanner by compensating the effects of

hysteresis, creep and scan-induced vibration. In this chapter, we design a feedback con-

troller for the fast-axis (x axis) of a scanner. The feedback controller is designed to utilize

capacitive sensor and low-noise strain voltage signal induced in the scanner’s free electrode

to provide low-frequency and high-frequency measurementsof the scanner’s displacement

respectively. The capacitive sensor’s bandwidth is kept low in order to reduce the capacitive

sensor noise that is detrimental for applications which require subnanometer positioning ac-

curacy such as atomic resolution AFM imaging. The use of strain voltage signal allows the

closed-loop bandwidth to be increased greater than the bandwidth of the capacitive sensor

to achieve high-speed scans. In the first section of this chapter, a review of existing feed-

back and feedforward control techniques, and the motivation for this work are presented.

Section 3.2 provides a description of the experimental setup. Modeling and identification of

the system transfer functions are presented in Section 3.3.Control schemes are devised in

Section 3.4. In Section 3.5, simulation and experimental results are presented to illustrate

the effectiveness of the proposed control schemes.

3.1 Introduction

There has been a consistent effort in recent years to improveaccuracy and speed of piezo-

electric tube scanners using feedback control techniques.One of the earliest attempts to

control a piezoelectric tube actuator is reported in [75], where a non-contacting inductive
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sensor was used to measure the lateral displacement of a tube. Lag-lead andH∞ controllers

were designed and implemented on the tube, and the feasibility of reducing the adverse

effects of creep and hysteresis were demonstrated. The authors also reported that theH∞

controller achieved damping of high-frequency vibrations. The use of loop shaping pro-

cedure to design a feedback controller for a piezoelectric tube actuator instrumented with

optical displacement sensors to track a raster pattern was described in [17]. Their results

show reductions in tracking error and cross coupling due to the use of feedback control.

In [39], a proportional-plus-derivative(PD) high-gain feedback controller and a feedfor-

ward input were used to compensate for creep, hysteresis, and vibration effects in an AFM

piezoactuator system. The high-gain feedback controller was first used to linearize the

piezoactuator by compensating for the creep and hysteresis. Then, the linearized piezoac-

tuator was modeled to determine the feedforward input to account for the vibration effects.

Their results indicated that, the use of feedforward input reduces the tracking error more

as compared to using only feedback control. Examples of other successful applications of

feedback include [20, 40, 65, 67, 78]. A comprehensive review of the field can be found

in [18].

The key idea associated with feedback-based methods is to damp the first resonant

mode of the piezoelectric tube actuator. This “flattening” of the frequency response of the

scanner will allow tracking of a faster triangular waveform, and consequently a faster scan.

Furthermore, to achieve accurate positioning at high frequencies and minimize the adverse

effect of hysteresis, the feedback gain is often chosen to behigh. There is a limit on how

high the feedback gain can be made before the closed-loop system is made unstable, since

the existence of sharp resonant peaks in the frequency response of the actuator typically

results in a very low gain margin [5]. Using notch filters in the feedback loop has been

shown to result in an improvement in the achievable gain margin [38].

The use of high-gain feedback for accurate tracking is necessitated due to the hysteretic
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nature of the piezoelectric actuator. If the actuator is driven by a charge source, the hys-

teresis is significantly reduced, resulting in an almost linear actuator, a fact that has been

known since early 1980s [15, 56]. However, until very recently, it has been rarely used

due to the difficulties associated with driving highly capacitive loads with commercially

available charge or current amplifiers. Recently, in [24–26,28, 77] a new construction for

charge and current sources capable of regulating the DC profile of the actuator have been

proposed. A similar charge source is used here to actuate a prototype piezoelectric tube

scanner.

Inversion-based feedforward method has also been applied to piezoelectric tube actu-

ators. An attractive feature of feedforward control schemeis that this method does not

require any additional sensors for implementation. Model-based inversion approach was

used in [16] to compensate for positioning distortions caused by creep, hysteresis, and in-

duced vibrations. A low-order feedforward controller was presented in [69] to suppress the

lateral oscillation of a piezoelectric tube scanner. The feedforward controller was designed

usingH∞ method such that the system is not excited at frequencies around the first reso-

nance of the piezoelectric tube scanner. The performance offeedforward control schemes

heavily relies on an accurate model of the system [16, 69]. Combining feedback and feed-

forward compensation has been shown to result in satisfactory tracking in a piezoelectric

tube scanner in presence of parameter uncertainties in the plant model [3,8,9].

In applications where ultrahigh-precision positioning isa necessity, e.g., in AFM, the

performance of feedback control scheme is severely limitedby the noise properties of the

displacement sensor. To appreciate this, consider a displacement sensor that has an RMS

noise of 20 pm/
√

Hz - most capacitive and inductive displacement sensors aresubject to

this level of noise. If the sensor is operated over a bandwidth of, say 10 kHz, its RMS noise

will be 2 nm, which makes it impossible to achieve subnanometer positioning accuracy.

However, if the very same sensor is operated over a bandwidthof 100 Hz, the noise level
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is reduced to 2̊A, about the radius of an atom. Limiting the bandwidth to 1 Hz,would

further reduce this noise level to 0.2̊A. Thus, the positioning accuracy achievable by a

feedback controller can be significantly improved. However, this would also limit the oper-

ating bandwidth of the feedback controller, resulting in very slow closed-loop operation of

the system. Such a severe closed-loop bandwidth limitationwould come at the additional

cost of making the closed-loop system sensitive to vibration, noise and other disturbances.

The contribution of this chapter is the utilization of the piezoelectric voltage induced

in one of the two electrodes as an additional displacement sensor. Although this signal

cannot be used to measure static deflections of the tube, and it has a poor low-frequency

response, it can function as an excellent high-frequency displacement sensor, with a noise

level of at least three orders of magnitude less than a capacitive sensor. Thus, for all prac-

tical purposes, this sensor can be viewed to be almost free ofnoise. A controller can be

designed to achieve satisfactory tracking using these two “complementary” sensors. Here,

a two-input one-outputH∞ controller is designed to use the capacitive sensor measurements

at low frequencies (below 100 Hz), and at DC, and the piezoelectric strain signal at higher

frequencies. For roughly the same noise level, the controller achieves a closed-loop band-

width more than three times that obtained from a controller utilizing the capacitive sensor

measurement alone.

3.2 System Description

The piezoelectric tube used in this work is a cylindrical tube made of piezoelectric material

plated with a layer of electrode on the inner and outer surfaces of the tube. The inner

electrode is continuous and grounded. The outer layer electrode is segmented into four

equal sized electrodes and referred individually as+x, −x, +y and−y electrodes. The

physical dimensions of the tube are given in Fig. 3.1. The piezoelectric tube is housed in

a circular aluminum enclosure to protect it from external disturbances and acoustic noise.

A hollowed aluminum cube is glued to the top of the tube to serve as a sample holder and
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Figure 3.1 : Piezoelectric tube dimensions in millimeters.(a) Isometric-view and
(b) Bottom-view (dimensions are not to the scale and the thickness of the electrode is
exaggerated).

also to provide the capacitive sensors (ADE Technologies 2804) flat surfaces so that the

tip deflection can be measured accurately. The capacitive sensors are fixed at right angles

to the cube surface in thex axis andy axis by using nylon screws as shown in Fig. 3.2.

The capacitive sensors have a sensitivity of 10µm/V over a range of±100µm. The RMS

noise density of the capacitive sensors were measured in [30] to be 17.5 pm/
√

Hz. Each of

the capacitive sensors is driven by an ADE Technologies 4810gaging system that comes

with multiple bandwidth settings. By operating the sensor over a bandwidth of 100 Hz, the

RMS noise or the resolution of the capacitive sensor is set to 0.175 nm.

In most nanoscale positioning applications, including in most AFMs, the tube motion

is produced by applying equal and opposite sign input signals to the electrodes opposite to

each other. However, in this work only the+x electrode is used to produce the forward and

reverse motions of the tube in thex axis. This is achieved by applying a triangular wave
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Figure 3.2 : The piezoelectric tube is housed in a circular aluminum enclosure.
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signal to this electrode. The opposite electrode−x is used as a secondary sensor to mea-

sure the tip deflection. Note that this arrangement reduces the scan range of the tube to half.

However, it results in a substantially higher positioning accuracy, as articulated shortly. If

needed, a larger scan range can be obtained by utilizing a tube of different dimensions.

When the tube deflects, the piezoelectric strain voltage induced in the−x electrode is

found to be proportional to the tip deflection over a certain frequency range. The transfer

function from the strain voltage to the output of an instrumentation amplifier resembles a

first-order high-pass filter, [53]. This is due to the capacitive nature of the piezoelectric

tube. The high-pass filter can be expressed as,

Ghp(s) =
s

s+ 1
RinCp

(3.1)

whereRin is the input impedance of the voltage measuring instrument andCp is the capac-

itance of the piezoelectric tube.

The RMS noise density of the piezoelectric strain voltage wasmeasured in [29, 30]

to be 16 fm/
√

Hz, about a thousand times less than that of the capacitive sensor. Such an

extremely low-noise level will only cause a few picometers of RMS noise over a bandwidth

of tens of kHz. By this measure, this should be the preferred displacement sensor. However,

due to its high-pass nature, as articulated above, accuratepositioning at low frequencies

using this sensor alone is impossible. At low frequencies where the strain signal cannot

be used, the displacement measurement obtained from the capacitive sensor can be used

directly. The complementary nature of the two measurementsallows for the bandwidth of

the capacitive sensor to be made very low, thus reducing the overall effect of noise on the

controlled position of the scanner to an absolute minimum.

The schematics of the proposed feedback control scheme are illustrated in Fig. 3.3. The

+x electrode is being driven by a home-made charge source [25, 26] that renders the plant

linear, hence reducing the adverse effect of hysteresis. The charge amplifier has a constant
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Figure 3.3 : Schematics of the proposed feedback control system.

gain of 68 nC/volt. The two-input-one-output controller is designed to take advantage of the

complementary nature of the two measurement signals. Details of the design are explained

in Section 3.4. A dSPACE DS1103 controller board equipped with a 16-bit analog-to-

digital converter (ADC)/digital-to-analog converter (DAC)cards was used for real-time

controller implementation. A sampling frequency of 15 kHz is used to avoid aliasing. In

order to reduce the quantization noise, a low-noise preamplifier with a gain of 10 is used to

amplify the capacitive sensor output so that it occupies thefull range of the ADC card for

a range of±10 µm.

3.3 System Identification

This section discusses and details the modeling proceduresundertaken in this work. The

following frequency response functions (FRFs) were determined using a dual channel

HP35670A spectrum analyzer,

Gvxux (iω) =
vx(iω)

ux(iω)
(3.2)
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Figure 3.4 : One-loop-frequency responses,Gvxux (iω) (dash-dots),Gcxux (iω) (dash), and
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and

Gcxux (iω) =
cx(iω)

ux(iω)
(3.3)

whereux is the input voltage to the charge amplifier,vx is the induced piezoelectric strain

voltage andcx is the output voltage of the capacitive sensor. The subscript x denotes that

the actuation and measurements were performed along thex axis. A band-limited random

noise signal (1 Hz to 1600 Hz) was generated using the spectrum analyzer and applied

to the charge amplifier as the input,ux. The corresponding outputsvx andcx were also

recorded using the same device. The input-output data was processed to generate the FRFs

of (3.2) and (3.3) in a non-parametric form as illustrated inFig. 3.4.

It can be seen from Fig. 3.4 thatGvxux (iω) includes a high-pass filter with cutoff fre-

quency of about 9 Hz. The high-pass filter results in a phase-lead and heavy attenuation of

the strain voltage signal at low frequencies. Thus, the strain voltage cannot be used as a
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reliable tip deflection measurement at low frequencies. Nevertheless from about 20 Hz and

onwards, the strain voltage provides an excellent signal that can be used to estimate the tip

deflection and also the dynamics of the piezoelectric tube. As for Gcxux (iω), its frequency

response includes a low-pass filter with cutoff frequency of100 Hz. Thus, the capacitive

sensor can be used to measure the tip deflection below 70 Hz with acceptable accuracy.

After this frequency,Gcxux (iω) starts to roll off considerably. These two measurements

complement each other since the former is accurate at high frequencies, including at the

resonance and the latter is reliable at low frequencies, including at DC. Note that a scaling

factor ofKa = 0.2 has been incorporated into theGvxux (iω) to adjust the sensitivity of the

signal obtained from−x electrode and make it identical to that of the capacitive sensor

signal.

In this work, instead of fitting separate transfer functionsto Gvxux (iω) andGcxux (iω),

a new FRF was formed by using the low-frequency range (1 Hz to 50Hz) of theGcxux (iω)

data and the high frequency range (51 Hz to 1600 Hz) of theGvxux (iω) data. The new

FRF corresponds to the deflection of the tip,yx that is not affected by artifacts such as

the high-pass property of the strain signal, or the low-passproperty of capacitor sensor

measurement. A second order model was fitted to the new FRF data. The identification

algorithm used for this purpose was the frequency-domain subspace-based system identifi-

cation approach described in [47] and [48]. The following model was found to be a good

fit as illustrated in Fig. 3.4,

Gyxux (s) =
−0.06s2−342.8s+2.654×106

s2 +49.47s+2.895×107 . (3.4)

The high-pass and the low-pass filter characteristics corresponding toGvxux (iω) and

Gcxux (iω) respectively are fitted with the following models

Gl p (s) =
3.948×105

s2 +888.6s+3.948×105 (3.5)
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and

Ghp(s) =
s

s+55.29
. (3.6)

3.4 Controller Design

This section discusses and details theH∞ control design schemes proposed in this chapter.

The key objectives of the design are as follows:

1) To achieve good damping ratio for the first resonant mode ofthe piezoelectric tube

scanner,

2) To achieve higher tracking bandwidth using the low-bandwidth capacitive sensor and

the piezoelectric strain voltage signal as the primary and secondary displacement

measurements respectively,

3) To minimize the effect of low-frequency vibrations on thetube’s deflection.

For the sake of comparison, a second controller using only the measurements obtained from

the capacitive sensor is also designed to achieve the abovementioned objectives as much as

possible.

3.4.1 Two-sensor-basedH∞ controller

The proposed control diagram is illustrated in Fig. 3.5 where a two-degree-of-freedom

(DOF) controller scheme is to be synthesized. The control structure consists of the feed-

forward controller,K f d (s) and the feedback controllersKv(s) andKc(s). The feedback

controllers are first designed. Fig. 3.6 illustrates the feedback control block diagram with

incorporated weighting functions. The problem can be cast into the standardH∞ controller

design framework as shown in Fig. 3.7. The exogenous input vector is defined as

w =




r

di

n



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and the exogenous output as

z=


 z1

z2




,

wherer is the reference signal to be tracked,di represents low-frequency vibrations mod-

eled as an input disturbance, andn represents the sensor noise. Furthermore,ux is the

control signal andv is the measured output. From Fig. 3.6 it is clear that

z1 = W1
(
r −Gyxux

(
ux +Wbpdi

))
,

and

z2 = W2ux.

The control signal isux andv is the vector of measured outputs

v =


 v1

v2




,

where

v1 = r −
(
Gyxux

(
ux +Wbpdi

)
Gl p +Whpn

)

and

v2 = r −
(
Gyxux

(
u+Wbpdi

)
Ghp+Wl pn

)
.

To achieve satisfactory vibration reduction at low frequencies, a disturbancedi has

been introduced at the input of the plant and the controller is forced to minimizeTyxdi ,

the transfer function from the input disturbancedi to the actual scanner outputyx. The

weighting functionWbp is tuned to the resonance frequency of the tube that is located in

the vicinity of 850 Hz, as shown in Fig. 3.4 and is chosen as,

Wbp(s) =
1793s

s2 +1793s+2.893×107 . (3.7)
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Figure 3.5 : 2-DOF control block diagram.

The capacitive sensor is noisy at high frequencies and the piezoelectric stain voltage

signal is distorted at low frequencies. The controller is designed to utilize the capacitive

sensor for tracking low-frequency signals, and the strain voltage for tracking signals that

contain higher frequency components. This is achieved by introducing the two weighting

functionsWhp andWl p, as shown in Fig. 3.6, as

Wl p (s) =
1.262×108

(s2 +195.9s+1.124×104)(s2 +81.13s+1.124×104)
(3.8)

and

Whp(s) =
s2

s2 +1571s+1.579×106 . (3.9)

Furthermore,W2 = 0.1 is used to impose a constraint on the control signal. This isto avoid

excessively large control signals that could saturate the actuator.

The weighting functionW1 is incorporated to enforce good tracking performance. The

inverse of this transfer function can be considered as the desired sensitivity transfer function

Ter, the transfer function from reference signalr to the tracking errore = r − yx. W1 is

chosen as

W1(s) =
0.3162s+1257

s+1.257
. (3.10)
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Figure 3.7 : General feedback control configuration.

Fig. 3.8 (a) illustrates the main weighting functions. To examine the effectiveness of the

controller, the achieved sensitivity functionS(s) is plotted against the desired sensitivity

functionW−1
1 (s) in Fig. 3.8 (b). The figure illustrates that both of the achieved and the

desired sensitivity functions match closely except at highfrequencies, particularly beyond

1 kHz. This indicates that the synthesized two-input one-output H∞ controller performs as

intended.

Fig. 3.9 plots the frequency responses of the feedback controllersKc(s) andKv(s). It

can be observed that the two controllers conform to the design requirements. In particular,

Kc(s) is a high-gain controller at low frequencies within the bandwidth afforded by the

capacitive sensor. On the other hand,Kv(s) maintains a low gain within the bandwidth

of the capacitive sensor, but applies a high gain beyond 20 Hz. This “frequency sharing”

enables the two controllers to maintain satisfactory tracking of the reference signal over the

bandwidth of interest.

The final stage of the controller synthesis involves designing the feedforward controller

K f d (s) to shape the reference signal based on the achieved closed-loop frequency response,



40

10
1

10
2

10
3

10
4

−150

−100

−50

0

50

(a)

M
a
g
n
it

u
d
e

(d
B

)

f (Hz)

Wlp(s) Whp(s)

Wbp(s)

W1(s)

10
1

10
2

10
3

10
4

−60

−40

−20

0

20

(b)

M
a
g
n
it

u
d
e

(d
B

)

f (Hz)

eS(s)

W−1

1
(s)

S(s)

Figure 3.8 : (a) Weighting functions. (b) Sensitivity functions: desired (solid), achieved
two-sensor (dash) and achieved single-sensor (dash-dot).



41

10
1

10
2

10
3

10
4

−30

0

30

60

M
a
g
n
it

u
d
e

(d
B

)

f (Hz)

Figure 3.9 : Frequency response of the designed controllersKc(s) (solid),Kv(s) (dash) and
K̃c(s) (dash-dot).

ro(t)

FFT

Ro(s)

Kfd(jω)

R(s)

IFFT

r(t)

Figure 3.10 : Procedure to obtain shaped referencer(t).

Tyxr (s). The feedforward controller should be chosen such that:

K f d (s) ≈ T−1
yxr (s) . (3.11)

Since the reference signalro(t) is known and the frequencyTyxr ( jw) can be measured in

advance, the shaped reference signalr(t) can be obtained off-line, as shown in Fig. 3.10.

This inversion is generally done over the frequency range for which a satisfactory model of

the closed-loop system is available, in this case up to 1600 Hz.
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Figure 3.11 : 2-DOF control block diagram for the one-sensor-basedH∞ controller.

3.4.2 One-sensor-basedH∞ controller

The purpose of this section is to demonstrate the immediate benefit of using the strain volt-

age sensor in addition to the low-bandwidth capacitive sensor. The controller designed here

utilizes only the low-bandwidth capacitive sensor to obtain the tip displacement measure-

ment for feedback. To make a fair comparison with the two-sensor-basedH∞ controller, a

2-DOF controller, with a structure depicted in Fig. 3.11, was designed and implemented.

Similar weighting functions (3.7)-(3.10) were used in synthesizing theH∞ controllerK̃c(s).

The feedback control block diagram with the weighting functions is illustrated in Fig. 3.12.

A feedforward controllerK̃ f d (s) was also designed and implemented in a similar manner

as detailed in the previous section.

The achieved sensitivity functioñS(s) for this control scheme is shown in Fig. 3.8(b). It

can be observed thatS̃(s) does not match the desired sensitivity functionW−1
1 (s). This is a

clear indication that a controller designed with one sensoralone is not capable of satisfying

the design goals articulated before. Fig. 3.9 plots the frequency response of the feedback

controllerK̃c(s). This is rather similar toKc(s) with the clear exception that it includes a

notch filter at the first resonance frequency of the tube.



43

r

cx

v1

K̃(s)

P̃ (s)

K̃c

ux

di

d̃i

Wbp

Gyxux

Glp

yx

Whp

W1

W2

n

z2

z2

Figure 3.12 : Feedback control block diagram with weightingfunctions for the one-sensor-
basedH∞ controller.



44

3.5 Results

This section presents experimental results obtained from the two control schemes proposed

in this chapter. In order to measure the true deflectionyx, a capacitive sensor with a band-

width of 10 kHz was used in all tests. The sensor’s signal was passed through a second

order Butterworth low-pass filter with a cut-off frequency of100 Hz. This latter signal

was made available to the feedback controllersKc(s) andK̃c(s). Note that this low-pass

filter is implemented simultaneously with the feedback controllers using the same real-time

rapid prototyping system. Therefore, it should be considered as an integral part ofKc(s)

andK̃c(s). Inclusion of a low-pass filter in this arrangement is not entirely necessary since

Kc(s) andK̃c(s) are designed to operate at low bandwidths. This filter is incorporated in the

design to emphasize the fact that this methodology works fineeven with a low-bandwidth

(and thus inexpensive) displacement sensor.

3.5.1 Hysteresis reduction

The presence of hysteresis in the prototype scanner was investigated by applying a 5 Hz

sinusoidal signal to the piezoelectric tube and measuring its deflection in open loop. A

single-tone low-frequency signal was chosen here in order to avoid excitation of the first

resonant mode of the tube. Also, this ensures that only the nonlinear component of the de-

flection is captured since at such a low frequency the linear dynamics of the tube resembles

a simple gain with hardly any phase shift.

The tube was made to deflect a large distance (± 3.0 µm) so that the presence of hys-

teresis could be clearly observed. The effects of hysteresis were evaluated when the tube

was driven by: 1) a voltage amplifier and 2) a charge amplifier.For each case the corre-

sponding input signal and the tip deflection were recorded. Figs. 3.13 (a) and (b) illustrate

the plots of tip deflection versus input signal for voltage and charge, respectively. A clear

reduction of hysteresis can be observed when the tube is driven by the charge amplifier.

In order to quantify the improvement, the presence of hysteresis was measured in terms of
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Figure 3.13 : Hysteresis plot of open-loop 5 Hz scan using (a)voltage amplifier and (b)
charge amplifier.
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Table 3.1 : Numerical quantification of hysteresis

Configurations Max. output Max. input

hysteresis hysteresis

Voltage amp. 434.0 nm (7.2%) 8.5 volt (7.3%)

Charge amp. 23.2 nm (0.4%) 9.20 nC (0.4%)

the maximum (input and output) percentage deflection from a straight line. The results are

tabulated in Table 3.1 and clearly demonstrate the immediate benefit of driving the tube

with a charge amplifier. Although the hysteresis is not reduced to an absolute zero, it is

made so small that the actuator can effectively be considered a linear device.

3.5.2 Closed-loop frequency response

The performance of the feedback two sensor-based controller was first evaluated by mea-

suring the closed-loop frequency responses of the scanner using the spectrum analyzer. In

Fig. 3.14, the closed-loop frequency responses,Tyxr (iω) andTyxd̃i
(iω) are plotted along

with the open-loop frequency response,Gyxux (iω). By inspecting the frequency response

of Tyxr (iω) we conclude that the closed-loop system has a bandwidth of 310 Hz. Also,

a damping of 20 dB at the first resonant mode is evident from thefrequency response of

Tyxd̃i
(iω). Note that, the frequency response also shows that, the closed-loop system is

insensitive to low-frequency input disturbances. Hence, the closed-loop system will per-

form in a satisfactory manner in presence of low-frequency vibrations, and disturbances.

Overall, the two-sensor-based controller satisfies all theperformance criteria.

3.5.3 Time response

The ultimate purpose of thex axis feedback control loop is to allow for satisfactory tracking

of a fast triangular wave trajectory. This is necessary if the actuator is to be used for fast

AFM. First column of Fig. 3.15 plots the open-loop time responses of the scanner due to 5,
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Figure 3.14 : Experimentally obtained frequency responsesof Tyxr (iω) (solid), Tyxd̃i
(iω)

(dash) andGyxux (iω) (dash-dots).

20 and 40 Hz triangular input signals. It can be observed thatas the frequency of the input

signal increases, the extent to which the scanner’s motion becomes affected by the induced

vibrations also increases. Particularly at 40 Hz the scanner’s motion is badly affected by

amplification of the 11th harmonic (840 Hz) of the triangular signal which is close to the

first resonance frequency of the piezoelectric tube (about 850 Hz).

The right hand column of Fig. 3.15 (Figs. 3.15 (d), (e) and (f)) compares the closed

loop response of the scanner under the two-sensor-basedH∞ controller with the desired

trajectory. It can be observed that the controller successfully damps the induced vibrations

and provides excellent tracking performance, particularly at low frequencies. The damping

of 20 dB at the first resonant mode of the scanner is sufficient to avoid the amplification

of the harmonics near the first resonance frequency. Note that the controller’s ability to

track the reference signal at its corners is reduced when thefrequency of the input signal
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Figure 3.15 : Open-loop (left) and closed-loop (right) timeresponse plots of 5, 20 and
40 Hz scan. Solid line is measured scanners displacement anddashed line is desired trajec-
tory.
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Table 3.2 : RMS values of tracking error

Scan Freq. Open-loop Closed-loop

Two-sensor One-sensor

5 Hz 12.2 nm 1.9 nm 2.0 nm

10 Hz 9.9 nm 2.3 nm 2.4 nm

20 Hz 10.7 nm 3.2 nm 3.4 nm

30 Hz 17.5 nm 3.1 nm 9.1 nm

40 Hz 67.0 nm 7.6 nm 15.6 nm

is increased. This effect is clearly visible in Fig. 3.15 (f)and is mainly due to the limited

closed-loop bandwidth of the system. The feedforward controller incorporated into the

tracking system works to correct this effect. However, its effectiveness is limited by the

accuracy of the closed-loop model used in the inversion. Nevertheless, this should not be

viewed as a drawback as it is common practice in AFM to limit the image size to within

a certain percentage of the available window with the understanding that, quite often, the

image could be distorted around the edges.

Open-loop and closed-loop tracking errors for various scanfrequencies are tabulated in

Table 3.2. The tracking errors are determined by calculating the RMS difference between

the measured displacement and the reference signal for 90 % of the scan range (ignoring the

top and bottom 5 % of the scans). A fixed phase shift between themeasured displacement

and the reference input can be observed in Figs. 3.15 (d)-(f). In calculating the tracking

errors, these phase shifts were removed. At the slow speed scan of 5 Hz the controller

displays excellent tracking performance with tracking error of only 1.9 nm, i.e. 0.06 % of

the entire scan range. The tracking error remains satisfactory even as the scan frequency is

increased as high as 40 Hz, as shown in Table 3.2. The error does not exceed 0.25 % of the

scan range. Note that in measuring the displacements, a highbandwidth capacitive sensor

with a bandwidth of 10 kHz was used. At this bandwidth, the RMS noise level of the sensor
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Figure 3.16 : Experimentally obtained closed-loop frequency responses using one-sensor-
basedH∞ controller,Tyxr (iω) (solid),Tyxdi (iω) (dash) andGyxux (iω) (dash-dots).

is calculated to be 1.75 nm. The stochastic noise affecting the “true” output of the scanner

is significantly lower than this, since the said noise is largely due to the capacitive sensor

signal which is low-pass filtered at 100 Hz. The stochastic noise arising from the strain

voltage signal can effectively be ignored in this case due toits extremely low noise density.

3.5.4 One-sensor-basedH∞ controller

For the sake of completeness closed-loop performance of thescanner with the one-sensor-

basedH∞ controller is studied here. Fig. 3.16 illustrates closed-loop performance of this

controller. It can be observed that the bandwidth of the closed-loop system is about a third

of that of the two-sensor-based system. By comparingTyxd̃i
(iω) andGyxux (iω) in Fig. 3.16,

it can be concluded that̃Kc(s) does not damp the first resonance mode of the tube in a sat-

isfactory manner. This is of little surprise since this modeis out of the 100 Hz bandwidth

of the controller. However, no induced vibrations are observed when the tube is made to
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track various triangular waveforms as illustrated in Fig. 3.17. This is due to the existence

of the notch filter inK̃c(s). Also, the two-sensor-based controller performs better interms

of rejecting low-frequency vibrations and noise.

The closed-loop tracking errors due tõKc(s) are tabulated in the last column of Ta-

ble 3.2. It can be seen that up to 20 Hz scanning frequency, thetracking performance is

comparable to that obtained throughKc(s). However, at higher scan frequencies the track-

ing performance decrease rapidly as illustrated in Table 3.2 and Fig. 3.17.

3.6 Summary

We described how a high-bandwidth low-noise two-sensor-based controller could be de-

signed for a piezoelectric tube scanner. The two-input one-output controller uses measure-

ments obtained from a capacitive displacement sensor at lowfrequencies and the piezoelec-

tric voltage signal at high frequencies. By keeping the capacitive sensor loop bandwidth

low, the effect of sensor noise on the overall system is significantly reduced. Having ac-

cess to the piezoelectric voltage signal allows the controller to achieve tracking over a wide

bandwidth and successful damping of the resonant mode of thescanner. Overall, this chap-

ter provides a further justification for using complementary sensors, whenever possible, in

nanoscale positioning systems in line with results reported in [58] and [29]. In the next

chapter, the focus of our works shifts from designing feedback controllers for a prototype

piezoelectric tube scanner to an actual scanner used in a commercial AFM.
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Chapter 4

Positive Position Feedback control of an Atomic Force
Microscope

This chapter presents experimental implementation of Positive Position Feedback (PPF)

control scheme for vibration and cross-coupling compensation of a piezoelectric tube scan-

ner in a commercial AFM. In this chapter we illustrate the improvement in accuracy and

imaging speed that can be achieved by using a properly designed feedback controller such

as the PPF controller. In the first section of this chapter, the motivation and overview of PPF

control scheme were presented. Section 4.2 provides descriptions of the AFM and other

experimental setup used in this work. Modeling and identification of the system transfer

functions are explained in Section 4.3. Control schemes for the AFM scanner are devised

in Section 4.4. Finally, in Section 4.5 experimental results are given to illustrate the drastic

improvement in accuracy and imaging speed that can be achieved with the proposed control

schemes.

4.1 Introduction

Feedback has always been an integral part of every AFM for vertical positioning. A feed-

back controller requires a measurement signal to operate effectively. In an AFM, this

measurement is conveniently made available by the laser-photodetector sensor, enabling

accurate vertical positioning of the scanner. The utilization of feedback to improve lateral

positioning of the scanner, however, requires displacement sensors to be incorporated into

the device. These sensors were not included in scanners of earlier AFMs. However, they

are progressively being built into a new generation of commercially available AFMs. The

ability to use feedback for lateral positioning brings about a number of exciting possibilities
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some of which have already materialized in commercially available AFMs. For example,

PI controllers have been used to reduce the effects of hysteresis and creep with consider-

able success. Apart from the above complicating factors, there are two other issues that

hamper the operation of an AFM: 1) the highly resonant natureof the scanner, and 2) the

cross coupling between the various axes of the scanner [68].However, the controllers used

in these AFMs are often not designed to deal with these two issues.

The contribution of this chapter is the improvement of the performance of a commercial

AFM by using a PPF control scheme to compensate for the vibration and cross-couplings

of its piezoelectric tube scanner. The PPF controllers wereinitially designed to suppress

mechanical vibrations of highly resonant aerospace structures [22]. They have been suc-

cessfully implemented on a range of lightly damped structures [54, 61, 71]. Their effec-

tiveness in improving accuracy and bandwidth of nanopositioning systems was recently

investigated in [8]. PPF controllers have a number of important features. In particular, they

have a simple structure, are easy to implement and their transfer functions roll off at a rate

of 40 dB/decade at higher frequencies. The latter is important in terms of the overall effect

of the sensor noise on the scanner’s positioning accuracy. The PPF control scheme can be

incorporated into most modern AFMs with minimal effort since they can be implemented

in software with the existing hardware. At present, the focus of this work is only limited

to compensating the vibration and cross-couplings in the lateral axes of the scanner. In

this chapter, the performance of this control scheme is assessed by comparing surface to-

pography images of a calibration grating obtained using this control scheme with the one

obtained using a well-tuned PI controller in the feedback loop. Experimental results show

that by implementing the PPF control scheme, relatively good images in comparison with

a well-tuned PI controller can still be obtained up to line-scan of 60 Hz.
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4.2 Experimental Setup

The experimental setup consisted of a commercial NT-MDT Ntegra Scanning Probe Mi-

croscope (SPM) as shown in Fig. 4.1. This SPM can be used to perform almost all scanning

probe microscopy techniques in air and liquid environment.The SPM’s operating software

limits the highest image resolution to 256× 256 pixels. At this resolution the fastest scan-

ning frequency is limited to 31.25 Hz. However, faster scan frequencies are possible by

reducing the resolution. For example, by halving the resolution to 128× 128 pixels, the

fastest scan frequency is doubled to 62.50 Hz.

In the experiments reported in this chapter, the SPM was configured to operate as an

AFM and all sample images were scanned in air. The AFM was retrofitted with a home

made DC-accurate charge amplifier [26] on the fast axis. The charge amplifier has a con-

stant gain of 68 nC/volt. The use of the charge amplifiers to drive the piezoelectric tube

has been shown to result in a reduction of the hysteresis by greater than 90 % as compared

with when voltage amplifiers are used [27]. The slow axis was driven by an ACX High

Voltage Amplifier with a constant gain of 15. It is sufficient to use the voltage amplifier be-

cause the effect of hysteresis on the slow axis is relativelysmall. The use of high feedback

gain at low frequencies can minimize the effect of hysteresis effectively. A dSPACE-1103

rapid prototyping system was used to implement the feedbackcontrollers in real time. The

amplifiers and the SPM were interfaced with the dSPACE system using a signal access

module (SAM) that allowed direct access to the scanner electrodes. This setup enabled

us to directly control the lateral movements of the scanner.However, the scanner vertical

positioning was achieved using the standard NT-MDT SPM controller. In other words we

replaced the rastering mechanism of the AFM with our own system.

There are two types of scanner that can be incorporated into this SPM, an open-loop

scanner (without displacement sensors) and a closed-loop scanner (with displacement sen-

sors). The closed-loop scanner allows accurate position tracking through feedback control.
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Figure 4.1 : SPM system and experimental setup used in this work.
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In these experiments, a closed-loop scanner NT-MDT Z50309cl was used to perform 3D

positioning in the SPM. It has a scanning range of 100× 100× 10 µm. The capacitive

sensors that are incorporated into the scanner apparatus allow for direct measurements of

the scanner displacement inx, y andz axes. The bandwidth of these capacitive sensors is

tunable and has a maximum value of 10 kHz. In these experiments the bandwidth is set

to the maximum in order to minimize the effect of the capacitive sensors dynamics on the

displacement measurements. The sensitivity of the capacitive sensors was determined by

making the scanner track a 0.5 Hz triangular wave of 100µm amplitude in closed-loop

using the standard NT-MDT SPM controller. Simultaneously,the corresponding output

voltages from the capacitive sensors were also measured. From these two values, the sen-

sitivity of the capacitive sensors incorporated into thex andy axes was calculated to be

6.33 µm/volt. In this test, a low frequency triangular wave was used to ensure perfect

tracking by the standard NT-MDT SPM controller.

The piezoelectric tube in the scanner has quartered internal and external electrodes.

Such an electrode arrangement allows the scanner to be driven in a bridge configuration

[27] where the electrodes are wired in pairs as illustrated in Fig. 4.2. These electrode pairs

are referred to as+x, −x, +y and−y electrode pairs. An advantage of using the bridge

configuration is that it halves the input voltage requirement as compared to the more widely

used grounded internal electrode configuration. Nevertheless, in these experiments the−x

and−y electrodes are grounded in order to simplify the experimental setup. Furthermore,

the need for a large scanning range does not arise here since the scanner is only made to

operate within 10 % of its full lateral scanning range.

A dSPACE rapid prototyping system equipped with ControlDesk software was inter-

faced to the AFM through an expansion box that allowed directaccess to the capacitive

sensor measurements and control signals that were to be applied to the piezoelectric ac-

tuator. During scans, measurements from the capacitive sensors and the photodiode were
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Figure 4.2 : Top view of the piezoelectric tube with the internal and external electrode
wired in a bridge configuration.

recorded and processed in Matlab to generate AFM images.

4.3 System Identification

In this section, the procedure used to model the AFM scanner is described. The scanner

is treated as a two single-input single-output (SISO) systems in parallel. The inputs being

the voltage signals applied to the charge amplifier driving the +x electrode pair,ux, and

to the voltage amplifier driving the+y electrode pair,uy. The outputs of the system are

the scanner displacement measurements from the capacitivesensors inx axis,cx, and iny

axis,cy. Here, accurate models of the systems were obtained throughsystem identification.

System identification is an experimental approach to modeling where mathematical models

are obtained from a set of input and output data [59].

Fig. 4.3 illustrates the experimental setup used for the system identification experiment.

A dual-channel HP35670A spectrum analyzer was used to obtain the following frequency



59

A/D D/AdSPACE

1103

SAM

ux, ux

cx, cx

Charge/Voltage

amplifiers

Capacitive
sensors

Piezoelectric
tube

Scanner

Figure 4.3 : Block diagram of the experimental setup used for system identification of the
scanner.

response functions (FRFs) nonparametrically

Gcxux (iω) =
cx(iω)

ux(iω)
(4.1)

and

Gcyuy (iω) =
cy(iω)

uy(iω)
. (4.2)

A band-limited random noise signal of amplitude 0.5 Vpk within the frequency range of

1 Hz to 1600 Hz was generated using the spectrum analyzer and applied to the charge am-

plifiers as the input. The corresponding outputs from the capacitive displacement sensors

were also recorded using the spectrum analyzer. These input-output data were processed

to generate the FRF (4.1) and (4.2) in a non-parametric form asillustrated in Fig. 4.4. Note

that the 0 dB (unity gain) at DC in both FRFs was achieved by introducing appropriate
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Figure 4.4 : Experimental (dash-dot) and identified model (solid) frequency response of (a)
Gcxux (iω) and (b)Gcyuy (iω).

input gains in the dSPACE system.

Two second-order models were fitted to the FRFs data using the frequency domain

subspace-based system identification approach as described in [47] and [48]. The following

transfer functions were found to be a good fit as illustrated in Fig. 4.4,

Gcxux (s) =
0.05311s2−1230s+1.362×107

s2 +40.38s+1.354×107 (4.3)

and

Gcyuy (s) =
0.0849s2−1416s+1.288×107

s2 +61.74s+1.303×107 . (4.4)

It can be inferred from transfer functions (4.3) and (4.4) that the piezoelectric tube

scanner has very weakly damped resonances inx andy axes. In thex axis the resonance is
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at 585 Hz with a damping ratio of 0.006 and in they axis the resonance is at 574 Hz with

a damping ratio of 0.009. It must be mentioned here that the non-minimum phase zeros

in both transfer functions do not reflect the physical natureof the scanner, but are rather

artifacts of the system identification. The subspace-basedsystem identification approach

introduces these non-minimum phase zeros in order to model delays which exist in the

system due to the capacitive sensor signal processing electronics and dSPACE sampling

time.

4.4 Controller Design

To address the issues discussed in Section 4.1, we designed feedback controllers to augment

the damping of the scanner’s transfer functions to achieve improved lateral positioning.

Feedback controllers for thex andy axes were designed independently since the scanner

is treated as a two SISO systems in parallel. Structure of thex axis feedback controller is

illustrated in Fig. 4.5. The overall control structure consists of two feedback loops. The

inner loop contains a PPF controller that works to increase the overall damping of the

scanner. The outer loop contains a high-gain integral controller to provide tracking.

4.4.1 PPF Controller

In the current context, the PPF controller can be parameterized as

KPPFx (s) =
a0

s2 +b1s+b0
(4.5)

wherea0, b1 andb0 are the control parameters. Standard results in control theory, [33],

imply that the closed-loop system of the inner loop is given by

Gcxux
(cl) =

Gcxux (s)
1−Gcxux (s)KPPFx (s)

. (4.6)

Equation (4.3) can be rewrite as

Gcxux (s) =
n2s2 +n1s+n0

s2 +d1s+d0
, (4.7)
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Figure 4.5 : Structure of thex axis feedback controller. The inner feedback loop is a PPF
controller designed to damp the highly resonant mode of the tube. Integral action is also
incorporated to achieve satisfactory tracking.

wheren2 = 0.05311,n1 = 1230,n0 = 1.362×107, d1 = 61.74 andd0 = 1.354×107. From

(4.6), it can be checked that the poles of the closed-loop transfer functionG(cl)
cxux are roots of

the polynomial

P(s) = s4 +(b1 +d1)s3 +(−a0n2 +b1d1 +d0 +b0)s2

+(−a0n1 +b1d0 +b0d1)s−a0n0 +b0d0. (4.8)

Damping can be achieved by shifting these closed-loop polesdeeper into the left-half plane

(LHP). Let{pi}4
i=1 be the desired closed-loop pole positions and

Q(s) = s4 +q3s3 +q2s2 +q1s+q0 (4.9)

be the corresponding polynomial with{pi}4
i=1 as its roots. Matching the coefficients of

(4.8) and (4.9) gives us four linear equations that can be used to solve the three control

parameters. However, since there are more equations than unknowns, this set of linear

equations is considered as an overdetermined system which cannot be solved for a set of

exact solution. One method for solving such system is by using the least squares approach

where the obtained solutions are “closest” to satisfying all of the linear equations [74].

In this work, the numerator of the PPF controller is augmented with a1s to result in

four control parameters, i.e.,a1, a0, b1 andb0. This will allow the solution for the linear
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equations to be a set of exact solution. The augmented PPF controller is given as

K̃PPFx (s) =
a1s+a0

s2 +b1s+b0
. (4.10)

Consequently, the polynomial given in (4.8) can be rewrittenas

P̃(s) = s4 +(−a1n2 +b1 +d1)s3 +(−a1n1−a0n2 +b1d1 +d0 +b0)s2

+(−a1n0−a0n1 +b1d0 +b0d1)s−a0n0 +b0d0. (4.11)

Matching the coefficients of (4.11) and (4.9) gives four linear equations in terms of the

control parameters

−a1n2 +b1 +d1 = q3 (4.12)

−a1n1−a0n2 +b1d1 +d0 +b0 = q2 (4.13)

−a1n0−a0n1 +b1d0 +b0d1 = q1 (4.14)

and

−a0n0 +b0d0 = q0. (4.15)

Rewriting (4.12) - (4.15) in matrix form give

AX+C = B (4.16)

where

A =




−n2 0 1 0

−n1 −n2 d1 1

−n0 −n1 d0 d1

0 −n0 0 d0




(4.17)

X =

[
a1 a0 b1 b0

]T

(4.18)

C =

[
d1 d0 0 0

]T

(4.19)
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Figure 4.6 : Map of open-loop (o), desired closed-loop (×) and achieved closed-loop (+)
poles for thex axis.

and

B =

[
q3 q2 q1 q0

]T

. (4.20)

The control parameters for controller̃KPPFx (s) can be obtained by solving

X = A−1 [B−C] . (4.21)

In order for the controller̃KPPFx (s) to be stable,b1 and b0 have to be positive. Here,

the desired closed-loop poles are chosen such that the solutions of (4.21) would result in

positive value forb1 andb0.

The locations of the open-loop poles and the desired closed-loop poles are illustrated in

Fig. 4.6. Note that, the desired closed-loop poles locations are shifted further into the LHP

by 1500 units from the open-loop poles. The coefficients of the polynomial (4.9), calculated

from these closed-loop poles, areq3 = 6.0808×103, q2 = 4.0944×107, q1 = 9.6380×1010

andq0 = 2.5122×1014. By substituting these coefficients and the coefficients defined in
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(4.7) into (4.16), the control parameters are solved to obtain the controller

K̃PPFx =
−163.2s+9.242×106

s2 +6032s+2.785×107 . (4.22)

Observe that obtained controller contains a real zero at about 9000 Hz. At such high

frequency, this zero has negligible effect on the behavior of the controller at low-frequency

regions. In particular, this controller is only designed todamp the scanner’s first resonant

mode which is at about 580 Hz. Here, this high-frequency zerois conveniently ignored to

obtain the PPF controller in the original form as

KPPFx (s) =
9.242×106

s2 +6032s+2.785×107 . (4.23)

The achieved closed-loop poles with this PPF controller implemented in the feedback loop

is checked to see the effects of omitting the high-frequencyzero. Fig. 4.6 illustrates the

achieved closed-loop poles are stable and shifted further into the LHP around the desired

closed-loop poles.

A similar controller was designed for they axis and therefore, is omitted for the sake of

conciseness. The obtained PPF controllers fory axis can be described as

KPPFy (s) =
9.499×106

s2 +6062s+2.753×107 . (4.24)

4.4.2 High-gain Integral Controller

The designed control system also includes a high-gain integral controller

I (s) =
KI

s
(4.25)

as illustrated in Fig. 4.5. Inclusion of an integrator amounts to applying a high gain at low

frequencies that reduces the effects of piezoelectric creep and hysteresis to a minimum.

Another important benefit of the proposed combined feedbackstructure is the significant
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Figure 4.7 : Bode diagrams showing gain margins when a unity gain integral controller is
cascaded with undamped(−−) and damped(—) scanner’s transfer functions in (a)x and
(b) y axes.

reduction that can be achieved in cross-coupling between various axes of the scanner.

The use of high gain in the integral controllers is made possible by the suppression of

the sharp resonant peaks in thex andy axes due to the PPF controllers. Fig. 4.7 illustrates

Bode diagrams showing gain margins when a unity gain integralcontroller is cascaded

with undamped scanner’s transfer functions, 1)Gcxux (s) and 2)Gcyuy (s), and with damped

scanner’s transfer functions 3)Gcxux
(cl) and 4)Gcyuy

(cl).

The gain margins for the undamped systems are 32.5 dB and 36.6dB in x andy axes

respectively. This implies that the gain of the integratorKI is limited to less than 42 and

68 in thex andy axes respectively for stability of the closed-loop systems. However, the

gain margins for the damped systems are 60.8 dB and 61.0 dB inx andy axes respectively.
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This implies that the gain of the integratorKI can be increased significantly from 1 to up

to 1135 and 1148 in thex andy axes respectively, before the closed-loop systems become

unstable. In this work, the gain of the integrators were tuned to provide high closed-loop

system bandwidth but with reasonable gain and phase margin.

4.5 Experimental Results

4.5.1 Frequency and Time Responses

The performance of the PPF control scheme was first evaluatedby measuring the closed-

loop frequency responses of the system using the spectrum analyzer. In Fig. 4.8, the mea-

sured closed-loop frequency responses are plotted along with the open-loop frequency re-

sponses that were obtained in Section 4.3. By inspecting Figs. 4.8 (a) and (d) we observe

that the closed-loop system bandwidth of both axes is about 300 Hz. Also, a damping of

more than 30 dB at each resonant mode is apparent from the frequency responses. How-

ever, in the closed-loop system, the frequency responses exhibit a faster phase drop rate as

compared to the open-loop system. Consequently this resultsin greater phase shifts be-

tween the desired and the achieved trajectories. Note that with the current experimental

setup, we were not able to measure the closed-loop frequencyresponses of the AFM scan-

ner with the well-tuned PI controller that is built into the AFM. When this controller is in

use, access to the scanner electrodes through the signal access module and the raw signals

obtained from the capacitive sensors are not made availableto the user.

To appreciate the improvement achieved in lateral positioning of the scanner, we per-

formed a simple experiment. In open-loop, a 2 Hz triangular signal was applied to thex

axis of the piezoelectric tube to achieve an 8µm scan. The displacements in thex and

y axes of the tube were measured using the built-in capacitivedisplacement sensors. A

similar experiment was then carried out with the PPF controlscheme implemented on the

tube. The results are plotted in Fig. 4.9 (a). A similar set ofexperiments were performed
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Figure 4.8 : Open-loop (dash) and closed-loop (solid) frequency responses of the scanner.
The resonant behavior of the scanner is improved by over 30 dBdue to control action. The
proposed feedback control strategy results in significant improvement in cross-coupling
between the fast and slow axes of the scanner.
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at 30 Hz to simulate a fast scan. The results are plotted in Fig. 4.9 (c). A considerable

improvement can be observed by comparing the open-loop and closed-loop motions of the

tube. During a fast scan we can observe significant distortions due to the excitation of the

tube’s resonance. By applying the feedback controller, we managed to significantly reduce

the distortions and achieved a considerable improvement intracking performance. In par-

ticular, for the 30 Hz scan, the fast axis RMS tracking error was reduced from 280 nm to

46 nm, and the cross-coupling to the slow axis was reduced from 50 nm to 16 nm due to

control action. This improvement directly translates intoan image with less distortion. A

significant component of the closed-loop error is due to the phase shift between the desired

and the achieved trajectories. This phase shift has a minimal effect on the image quality

and can be handled using a feedforward controller.

The frequency responses for the cross-coupling terms of theAFM scanner were also

obtained and illustrated in Fig. 4.8 (b) and (c). In open-loop, significant cross-coupling can

be observed between lateral axes of the scanner. For frequency ranges below the tube’s res-

onance frequency, there is approximately 32 dB cross-coupling between thex andy axes of

the scanner. This means that an 8µm amplitude triangular motion of thex axis will trans-

late into approximately 0.2µm amplitude triangular motion of they axis andvise versa,

generating substantial distortion in the resulting image.Also higher cross-coupling exists

at, and close to the resonance frequency of the tube. The effect from the cross-coupling can

be observed in Fig. 4.9 (b) and (d) where a triangular motion of approximately 0.18µm

amplitude can be seen in they axis when thex axis is made to produce an 8µm amplitude

triangular motion. Note that at 30 Hz scan, in addition to thecross-coupling, the distortions

due to the excitation of the tube’s resonance can also be observed in they axis.

In closed-loop, Fig. 4.8 (b) and (c) illustrate substantialdecrease in the cross-coupling

between the lateral axes of the scanner. In particular, the cross-coupling is less than 52 dB

for low frequency ranges (i.e.≤ 10 Hz). This means that for a low frequency scan, an 8µm
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amplitude triangular motion of thex axis will only translate into approximately 0.02µm

amplitude triangular motion of they axis. Although there are no direct feedback controls on

the cross-coupling terms, the inclusion of high-gain integrator in both axes has indirectly

resulted in a significant reduction in the cross-coupling. Nevertheless, the effect of the

integral action diminishes as the frequency increases.

4.5.2 AFM Imaging

Having improved the lateral positioning of the scanner, we then moved on to investigate the

overall improvement in imaging capability of our modified AFM. During the imaging, the

atomic force microscope was operated in constant force modeusing a micro-cantilever with

spring constant of 0.2 N/m. The sample was a 20 nm feature-height NT-MDT TGQ1 cali-

bration grating with a 3µm pitch. The well-tuned PI was first used to develop 8µm× 8 µm

images of the sample at 2 Hz, 10 Hz and 30 Hz scan frequencies with a resolution of

256× 256 pixels. Faster scans beyond 30 Hz with the AFM standard software, at this

resolution, were not possible. In each case, a significant amount of time was devoted to

tune the AFM so that the best possible image could be generated. We then imaged the

sample at identical frequencies, but this time with the PPF control scheme implemented on

the scanner. These images are plotted in Fig. 4.10 for comparison, and illustrate a drastic

improvement in image quality and sharpness. Furthermore, our modifications enabled us

to scan beyond the 30 Hz speed set by the AFM standard software. In particular, we de-

veloped scans of the sample at 40 Hz, 50 Hz and 60 Hz with the same resolution. These

results are also plotted in Fig. 4.10.

In order to further analyze the AFM images illustrated in Fig. 4.10, we plot the cross-

section curves of these images at abouty = 4 µm in Fig. 4.11. The cross-section curves

were taken in parallel to the square profile of the calibration grating. The scan direction for

Fig. 4.11 (a), (b) and (c) is from 0 to 8µm and the scan direction for Fig. 4.11 (d) to (i)

is from 8 to 0µm. It can be observed that by using the PPF control scheme, theheight-
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Figure 4.10 : First two columns: AFM images of NT-MDT TGQ1 grating scanned in
contact mode constant force at 2, 10 and 30 Hz. Images displayed in (a), (b) and (c) were
developed using the well-tuned PI controller. Images displayed in (d), (e) and (f) were
generated using the PPF controller. A significant improvement in image quality can be
observed. Third column: We were able to generate images at scan frequencies beyond the
AFM limit of 30 Hz. 40, 50 and 60 Hz scans are illustrated in (g), (h) and (i) respectively.
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Figure 4.11 : Cross-section (solid) and reference (dash) curves of the AFM images illus-
trated in Fig. 4.10 (a) to (i). The cross-section curves weretaken about the center of the
AFM images and parallel to the square profile of the calibration grating. The scan direction
of the curves displayed in (a), (b) and (c) are from 0 to 8µm. The scan direction of the
curves displayed in (d) to (i) are from 8 to 0µm.
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profile of the calibration grating was better captured. Thiscontroller enables us to set the

feedback gain of thezaxis significantly higher than the well-tune PI controller,resulting in

a better scan. However, the accuracy of the curves representing the true height-profile of

the calibration grating decreases with increasing scan frequency. At high scan frequencies,

the z axis feedback loop is simply not fast enough to detect changes in the height of the

calibration grating. Nevertheless, it can be observed thatthe PPF control scheme results in

better images, even at high scan frequencies.

4.6 Discussion of Results

To this end, we wish to draw comparisons between the implemented PPF control scheme

and other existing methods that were mentioned in the previous chapter. The use ofH∞ con-

trol for designing feedback controllers to improve the accuracy and speed of AFM scanners

has been shown to be quite successful in Refs. [65,75]. While theseH∞ controllers provide

adequate closed-loop robustness, they are often compensators of rather high orders. Thus,

these controllers are more complex and their implementation may need a more sophisti-

cated setup, when compared with the proposed PPF controllerwhich has a very simple

structure. In our work, the implementation of the PPF control scheme has resulted in a

high closed-loop bandwidth, of about 300 Hz, and a damping ofmore than 30 dB at the

scanner’s first resonant mode. These improvements were achieved with a third order con-

troller that is very straightforward to implement using either analog or digital methods.

In [39,42], a feedforward input was used to compensate for vibration in feedback con-

trolled AFM piezoactuator systems. This method can be quiteeffective in compensating

induced structural vibration as proved experimentally in both [39] and [42]. However, it

may not be as effective against external vibrations and noise since the piezoactuators are

still highly resonant structures. In our work, the overall mechanical damping of the piezo-

electric tube was increased by using the PPF controllers. This makes the piezoelectric

tube impervious against the induced and the external vibrations. Furthermore, if needed a
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feedforward controller can be added to our controller to enable faster scans.

4.7 Summary

In summary, we demonstrated that by augmenting the damping of an AFM scanner using

a PPF controller, and minimizing the cross-coupling between its fast and slow axes by

incorporating an additional Integral controller, and alsoby using charge drive on its fast

axis, the quality of the developed image could be drastically improved. This is a direct

result of the improvement in lateral positioning of the AFM scanner. We were also able to

scan at frequencies beyond the limit set by the AFM software.In the following chapter,

we introduce a new scanning method that allows fast AFM. In this scanning method, the

scanner is scanned in a spiral pattern instead of the well established raster pattern.
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Chapter 5

Fast Spiral-Scan Atomic Force Microscopy

Today, the majority of commercially available AFMs use raster scans to image a sample’s

surface. The improvement of the frequency and precision of raster scans through the use of

feedback control approach has been shown to be quite successful in the previous chapters

and in the References [7, 17, 43, 44, 72, 75, 78]. In this approach, feedback controllers are

used to flatten the frequency response of the scanner, thus allowing for faster scans. How-

ever, as the scan frequency is increased closer to the mechanical bandwidth of the scanner

in order to realize fast AFM, the positioning precision of the scanner deteriorates consid-

erably. The closed-loop tracking of the triangular waveform typically results in the corners

of these waveform to be rounded off and distorted. This is mainly due to the presence

of high frequency harmonics of the triangular waveform thatare inevitably outside of the

bandwidth of the closed-loop system. Consequently, AFM images generated at high speeds

often demonstrate significant distortions especially around the edges of the images.

This chapter proposes a new scan technique for fast AFM by forcing the piezoelectric

tube scanner to follow a spiral pattern instead of the well established raster pattern, over

the surface that is to be imaged. A constant angular velocity(CAV) spiral scan can be

produced by applying slowly varying-amplitude single frequency sinusoidal signals to the

x andy axes of the piezoelectric tube scanner. The use of the singlefrequency input signals

allows for scanning to be performed at very high speeds without exciting the resonance

of the scanner and with relatively small control efforts. Analternative method is to gen-

erate the spiral pattern in a constant linear velocity (CLV) approach. The latter method

has been implemented in some disk storage devices, such as Compact Disk-Read Only
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Memory (CD-ROM) where the information is stored in a continuous spiral track over the

disk’s surface [36]. The proposed method is an alternative to raster-based sinusoidal scan

methods that are used to achieve fast scans in e.g., scanningnear-field optical microscopy

(SNOM) [34]. In spiral scanning, both axes follow sinusoidal signals of identical frequen-

cies resulting in a smooth trajectory. This avoids the transient behavior that may occur in

sinusoidal scans as the probe moves from one line to the next.Furthermore the proposed

method does not require specialized hardware, e.g. a tuningfork actuator, and can be im-

plemented on a standard AFM with minor software modifications.

The remainder of this chapter is organized as follows. The generation of input signals

to produce the spiral pattern is described in detail in Section 5.1. Control schemes for the

AFM scanner are devised in Section 5.2. Finally, in Section 5.3 experimental results are

presented to illustrate the drastic improvement in imagingspeed that can be achieved with

the proposed new scan trajectory.

5.1 Spiral Scan

This section deals with the generation of input signals thatare needed to move the AFM

scanner in a spiral pattern, illustrated in Fig. 5.1. The pattern is known as the Archimedean

spiral. A property of this spiral is that its pitchP, which is the distance between two

consecutive intersections of the spiral curve with any linepassing through the origin, is

constant [64]. Depending on how this trajectory is traced, the shape is referred to as either

a Constant Angular Velocity (CAV) spiral, or a Constant Linear Velocity (CLV) spiral. In

the former case, the pattern is traced at a constant angular velocity, while in the latter at a

constant linear velocity.
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Figure 5.1 : Spiral trajectory of 6.5µm radius withnumber o f curve= 8.

5.1.1 The CAV spiral

The equation that generates a CAV spiral of pitchP at an angular velocity ofω can be

derived from a differential equation given in [36] as

dr
dt

=
Pω
2π

(5.1)

wherer is the instantaneous radius at timet. Equation (5.1) is solved forr by integrating

both sides to obtain ∫
dr =

Pω
2π

∫
dt. (5.2)

For r = 0 att = 0,

r =
P
2π

ωt. (5.3)

Here,P is calculated as

P =
spiral radius×2

number o f curves−1
(5.4)
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wherenumber o f curvesis defined as the number of times the spiral curve crosses through

the liney = 0. This is exemplified in Fig. 5.1 where the crossing points are numbered. The

figure illustrates a spiral scan of 6µm radius withnumber o f curves= 8.

The equation that describes the total scanning timettotal associated with a CAV spiral

scan can be derived by integrating both sides of equation (5.1) as
rend∫

rstart

dr =
Pω
2π

tend∫

tstart

dt (5.5)

whererstart andrend are initial and final values of the spiral radius, andtstart andtend are

initial and final values of the scanning time. From equation (5.5), if rstart = 0 at tstart = 0

andttotal = tend− tstart, we obtain

ttotal =
2πrend

Pω
. (5.6)

In order to implement the spiral scans using a piezoelectrictube scanner, equation (5.3)

needs to be translated into cartesian coordinates. The transformed equations are

xs = r cosθ (5.7)

and

ys = r sinθ (5.8)

wherexs andys are input signals to be applied to the scanner in thex andy axes respectively

andθ is the angle. Fromω = dθ
dt , θ is obtained asθ = ωt. An example of input signals

xs andys that can generate the spiral in Fig. 5.1 is plotted in Fig. 5.2. The figure illustrates

constant phase errors between the input signals and measured outputs. Such errors are due

to the non-ideal frequency response of the controlled nanopositioner. For a CAV spiral,

these phase errors can be easily eliminated by adding phase constantsαx andαy to shape

the input signals as

Xs = r cos(θ +αx) (5.9)
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Figure 5.2 : Input signals to be applied to the scanner in thex andy axes of the scanner to
generate CAV spiral scan withω = 188.50 radians/sec. Solid line is the achieved response
and dashed line is the desired trajectory.

and

Ys = r sin(θ +αy) . (5.10)

Here,αx andαy are determined by measuring the closed-loop frequency response of the

system at the scan frequency. They may also be determined off-line if a model of the sys-

tem is at hand.

A key advantage of using a CAV spiral is that closed-loop tracking of this pattern when

implemented via the cartesian equations only involves tracking single frequency sinusoidal

signals with slowly varying amplitudes. This advantage, when combined with the use of the

shaped input signals (5.9) and (5.10), enables the AFM’s scanner to track a high frequency

CAV spiral resulting in fast atomic force microscopy. A drawback of this method is that its

linear velocityv is not constant. Thus, it may not be suitable for scanning some samples
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where the interaction between the probe and the sample needsto be done at constant linear

velocity. The CLV spiral presented next overcomes this problem.

5.1.2 The CLV spiral

In order to generate a CLV spiral, the radiusr̃ and angular velocitỹω need to be varied

simultaneously in a way that the linear velocity of the nanopositioner is kept constant at all

times. The expressions for̃r andω̃ are first derived by substitutingω = v
r into equation

(5.1) to obtain
dr
dt

=
Pv
2πr

(5.11)

wherev is the linear velocity of the CLV spiral. Then, equation (5.11) is solved forr by

integrating both sides of the equation as
∫

rdr =
Pv
2π

∫
dt. (5.12)

For r = 0 att = 0, we obtain

r̃ =

√
Pv
π

t. (5.13)

From equation (5.13), by substituting̃r = v
ω̃ the expression for̃ω is obtained as

ω̃ =

√
πv
Pt

. (5.14)

It is worth noting that̃r andω̃ are non-linear functions of time, and̃ω approaches infinity

at t = 0. For practical reasons during digital implementation of the CLV spiral,t = 0 is

approximated witht = sampling periodof the digital system.

The equation for total scanning timẽttotal of a CLV spiral scan can be derived in a

similar manner to the CAV spiral. From equation (5.11),t̃total is derived as

t̃total =
πr2

end

Pv
. (5.15)

By choosingv = ω̃endrend whereω̃end is the instantaneous angular velocity atrend, the

equation for̃ttotal can be rewritten as

t̃total =
πrend

Pω̃end
. (5.16)
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It can be inferred from equation (5.16) that ifω̃end = ω, the total scanning time of a CLV

spiral is half of the total scanning time of a CAV spiral. This makes the CAV spiral a more

attractive option. However, as we will see later, this gain in scanning time comes at the

expense of introducing distortion at the center of the resulting AFM image.

Similar to the CAV spiral, equation (5.13) can be described incartesian coordinates as

x̃s = r̃ cosθ̃ (5.17)

and

ỹs = r̃ sinθ̃ (5.18)

whereθ̃ for time varyingω̃ is obtained as

θ̃ =

√
4πv
P

t. (5.19)

Fig. 5.3 illustrates the input signals̃xs andỹs that can be used to generate a spiral similar

to the one shown in Fig. 5.1. However, as illustrated in this figure, the input signals are

implemented in a reversed order, that is fromrend to rstart. To generate a CLV spiral, that

starts from̃r = 0, one requires a closed-loop system with extremely high bandwidth (ideally

∞ bandwidth) and a closed loop system with a flat phase and magnitude response. This of

course, is not practical. Thus, if the spiral is started fromr̃ = 0, the initial error that is

inevitably generated will propagate all the way through to the end. In the next section,

we propose an inversion algorithm that can minimize the tracking error arising from the

limited bandwidth and non-ideal frequency response of the closed loop system.

5.1.3 Inversion Technique for CLV spiral

In this section a technique to shape inputs such that the resulting trajectory will be a CLV

spiral with minimal tracking error is presented. As the implementation of the entire scheme

will be in discrete time, the input shaping method presentedhere is also described in dis-

crete time.
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Figure 5.3 : Input signals to be applied to the scanner in thex andy axes of the scanner to
generate CLV spiral scan withv = 1.13 mm/sec (or̃ωend = 188.50 radians/sec). Solid line
is the achieved response and dashed line is the desired trajectory.

The goal is to design input signals{ux[k]}N
k=0 and

{
uy[k]

}N
k=0 such that their outputs,

along thex andy axis are,{x[k] = x̃(kT)}N
k=0 and{y[k] = ỹ(kT)}N

k=0 respectively. Here,T

denotes the sampling interval and ˜x andỹ are as defined in equations (5.17) and (5.18). In

the following only designing of{ux[k]}N
k=0 will be described, with the understanding that

{
uy[k]

}N
k=0 can be generated by adopting the same procedure.

Assume that the transfer function relating the input and theoutput along thex direction

is given by

Gx(z) =
b0 +b1z−1 +b2z−2 + . . .+bmz−m

1+a1z−1 +a2z−2 + . . .+amz−m , (5.20)

which is stable but has non-minimum phase zeros, i.e. all of zeros are outside the unit

circle. AsGx(z) is non-minimum phase, a direct inversion is not possible. Furthermore, as

x̃ andỹ are not periodic, a frequency domain inversion of the type presented in [8] will not
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be accurate.

Note that equation (5.20) in the discrete time corresponds to the difference equation

x[n]+a1x[n−1]+ . . .+amx[n−m]

= b0ux[n]+b1ux[n−1]+ . . .+bmux[n−m]. (5.21)

This implies

ux[n−m] =
1

bm
(x[n]+a1x[n−1]+ . . .+amx[n−m]

−bnux[n]− . . .−bm−1ux[n− (m−1)]) . (5.22)

As {x[k]}N
k=0 is given, assuming arbitrary values forux[N],ux[N−1], . . . ,ux[N− (m−1)],

the input sequenceux[N− (m−1)],ux[N− (m−2)], . . . ,ux[1],ux[0] can be calculated from

equation (5.22). As an example considerm= 2 in (5.21). This implies

x[n]+a1x[n−1]+a2x[n−2]

= b0ux[n]+b1ux[n−1]+b2ux[n−2] (5.23)

and

ux[n−2] =
1
b2

(x[n]+a1x[n−1]

+a2x[n−2]−b0ux[n]−b1ux[n−1]) . (5.24)

Settingux[N] andux[N−1] to arbitrary values,ux[N−2] can be back calculated from equa-

tion (5.24). Similarly, using the calculatedux[N−2] and the arbitrarily chosenux[N−1],

ux[N−3] can be computed. Thus, traversing backwards in time one can computeux[n] up

to n = 0.

The above mentioned procedure can be proved to be stable, andcan be shown to con-

verge to an input sequence that would generate the output ˜x(kT). If a user has to deal with a

continuous time transfer functionGx(s), he or she could approximate it by a discrete trans-

fer functionGx(z) using the bilinear transformation or any other appropriateapproximation

technique.
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5.1.4 Total scan time: Spiral scan vs. Raster scan

A fair comparison of the total scanning time for a spiral scanand a raster scan can be made

by evaluating the time required for both methods to generateimages of equal areas and

pitch lengths. The area of a circular spiral scanned imageAspiral with a radius ofrend can

be calculated as

Aspiral = πr2
end. (5.25)

The area of a rectangular raster scanned imageAraster can be calculated using

Araster = L2 (5.26)

whereL is length of the square image. For both images to have an equalarea, equations

(5.25) and (5.26) are equated to obtain

L =
√

πrend. (5.27)

The number of lines in a raster scanned image with pitchP can be calculated as

number o f lines=
L
P

+1. (5.28)

The total scan time to generate a raster scanned image can be obtained using

ttotal raster=
number o f lines

f
(5.29)

where f is the scan frequency. Thus, by substituting equations (5.27) and (5.28) into equa-

tion (5.29), the total scan time for generating a raster scanned image with an area ofπr2
end

can be determined as

ttotal raster =

√
πrend

P f
+

1
f
. (5.30)

The total scanning time required to generate a spiral scanned image in a CAV mode can be

calculated using equation (5.6) and by substitutingω = 2π f into equation (5.6),

ttotal =
rend

P f
. (5.31)
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It can be deduced from equations (5.30) and (5.31), by ignoring the term1
f in equation

(5.30), for the same scan frequency, an image of equal area and pitch can be generated
√

π

(≈ 1.77) times faster using a CAV spiral scan than a raster scan.

In order to compare the total scanning time for a CLV spiral scan and a raster scan, the

linear velocity of the raster scanvr = 2L f is introduced into equation (5.30) to obtained

ttotal raster =
2πr2

end

Pvr
(5.32)

with the term1
f ignored. It can be deduced from equations (5.32) and (5.15),for the same

linear velocity,vr = v, an image of equal area and pitch can be generated two times faster

using a CLV spiral scan than a raster scan.

5.1.5 Mapping Spiral Points to Raster Points

In this work, the spiral-scanned images are plotted by mapping the sampling points along

the spiral trajectory (called “spiral points”) to points orpixels (called “raster points”) that

make up a raster-scanned image placed on top of the spiral points as shown in Fig. 5.4 (a)

and (b) for CAV and CLV spirals respectively. A major advantageof mapping the spiral

points to the raster points is that it allows the user to utilize existing image processing

software developed specifically for raster-scanned images, to modify the generated spiral

image.

In this mapping procedure, the dimension of the raster-scanned image is set tospiral

diameter× spiral diameterwhere thespiral diameter≈ spiral radius×2, and the pitch

of the raster-scanned image is chosen to be equal to the pitchP of the spiral. Consequently,

the number of lines in the raster-scanned image will be equalto the number of curves in

the spiral trajectory. Then, each raster point located within thespiral radiusis mapped to

the nearest spiral point. Since the position of the raster and spiral points are known for any

scan frequency and dimension, the nearest spiral point corresponding to each raster point
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can be identified and stored in an indexed matrix before performing the sample scans. By

doing this, the image of the sample can be plotted on the computer in real-time, i.e., as the

AFM is scanning the sample.

Fig. 5.4 (a) illustrates that the density of the CAV spiral points increases asr approaches

the origin of the spiral. This is because the time taken for the spiral trajectory to make one

full spiral circle remains constant due to the constant angular velocity, although the cir-

cumference of the spiral circle gets smaller. A disadvantage of this is that, it increases

the computing time needed to search for the nearest spiral point corresponding to the each

raster point. Nevertheless, Fig. 5.4 (b) shows that the density of the CLV spiral points re-

main constant for the entire spiral trajectory. This is because in the CLV spiral, the time

taken for the spiral trajectory to makes one circle reduces as r approaches the origin of the

spiral.

Next, the error introduced by mapping the spiral points to the raster points is analyzed.

This mapping error can be determined by calculating the magnitude of the vector between

the nearest spiral point corresponding to the each raster point. Fig. 5.4 (a) illustrates an

example of the vector between spiral pointAcav and raster pointBcav which corresponds to

raster point(2,6). The magnitude of this vector can be calculated as

∣∣∣AB(i, j)
cav

∣∣∣ =

√
(Ax

cav−Bx
cav)

2 +
(
Ay

cav−By
cav

)2
(5.33)

wherei = 2 and j = 6. Similar calculation can be performed on the CLV spiral to evaluate

the magnitude of the vector between spiral pointAclv and raster pointBclv as shown in

Fig. 5.4 (b).

5.2 Controller Design

This section addresses design of feedback controllers undertaken in this work. The feed-

back controllers for thex andy axes were designed in a similar fashion to the PPF control
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scheme described in Chapter 4. However in this work both axes are driven using the home

made DC-accurate charge amplifiers. The key objectives of thecontroller design are to

achieve good damping ratio for the first resonant mode of the piezoelectric tube scanner

and to achieve a high closed-loop bandwidth to allow accurate tracking of the CAV and

CLV spirals. Although the use of CAV spiral allows us to select the frequencies that will

not excite the resonance of the scanner, it is still important to actively damp the scanner.

External vibration and noise can result in perturbations inthe AFM image if scanner’s me-

chanical resonance is not damped. The need to damp the scanner becomes more important

when it is used to track a CLV spiral input. This is because the CLV spiral input con-

sists of high frequency components that will inevitably excite the mechanical resonance of

the scanner. Additionally, the feedback controller can minimize the effect of piezoelectric

creep that can cause further perturbations in the image. Overall, the feedback controllers

resulted in a high-bandwidth (540 Hz) closed-loop system. It is worth mentioning that

tracking of the spiral trajectory can be done in open-loop byshaping the input signals.

5.3 Results

5.3.1 Tracking Performance

The performance of the closed-loop systems were then evaluated for fast tracking of the

CAV and CLV spirals. Both types of spiral were setup to produce spiral scans withrend =

6.5 µm andnumber o f curves= 512, i.e. the diameter of the resulting circular image

consists of 512 pixels. Fig. 5.5 (a) to (f) illustrate tracking trajectories of the CAV spirals

for ωs = 31.4, 94.3, 188.5, 565.5, 754.0 and 1131.0 radians/s. This corresponds to scanning

frequencies offs = 5, 15, 30, 90, 120 and 180 Hz, respectively. In order to allow visual

comparison of the tracking trajectories, plots in Fig. 5.5 (a) to (f) were made to display only

the trajectories between±0.15µm. It can be observed that the use of the designed feedback

controllers and the shaped input have resulted in excellenttracking performance of the CAV

spirals. In order to quantify the tracking performance, theRMS tracking errors between the
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Table 5.1 : RMS values of tracking error and total scanning time for CAV and CLV spiral
scans. Images have a resolution of 512× 512 pixels.

CAV Spiral CLV Spiral

ωs ERMS ttotal vs ERMS t̃total

(radians/s) (nm) (s) (mm/s) (nm) (s)

31.4 2.81 51.10 0.19 3.60 25.55

94.3 4.60 17.03 0.57 7.26 8.52

188.5 5.19 8.52 1.13 10.67 4.26

565.5 10.38 2.84 - - -

754.0 11.30 2.13 - - -

1131.0 18.16 1.42 - - -

desired and the achieved trajectories were calculated and are tabulated in Table 5.1. The

RMS tracking error is defined as

ERMS=

√
1

ttotal

∫ ttotal

0
(r (t)− ra(t))2dt (5.34)

wherer is the desired trajectory (or the radius) andra =
√

c2
x +c2

y is the achieved trajectory.

Table 5.1 shows thatERMS increases as the spiral frequency increases. This increaseis

mainly due to the inability of the feedback controller to accurately track the rapid changes

in the amplitude of the spiral inputs asωs is increased. Nevertheless, atωs = 1130.97 ra-

dians/s,ERMSstill remains relatively low, i.e. only 0.15 % of the maximumscanning range

(spiral’s diameter).

Fig. 5.5 (g), (h) and (i) illustrate the tracking trajectories between±0.30 µm of the

CLV spirals forvs = 0.2, 0.6 and 1.1 mm/s. The values ofvs were calculated usingvs =

ω̃endrendwhereω̃end= 31.4, 94.3 and 188.5 radians/s. As mentioned earlier, the CLVspiral

scans were implemented in a reversed order, that is fromrend to rstart. Fig. 5.5 (g) shows
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Figure 5.5 : First two columns: (a) - (f) Tracking trajectories of CAV spirals between
between±0.15 µm in closed-loop forωs = 31.4, 94.3, 188.5, 565.5, 754.0 and 1131.0 ra-
dians/s. Third column: (g) - (i) Tracking trajectories of CLVspirals between±0.30 µm in
closed-loop forvs = 0.2, 0.6 and 1.1 mm/s. The pitch of the spirals was set at 25.44nm.
Solid line is the achieved response and dashed line is the desired trajectory.
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that relatively good tracking was obtained forvs = 0.2 mm/s. However forvs = 0.6 and

1.1 mm/s, Fig. 5.5 (h) and (i) illustrate very little tracking were achieved in a small region

surrounding the center of the spirals where the frequency components of the input signals

have increased to well beyond the bandwidth of the closed-loop system. Nonetheless,

Table 5.1 shows that theERMS for the CLV spirals is still relatively small since most of the

tracking errors were limited only to the center of the resulting spiral scan.

5.3.2 AFM Imaging

Having analyzed the performance of the closed-loop system in tracking the CAV and

CLV spirals, we then moved on to investigate the use of spiral scanning in generating

AFM images. The spiral scans were setup to produce images with rend = 6.5 µm and

numbe o f curves= 512, i.e., the diameter of the resulting circular image consists of 512 pix-

els. However before performing the spiral scans, the RMS of mapping errorsEmapRMS for

the CAV and CLV spirals scans at different angular and linear velocities are calculated and

tabulated in Table 5.2. Note that, different sampling frequenciesfsampwere used in order to

minimize the computing time for searching the nearest spiral point corresponding the each

raster point. Additionally, the sampling frequency is alsolimited by computational power

of the dSPACE rapid prototyping system. Table 5.2 shows that theEmapRMS are very small

and less then the pitch of the spiral trajectory and the raster points, i.e., 25.44 nm. Thus,

they can be ignored.

A calibration grating NT-MDT TGQ1 with a 20 nm feature-height and a 3µm period

was used as an imaging sample. The AFM was setup to scan the sample in constant-height

contact mode using a contact AFM probe with a nominal spring constant of 0.2 N/m and

resonance frequency of about 12 kHz. The constant-height contact mode was used here as

the commercial AFM controller that controls the vertical positioning of the scanner is not

fast enough to track the sample topography for fast scans. During each scan, the AFM probe

is deflected due to its interactions with the sample. The probe deflection was measured and
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Table 5.2 : RMS values of spiral to raster points mapping errorfor CAV and CLV spiral
scans.

CAV Spiral CLV Spiral

ωs fsamp EmapRMS vs fsamp EmapRMS

(radians/s) (kHz) (nm) (mm/s) (kHz) (nm)

31.4 10 2.49 0.19 10 2.61

94.3 20 2.64 0.57 20 2.83

188.5 20 3.12 1.13 20 3.49

565.5 40 3.42 - - -

754.0 60 3.51 - - -

1131.0 60 3.75 - - -

later used to construct AFM images of the sample topography.Figs. 5.6 (a) to (f) illustrate

AFM images generated using the CAV spiral scans withωs = 31.4, 94.3, 188.5, 565.5,

754.0 and 1131.0 radians/s.

Figs. 5.7 (a) to (c) illustrate the cross-section curves of these spiral scanned images at

abouty = 0 µm. The cross-section curves were taken in parallel to the square profile of

the calibration grating. Note that, we used the probe deflection measurement offs = 5 Hz

scan to calibrate the probe deflection measurements of otherscan frequencies to the height

of the calibration grating. This is possible because the probe deflection is very small and

thus linear. It can be observed from Figs. 5.6 and 5.7 that theobtained images are of a good

quality and the lateral and vertical profiles of the calibration grating are well captured. In

particular, the images are free from typical distortions caused by tracking errors, scanner

vibrations, hysteresis and creep. It is also worth mentioning that the area around the edges

of the images was also well imaged. However, during fast scans with ωs = 565.5 radians/s

and above, a wave-like artifact can be observed around the outer edges of the AFM images.
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Figure 5.6 : AFM images of NT-MDT TGQ1 grating scanned in closed-loop using the CAV
spiral scanning mode for (a) - (f)fs = 5, 15, 30, 90, 120 and 180 Hz (which corresponds
to ωs = 31.4, 94.3, 188.5, 565.5, 754.0 and 1131.0 radians/s) and using the CLV spiral
scanning mode for (g) - (i)vs = 0.2, 0.6 and 1.1 mm/s. Thenumber o f curvesfor these
AFM images was set to 512.
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Figure 5.7 : Cross-section (solid) and reference (dash) curves of the AFM images illustrated
in Fig. 5.6 (a) to (i). The cross-section curves were taken about the center of the AFM
images and parallel to the square profile of the calibration grating.
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Figure 5.8 : Probe deflection signals showing the profile of the calibration grating for (a)
ωs = 31.4 radians/s and (b)ωs = 754.0 radians/s.

Upon a closer examination of the probe deflection signals, wefound that the wave-

like artifacts were a result of the excitation of the probe’sresonance (≈ 12 kHz). Fig. 5.8

illustrates the probe deflection signals betweenr = 5.98 and 6.00µm for ωs = 31.4 and

754.0 radians/s. Fig. 5.8 (a) shows that during a low-speed scan the probe deflection signal

is free of probe’s vibrations. However, at a fast scan, Fig. 5.8 (b) shows that due to the

existence of sharp corners in the topography of the sample, as the probe goes through a

full circle, it faces step-like changes that tend to excite its resonance frequency. This effect

is much more profound when the sample is scanned at high frequencies. Thus, the image

quality can be improved by using a stiffer micro-cantilever. This should allow for much

higher scan frequencies, approaching the first resonance ofthe scanner.

Next, a similar AFM setting was used to generate similar images using the CLV spiral

scanning mode. Fig. 5.6 (g), (h) and (i) illustrate the generated AFM images forvs = 0.2,
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Figure 5.9 : AFM images of NT-MDT TGQ1 grating scanned in open-loop using the CAV
spiral for (a) - (c)fs = 5, 30, and 90 Hz. Thenumber o f curvesfor these AFM images was
set to 512.

0.6 and 1.1 mm/s. Forvs = 0.2 mm/s, it can be observed that the profile of the calibration

grating was well imaged. This is in agreement with the good tracking performance achieved

at this scanning speed as illustrated in Fig. 5.5 (g). However, for higher values ofvs,

Fig. 5.6 (h) and (i) illustrate that a small hole-like artifact is formed at the center of each

image. This is due to the loss of tracking control when the frequency components of the

input signals have increased to well beyond the bandwidth ofthe closed-loop system. The

lack of tracking control has also resulted in a slightly skewed AFM image around the center

of the spiral forvs = 1.1 mm/s.

Finally, we would like to evaluate the capability of the CAV spiral scans in generat-

ing the AFM images when operated in open loop . The use of single frequency input as

mentioned in Section 5.1.1 would allow the open-loop tracking of the CAV spirals to be

performed rather accurately. However, to achieve this, onehas to deal with the nonlineari-

ties of the piezoelectric tube scanner, particularly with hysteresis and creep. In this work,

the effect of hysteresis was significantly reduced by the useof the charge amplifiers instead

of voltage amplifiers to drive both axes of the scanner. As forthe creep, its effect was

minimized by simply waiting a considerable amount of time for it to disappear before per-

forming the scans. Fig. 5.9 (a), (b) and (c) illustrate AFM images generated using the CAV
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spiral scans operated in open loop forfs = 5, 30 and 90 Hz. It can be observed from these

images that the spiral scanning method works surprisingly well when operated in open-

loop. This could be partially due to the fact that by controlling charge, we have managed

to substantially minimize the effect of hysteresis. However, even if the scanner were driven

with voltage amplifiers, the hysteresis nonlinearity couldhave been compensated for by

perturbing the input signal. This would be rather straight forward due to the single-tone

nature of signals applied to thex- andy- electrodes of the piezoelectric tube scanner.

5.4 Summary

In this chapter, we demonstrated how CAV and CLV spiral scans can be used to obtain

AFM images. It is possible to achieve fast atomic force microscopy using the CAV spiral

scanning, but other issues like the vibrations in the AFM probe need to be considered and

addressed. The use of CLV mode spiral scanning requires a high-bandwidth controller for

accurate tracking of the input signals. Apart from the abovementioned artifacts formed

at the center of the CLV spiral, the obtained AFM images have good qualities. We also

demonstrated that the proposed method could work well without using a feedback con-

troller around the AFM scanner. The possibility of using spiral scanning in other SPM

applications such as STM should also be explored in the future.
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Chapter 6

Conclusions

This thesis explored several ways of improving the speed andaccuracy of piezoelectric

tube scanners, in particular, for the use in atomic force microscopy. First, a high-bandwidth

low-noise controller was designed for a prototype piezoelectric tube scanner by utilizing

displacement measurements from a capacitive sensor and voltage signals induced in the

piezoelectric tube. Here, a two-input one-outputH∞ controller was designed to utilize the

capacitive sensor measurements at low frequencies (below 100 Hz), including at DC, and

the induced piezoelectric voltage signal for higher frequency measurements. By keeping

the capacitive sensor bandwidth low, the effect of sensor noise on the overall system is

significantly reduced. For RMS value of the sensor noise below1 nm, the designedH∞

controller achieves a closed-loop bandwidth more than three times that can be obtained

from a controller utilizing the low frequency capacitive sensor measurement alone.

Second, the focus of this thesis was shifted from a prototypepiezoelectric tube scanner

to one used in a commercially available AFM. The use of the AFMallow for a more thor-

ough and a reliable evaluation of performance of our controlschemes. The implementation

of controllers in the commercial AFM was not a trivial task asit involved integration of a

dSPACE rapid prototyping system and external voltage and charge sources into the elec-

tronic components of the device. Additionally, development of Matlab codes for generating

raster inputs and plotting the scanned images were also needto be done. Here, a PPF con-

trol scheme was designed and implemented for vibration and cross-coupling compensation

in the lateral axes of the AFM’s piezoelectric tube scanner.The implementation of the PPF

control scheme resulted in a high closed-loop bandwidth (300 Hz), and a damping of more
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than 30 dB at the scanner’s first resonant mode. These improvements were achieved with

a third order controller that is very straightforward to implement using either analog or

digital methods. Experimental results show that by implementing the PPF control scheme,

relatively good AFM images in comparison with a well-tuned PI controller (the AFM stan-

dard controller) can still be obtained up to line-scan of 60 Hz, i.e., beyond the 30 Hz scan

frequency set by the AFM standard software.

Finally, a spiral scanning method for fast atomic force microscopy was described in

this thesis. The equations needed to generate the spiral scans in CAV and CLV modes were

derived. Comparison between the CAV and CLV modes were made in order to evaluate

the advantages and disadvantages of each mode. In the CAV spiral scan, the use of the

single frequency input signals allows for scanning to be performed at very high speeds

without exciting the resonance of the scanner. In this work,experimental results obtained

by implementing this scanning method on a commercial AFM indicate that the obtained

images are of a good quality and the profile of the calibrationgrating is well captured up

to scan frequency of 180 Hz with a scanner where the first resonance frequency is 580 Hz.

It was found that the accuracy and quality of the images obtained at higher scanning speed

were limited by the resonance frequency of the micro-cantilever. By using a stiffer micro-

cantilever, much higher scan frequencies approaching the mechanical bandwidth of the

piezoelectric tube scanner are possible. Nevertheless, inthe CAV mode, the linear veloc-

ity of the spiral trajectory is not constant. This may not be suitable for scanning samples

where the interaction between the probe and the sample needsto be done at constant linear

velocity.

In the CLV spiral scan, the linear velocity is kept constant byvarying the input fre-

quency according the position of the spiral trajectory withrespect to the origin of the spiral.

In order to perform fast scanning in CLV spiral scan, a high bandwidth feedback controller

is needed to track the spiral trajectory. Tracking error as aresult of limited bandwidth of
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the feedback controller can be constrained to a small regionaround the origin of the spi-

ral, where the frequency of the input signal is very high, by implementing the scan in a

reversed order. That is, starting from the outer radius through to the origin of the spiral. A

comparison in terms of the total scanning time between the spiral scan and the raster scan

was also performed. It was derived that for the same scan frequency, an image of equal

area and pitch could be generated
√

π (≈ 1.77) times faster using a CAV spiral scan than a

raster scan. As for the CLV spiral, for the same linear velocity, an image of equal area and

pitch can be generated two times faster using a CLV spiral scanthan a raster scan.

Future works of this thesis should include studies of ways tocompensate unwanted

motions along the vertical axis of the piezoelectric tube during the scanning motion in

the x-y plane. The main sources of these motions are the vertical translations due to the

lateral deflection of the piezoelectric tube and the inducedvibrations due to the excitation

of the out-of-plane resonant modes. It is important to minimize the unwanted motions

because they will interact directly with the measuring probe and cause errors in the scanned

images. The idea of using “complementary” sensor for achieving high-bandwidth low-

noise controller should be evaluated further by using the scanner to obtain AFM images.

The possibility of obtaining atomic resolution AFM images at high speed by using this

scanner in closed-loop should be sufficient to motivate thisevaluation. The use of spiral

scanning in AFM should be expanded. Experiments should be carried out to evaluate the

effect of using stiffer micro-cantilever in order to generate accurate and high quality AFM

images at higher scanning speeds. The prospect of using spiral scanning in dynamic AFM

mode and other SPM applications such as STM should also be explored in the future.
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Appendix

This appendix consists three publications that are outcomes from the author’s early PhD

studies. However, the results from these publications are not included in the main body

of this thesis as they are in a different field. The inclusion of these publications here is to

provide a complete picture of his PhD work.
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Precise Tip Positioning of a Flexible Manipulator
Using Resonant Control

Iskandar A. Mahmood, S. O. Reza Moheimani, Senior Member, IEEE, and Bharath Bhikkaji

Abstract—A single-link flexible manipulator is fabricated to rep-
resent a typical flexible robotic arm. This flexible manipulator is
modeled as an SIMO system with the motor torque as the input
and the hub angle and the tip position as the outputs. The two
transfer functions are identified using a frequency-domain system
identification method, and the resonant modes are determined.
A feedback loop around the hub angle response with a resonant
controller is designed to damp the resonant modes. A high-gain
integral controller is also implemented to achieve zero steady-state
error in the tip position response. Experiments are performed to
demonstrate the effectiveness of the proposed control scheme.

Index Terms—Flexible manipulator, integral controller, reso-
nant controller, tip positioning.

I. INTRODUCTION

INCREASING demands for high-speed manipulation and
high payload-to-weight ratio in robot manipulators has trig-

gered a significant growth in research and development activ-
ities on flexible manipulators. These manipulators constitute a
suitable choice to realize such demands since they are light in
weight, require only small-sized actuators and consume low en-
ergy for actuation [1]. However, designing feedback controllers
to operate these systems at high speeds is a challenging task.
The control system must be designed not only for precise tip
positioning but also for suppressing vibrations associated with
the flexible nature of the manipulator.

In order to achieve higher precision in the tip positioning, the
use of tip position measurement is essential. In [2], Cannon and
Schmitz initiated the experiment to control the tip positioning of
a flexible manipulator by using measurements from a tip posi-
tion sensor as a feedback input. They designed an linear qudratic
Gaussian (LQG) controller and the obtained results suggested
a satisfactory step response with accurate tip positioning. How-
ever, the LQG controller was not robust with respect to modeling
errors. Since then many researchers, such as [3]–[8], have used
the tip position measurement as feedback input to control the
positioning of flexible manipulators.

In [6], the authors presented a two-feedback-loop control
scheme to improve the closed-loop system robustness of the
controller proposed in [2]. The controllers in the inner and outer
loop were of LQG and H∞ designs, respectively. The LQG
controller was designed to introduce sufficient damping to the
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flexural modes and the H∞ controller was designed for the pur-
pose of increasing robustness and disturbance attenuation. Their
simulation results illustrated an improvement in the closed-loop
system robustness. However, the control scheme resulted in a
high-order controller. A two-feedback-loop control scheme was
also implemented by Feliu et al. in [4]. The inner and outer
loops were used to control the motor position and tip position,
respectively. In the outer loop, in contrast to [2], the motor po-
sition was used as the control signal instead of the current. As a
result, the motor response needs to be significantly fast in order
to counter the motion produced by the vibrational modes of the
arm, making this method ineffective to suppress high-frequency
vibrations. In [9] and [10], direct strain feedback (DSFB) con-
trol strategy was used to suppress the vibrations in a flexible
manipulator. This control strategy managed to increase the stiff-
ness of the flexible manipulator and caused it to undergo smaller
vibration levels while in motion. It was noted in [9] that from
a practical engineering perspective, this control strategy is only
suitable for speed reference motor, where only the strain sig-
nal is needed for feedback. However, if a torque control motor
is used, the time rate of change of strain, which is difficult to
measure, is needed for feedback.

In this paper, an experimental flexible manipulator setup is
fabricated to represent a typical flexible robotic arm. Frequency-
domain system identification is used to model the flexible ma-
nipulator, and a control scheme is developed such that vibra-
tions are suppressed using a collocated measurement while tip
positioning is achieved using a noncollocated measurement.
The control scheme consists of two feedback loops with each
feedback loop having a specific purpose. The inner loop con-
tains a resonant controller that adds damping to the flexible
manipulator. It utilizes the hub angle measurement provided
by a shaft encoder and guarantees that the closed-loop sys-
tem remains stable in the presence of out-of-bandwidth dy-
namics, as described in [11] and [12]. In the outer loop, an
integral controller is implemented for precise tip positioning
using measurements of the tip deflection and hub angle. The
integral controller ensures zero steady-state error for a step
input.

Successful utilizations of resonant controllers for vibration
suppression in flexible structures have been reported in [11]
and [12]. This paper reports the first-time application of this
control design approach to flexible manipulators. At the time of
this writing, it is not known how an optimal resonant controller
can be designed. This is mainly due to the nonconvex nature of
the optimization problem associated with the minimization of a
specific performance index. In this paper a graphical approach is
proposed, which results in resonant controllers with satisfactory
performance.

1083-4435/$25.00 © 2008 IEEE
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Fig. 1. Flexible manipulator.

Fig. 2. Experimental setup for the flexible manipulator.

The remainder of the paper is arranged as follows. Section II
provides a description of the experimental setup. Modeling and
identification of the system transfer functions are presented
in Section III. Control schemes are devised in Section IV. In
Section V, simulation and experimental results are presented
to illustrate the effectiveness of the proposed control schemes.
Finally, conclusions are drawn in Section VI.

II. EXPERIMENTAL SETUP

The flexible manipulator used here consists of an aluminum
beam (0.6 m × 0.05 m × 0.003 m) clamped directly to the shaft
of a Glentek GM4040-41 dc brush servo motor. An illustration
of the experimental setup is presented in Figs. 1 and 2. The motor
was driven by a Glentek GA377 pulse width modulation (PWM)
servomotor amplifier. The motor has a continuous stall torque
of 3.54 N·m and a maximum bandwidth of 58 Hz. The shaft en-
coder of the motor was used to measure the hub angle of rotation.
It has a count of 5000 per revolution, i.e., a resolution of 0.072◦.

An infrared light-emitting diode (LED) and a Hamamatsu
S1352 position sensitive detector (PSD) were used for mea-
suring the tip deflection of the beam. The LED was fixed on
top of the hub. A Hamamatsu C5923 signal processing circuit
(SPC) was used to drive the infrared LED and also to convert
the photocurrents into a voltage signal, the magnitude of which
is proportional to the spot light position on the sensor surface. A
dSPACE DS1103 controller board was used for real-time con-
troller implementation. A sampling frequency of 20 kHz was
used in order to avoid aliasing.

III. MODELING AND SYSTEM IDENTIFICATION

In order to accurately model the system for control design,
an experimental approach to modeling (system identification) is
taken. The following frequency response functions (FRFs) are
determined for designing the control system:

Gθh u (iω)
�
=

θh(iω)

u(iω)
(1)

Fig. 3. Identified model (—) and experimental (· · ·) frequency response of
amplifier input voltage u to hub angle θh .

Fig. 4. Identified model (—) and experimental (· · ·) frequency response of
amplifier input voltage u to tip deflection wtip .

and

Gw t ip u (iω)
�
=

wtip(iω)

u(iω)
(2)

where u(t) is the input voltage, θh(t) is the hub angle mea-
sured by the shaft encoder, wtip(t) = w(L, t) is the flexu-
ral tip deflection measured by the PSD. It is worth noting
that the tip position ytip(t)

�
= y(L, t) can be described by

y(L, t) = w(L, t) + Lθh(t), which leads to the expression

Gy t ip u (iω) = Gw t ip u (iω) + LGθh u (iω) . (3)

A dual-channel HP35670A spectrum analyzer was used for
determining the FRFs. A band-limited random noise signal (2–
102 Hz) was generated using the spectrum analyzer and applied
to the motor as the input, u(t). The corresponding outputs θh(t)
and wtip(t) were also recorded using the spectrum analyzer. The
input–output data was processed to generate the FRFs (1) and
(2) in a nonparametric form. In Figs. 3 and 4 the nonparametric
FRFs of (1) and (2) are plotted along with the corresponding
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parametric fits

Gθh u (s) =
420.73

(
s2 + 0.5028s + 1305

)

s (s + 1.65) s2 + 15.35s + 1.596 × 104

× s2 + 1.437s + 5.462 × 104

s2 + 20.9s + 1.015 × 105
(4)

and

Gw t ip u (s) =
−31153.01

s2 + 15.35s + 1.596 × 104

× s2 + 3.108s + 6.386 × 104

s2 + 20.9s + 1.015 × 105
. (5)

Note that the poles characterizing flexible modes of the beam in
Gθh u (s) and Gw t ip u (s) are identical. This property is common
to all flexible structures. Data beyond 80 Hz were discarded in
Figs. 3 and 4 as these frequencies were far beyond the maximum
bandwidth of the motor. Fig. 3 illustrates the collocated nature
of Gθh u (s), where the phase is always between 0◦ and −180◦.

IV. CONTROLLER DESIGN

This section discusses and details the control design scheme
proposed in this paper. The control scheme consists of two
negative feedback loops. The inner loop is designed to add
damping to the flexible manipulator and the outer loop provides
precise tip positioning.

A. Resonant Controller Design (Inner Loop Controllers)

Feedback controllers that increase the effective damping and
at the same time guarantee unconditional stability of the closed-
loop system are always preferred since they avoid closed-loop
instabilities due to spillover effects [13]. It is known that collo-
cated velocity feedback controllers [13] possess such properties.
However, the implementation of this controller requires the re-
alization of a differentiator, which is not possible for systems
with large bandwidth. Another drawback of the velocity feed-
back controller is that it results in a high control effort over
all frequencies. Ideally, for vibration damping purposes, the
control effort should be restricted to the resonance frequencies
only. Resonant controllers are a class of feedback controllers
that guarantee unconditional closed-loop stability of collocated
systems, [11], [14]. The model structure of resonant controllers
is such that they approximate a differentiator over a narrow
bandwidth around the resonance frequencies of the structure.
The motivations for their model structure comes from passive
RL network controllers used for piezoelectric shunt damping,
see [15] and [16]. A detailed discussion on the connections be-
tween passive RL network controllers and resonant controllers
can be found in [17].

As the poles characterizing the flexible modes of Gθh u (s) and
Gy t ip u (s) are identical, system resonances can be damped by
designing a feedback loop around either Gθh u (s) or Gy t ip u (s).
Here, Gθh u (s) is chosen as its collocated nature guarantees an
unconditional closed-loop stability with resonant controllers.
Damping can be achieved by shifting the closed-loop poles of
Gθh u (s) deeper into the left-half plane (LHP).

Fig. 5. Plot of the distance between the open-loop and closed-loop poles h1

versus α1 and δ1 , for the first flexible mode.

In the current context, the resonant controller can be param-
eterized as

Kα (s) =

N∑

i=1

αis
2

s2 + 2δiωis + ω2
i

(6)

where αi, βi, δi , and ωi are the design parameters and N is the
number of modes that need to be controlled [12]. As only the
first two resonant modes are considered, N is set to 2, which
implies

Kα (s) = Kα
1 (s) + Kα

2 (s) (7)

where

Kα
i (s) =

αis
2

s2 + 2δiωis + ω2
i

, i = 1, 2. (8)

As mentioned in Section I, an optimal resonant controller design
has not yet been reported. The approach taken here to determine
the parameters is similar to the one mentioned in [11], where
each resonant filter is determined independently. It is possible
to do so since interactions of the resonant filters are marginally
coupled. As the filters Kα

1 (s) and Kα
2 (s) are targeted to damp

the first and the second resonant modes of the plant, the values
of ω1 and ω2 are set to the first and second resonance frequen-
cies of the beam, respectively. In order to determine the other
parameters, the following method is adopted. Assume that only
Kα

1 (s) exists in the feedback loop. The values of α1 and δ1

are chosen such that the absolute value of the difference h1

between the real parts of the open-loop and closed-loop poles
corresponding to the first resonant mode is maximized. Fig. 5(a)
shows that for a given range of α1 (0 ≤ α1 ≤ 150), there exists
a value of δ1 that maximizes the absolute value of h1 . Similarly
to determine α2 and δ2 , it is assumed that the filter Kα

1 (s) is not
part of the feedback loop and α2 and δ2 are chosen such that
the difference h2 , between the real parts of the open-loop and
closed-loop poles corresponding to the second resonant mode,
is maximized. Fig. 5(b) illustrates that for a given range of
α2 (0 ≤ αi ≤ 150), there exists a value of δ2 that maximizes
the absolute value of h2 . The controller obtained by using the
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Fig. 6. Plot of the distance between the open-loop and closed-loop poles h2

versus α2 and δ2 , for the second flexible mode.

aforesaid method is

Kα (s) =
150s2

s2 + 378.3s + 1.59 × 104

+
150s2

s2 + 445.8s + 1.014 × 105
. (9)

Note that in closed loop, the resonant controller Kα (s) will
not shift the pole located at the origin. This can be seen by
setting Gθh u (s) = a (s)/sb (s), Gy t ip u (s) = m (s)/sb (s), and
Kα (s) = s2p (s)/q (s), where a(s), b(s),m(s), p(s), and q(s)
are appropriately defined, and noting that

G
(cl)
θh u◦

(s) =
Gθh u (s)

1 + Kα (s) Gθh u (s)

=
1

s

(
a(s)q(s)

q(s)b(s) + sp(s)a(s)

)
(10)

and

G(cl)
y t ip u◦ (s) =

Gy t ip u (s)

1 + Kα (s) Gθh u (s)

=
1

s

(
m(s)q(s)

q(s)b(s) + sp(s)a(s)

)
. (11)

B. Outer Loop for Positioning

Here, an integral controller KInt = KI /s is designed for the
outer feedback loop to achieve precise tip positioning. The con-
troller is designed such that the tip response to a step input would
satisfy the following specifications: 1) zero steady-state tip po-
sition error, 2) rise time and settling time of less than 1 and 1.5
seconds, respectively; and 3) overshoot of less than 2%. How-
ever, direct application of an integral controller to G

(cl)
y t ip u◦(s)

can be problematic (11). This can be verified by observing the
root locus of the net closed-loop tip response

KI /s G
(cl)
y t ip u◦(s)

1 + KI /s G
(cl)
y t ip u◦(s)

(12)

Fig. 7. Roots locus for Gy t ip u (s) with resonant controller Kα (s) and integral
controller KI /s in the feedback loops, as KI increases.

Fig. 8. Enlarged roots locus for Gy t ip u (s) with resonant controller Kα (s)

and integral controller KI /s in the feedback loops, as KI increases.

obtained by varying KI . The locus plot is presented in Fig. 7(a)
and shows that for any KI ≥ 0, the closed-loop transfer function
(12) is unstable. In Fig. 7(b), an enlarged version of Fig. 7(a)
around the origin is presented. It shows two locus paths starting
from the origin and lying entirely in the right-half plane (RHP)
thereafter, demonstrating instability.

A standard way to correct this problem is to add a compen-
sator C(s) to the resonant controller, i.e., replace the resonant
controller Kα (s) by Ka(s) = Kα (s) + C(s), so that the pole at
the origin is shifted into the LHP; see Fig. 9 for an illustration. In
order to avoid a large increase in the model order of the controller
and, at the same time push the pole at the origin well into the
LHP, a phase-lead compensator, C (s) = Kpl (s + z)/(s + p)
where Kpl , z, and p are the design parameters, is used. Here,
the parameters are determined through pole placement, follow-
ing guidelines in [18, Ch. 10]. Here we set the compensator,
C(s) = 70 (s + 10)/s + 70, which implies that the augmented
resonant controller is equal to

Ka(s) =
70 (s + 10)

s + 70
+

150s2

s2 + 378.3s + 1.59 × 104

+
150s2

s2 + 445.8s + 1.014 × 105
. (13)
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Fig. 9. Augmented resonant controller Ka (s) and integral controller.

Fig. 10. Enlarged roots locus for Gy t ip u (s) with augmented resonant con-
troller Ka (s) and integral controller in the feedback loops, as KI is varied.

Fig. 10 shows an enlarged root locus of (12) with Kα (s) re-
placed by Ka(s). It can be seen that by shifting the system pole
at the origin into the LHP, some parts of the two locus paths are
in the LHP, allowing for some values of KI to result in a stable
closed-loop system.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

This section presents simulation and experimental results ob-
tained from the control scheme proposed in this paper.

A. Resonant and Integral Controller

The performance of the augmented resonant controller Ka(s)
was evaluated first. Fig. 11 shows the simulated and measured
closed-loop frequency responses of Gθh u (s). It is evident that
the experimental results match the simulations except near the
second resonant mode. This is due to the fact that the second
resonance is very close to the maximum bandwidth of the motor.
The frequency range of the simulated frequency response was
extended to cover 1–100 Hz range to illustrate that the pole at
s = 0 has been shifted to the left by the phase-lead compensator.

In Fig. 12, experimentally determined closed-loop frequency
responses of Gθh u (s) and Gw t ip u (s) are plotted along with
their corresponding open-loop frequency responses. A signif-
icant damping in the first and the second resonances of both
Gθh u (s) and Gw t ip u (s) is evident from the plots. In particular,
Fig. 12(a) illustrates 20 and 19 dB damping on the first and
second resonant modes of Gθh u (s), respectively. Furthermore,

Fig. 11. Simulated (—) and experimental (· · ·) closed-loop frequency re-
sponses of amplifier input voltage u to hub angle θh using augmented resonant
controller Ka (s).

Fig. 12. Open-loop (· · ·) and closed-loop (—). Frequency responses using
augmented resonant controller Ka (s). (a) Amplifier input voltage u to hub
angle θh . (b) Amplifier input voltage u to tip deflection wtip .

Fig. 12(b) shows damping of 18 dB on the first and second
resonant modes of Gw t ip u (s).

Having the flexible manipulator significantly damped by the
resonant controller, experiments were performed to slew the tip
to a set point ytip = πL/4 m, with the initial position being set
to zero. Initially, the tip was slewed in open-loop to obtain the
open loop time response of the tip position and tip deflection.
The amount of time taken and the input voltage u needed to be
applied to the motor in order to slew the tip to the set point was
determined through simulation. Fig. 13 illustrates that the open-
loop control resulted in a tip position response with a large
steady-state error, long rise and settling times, and a highly
oscillating tip.

Similar slewing experiments were performed with an inte-
gral controller in the outer feedback loop. Here, the root locus
approach was used in selecting the integral controller gain KI ,
such that the tip response of the flexible manipulator satisfied
the necessary specifications. Fig. 14(a) shows the closed-loop
time response of tip position ytip with KI = 30. It is apparent
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Fig. 13. Experimental (—) and simulated (−−). Time response of (a) tip
position ytip and (b) tip deflection wtip , in open loop.

Fig. 14. Experimental (—) and simulation (−−). Time response of (a) tip
position ytip and (b) tip deflection wtip , using augmented resonant controller
Ka (s) and integral controller for KI = 30.

from the plot that ytip has a zero steady-state error, a zero over-
shoot, a rise time of 0.5 s, and a settling time of 1.0 s. The high
gain in KI has allowed the tip position to have zero steady-state
error in 1.3 s. Fig. 14(b) illustrates that the resonant controller
completely suppresses the tip vibrations during, and at the end
of the slewing maneuver.

A faster response of ytip can be obtained by increasing the KI ,
but this comes at the expense of a higher overshoot. Fig. 15(a)
shows the response ytip when KI is increased to 45. The rise
and settling times have decreased to 0.2 and 0.6 s, respectively,
while the overshoot has increased from 0 to 6.6%. It is worth
noting that, even for a faster tip position response, Fig. 15(b)
does not show any indication of tip vibrations.

B. Illustration of Robustness

The first robustness test was performed by attaching a certain
amount of mass to the tip to alter the dynamics and natural
frequencies of the flexible manipulator. This test is performed
to study closed-loop performance of the controller with a change

Fig. 15. Experimental (—) and simulation (−−). Time response of (a) tip
position ytip and (b) tip deflection wtip , using augmented resonant controller
Ka (s) and integral controller for KI = 45.

Fig. 16. Time response of (a) tip position ytip and (b) Tip deflection wtip ,
using augmented resonant controller Ka (s) and integral controller with tip
mass = 92 g (—), tip mass = 35 g (−−), and no mass (. . .).

in payload. Two masses are used here; the first has a weight of
35 g (which is 14% of the flexible beam weight) and a second
one has a weight of 92 g (which is 35% of the flexible beam
weight). With these masses at the tip, no elevation in the tip
vibrations was observed, but there was a small overshoot in the
ytip response (Fig. 16). However, the overshoot is still within
the given specifications.

The second robustness test was performed against the size of
input commands. Fig. 17 demonstrates no loss of performance
in the ytip and wtip responses when the larger input command
of πL/2 m was used. The ytip response still has similar rise
time, settling time, and overshoot regardless of the larger input
command.

VI. CONCLUSION

In this paper, frequency-domain system identification was
used to model a single-link flexible manipulator. The identi-
fied models have accurately predicted the frequency and time
responses of the flexible manipulator in open and closed loop.
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Fig. 17. Time response of (a) tip position ytip and (b) tip deflection wtip , using
augmented resonant controller Ka (s) and integral controller for large-step input
command, πL/2 m experimental (—), simulation (· · ·) and for small-step input
command πL/4 (−−) m.

The transfer functions characterizing the collocated hub angle
θh(t) response to the input u(t) and the noncollocated tip po-
sition ytip(t) response to the input u(t) were found to have the
same dynamic modes. This allows for the damping of the tip
position ytip(t) response, indirectly, by damping the collocated
hub angle θh(t) response. A resonant controller was designed
to damp the highly resonant modes of the flexible manipula-
tor. The resonant controller performed successfully in damping
those modes. The resonant controller was also augmented with a
phase-lead compensator to enable it to be used with a high-gain
integral controller to achieve precise tip positioning. It was also
found that the proposed control scheme was robust to perturba-
tions in the resonance frequencies of the flexible manipulator
and the size of the input command.
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Precise Tip Positioning of a Flexible Manipulator
using Resonant Control

I. A. Mahmood, S. O. R. Moheimani and B. Bhikkaji

Abstract— A single-link flexible manipulator is fabricated to
represent a typical flexible robotic arm. This flexible manipula-
tor is modeled as a SIMO system with the motor-torque as the
input and the hub angle and the tip position as the outputs.
The two transfer functions are identified using a frequency-
domain system identification method. A feedback loop around
the hub angle response with a Resonant controller is designed
to damp the resonant modes. A high gain integral controller
is also designed to achieve zero steady-state error in the tip
position response. Experiments are performed to demonstrate
the effectiveness of the proposed control scheme.

I. INTRODUCTION

Increasing demands for high speed manipulation and high
payload to weight ratio in robot manipulators has triggered
a significant growth in research and development activities
on flexible manipulators. These manipulators constitute a
suitable choice to realize such demands since they are
light in weight, require small sized actuators and consume
low energy for actuation [1]. However, designing feedback
controllers to operate these systems at high speeds is a chal-
lenging task. The control system must be designed not only
for precise tip positioning but also for suppressing vibrations
associated with the flexible nature of the manipulator.

A wide range of control schemes such as linear quadratic
gaussian (LQG) [2], linear quadratic regulator (LQR) [3],
H∞ control [4] and µ-synthesis [5] have been used for
the positioning of flexible manipulators. In [2], Cannon and
Schmitz designed an LQG controller and used measurements
from a noncollocated tip position sensor as the controller
input. Their results suggested a satisfactory step response
with accurate tip positioning. However, the LQG controller
was not robust with respect to modeling errors and was
of a very high order. In [6], the authors improved the
closed-loop system robustness of [2] by wrapping a second
feedback loop, consisting of an H∞ controller around the
controlled system. The H∞ controller was designed for the
purpose of incorporating robustness and also for attenuating
disturbances. Simulation results suggested that the control
scheme was more robust to uncertainties such as modeling
errors. The lack of robustness demonstrated in [2], and [6] is
believed to be due to the use of noncollocated sensors which
result in non-minimum phase systems [7]. Nevertheless, the
noncollocated sensors are often used as they are needed for
precise tip positioning.

The authors are with the School of Electrical Engineering
and Computer Science, The University of Newcastle, Callaghan,
NSW 2308, Australia. R. Moheimani is the corresponding author.
Reza.Moheimani@newcastle.edu.au

In contrast to the research reported in the above references,
vibration control was given precedence over tip positioning
in [8] and [9]. In [8] the author proposed a direct strain
feedback (DSFB) control strategy to introduce a damping
term into the differential equation governing the vibration of
the flexible manipulator. This control strategy managed to
increase the stiffness of the flexible manipulator and caused
it to undergo smaller vibration levels while in motion. In
[9], a sliding mode controller was formulated to control the
tip position of a flexible manipulator subjected to parameter
variations. The authors showed via simulations that the con-
troller performed better in regulating vibrations when initial
conditions were incorporated into the designed controller.

In this work, an experimental flexible manipulator setup
is fabricated to represent a typical flexible robotic arm. A
control scheme is developed such that the vibration sup-
pression is achieved using a collocated measurement and
tip positioning is done using a noncollocated measurement.
The control scheme consists of two feedback loops with
each feedback loop having a specific purpose. The inner
loop contains a Resonant controller to add damping to the
flexible manipulator. The Resonant controller utilizes the
hub angle measurement provided by a shaft encoder and
guarantees that the closed-loop system remains stable in the
presence of out-of-bandwidth dynamics, [10] and [11]. In
the outer loop, using tip position measurements, an integral
controller is implemented for precise tip positioning. The
integral controller ensures zero steady-state error for a step
input.

Successful utilizations of Resonant controllers for vibra-
tion suppression in flexible structures have been reported in
[10], [11] and [12]. This paper reports the first-time applica-
tion of this control design approach to flexible manipulators.
At the time of this writing it is not known how an optimal
Resonant controller can be designed. This is mainly due to
the non-convex nature of the optimization problem associated
with minimization of a specific performance index. In this
paper a graphical approach is proposed, which results in
Resonant controllers with satisfactory performance.

The remainder of the paper is arranged as follows. Sec-
tion II provides a description of the experimental setup.
System identification of the system transfer-functions are
presented in Section III. Control schemes are devised in
Section IV. In Section V, simulation and experimental results
are presented to illustrate the effectiveness of the proposed
control schemes. Finally, the paper is concluded in Sec-
tion VI.

1-4244-1264-1/07/$25.00 ©2007 IEEE
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Fig. 1. Flexible manipulator
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Fig. 2. Experimental setup for the flexible manipulator

TABLE I

MECHANICAL PROPERTIES OF THE FLEXIBLE MANIPULATOR

Properties Values
Length, L 0.6 m

Thickness, hq 0.003 m
Width, v 0.05 m

Linear density, ρ 0.3975 kg/m
Radius of hub, r 0.025 m

Modulus of elasticity, E 6.894 x 1010 Pa
Hub moment of inertia 1.850 x 10−3 Kg.m2

(including motor), Ih

II. EXPERIMENTAL SETUP

The experiments were performed in the Laboratory for
Dynamics and Control of NanoSystems at The University
of Newcastle, Australia. The flexible manipulator used here
consists of an aluminum beam clamped directly to the shaft
of a Glentek GM4040-41 DC brush servo motor. A detailed
illustration of the experimental setup is presented in Fig. 1
and 2. The dimensions and the mechanical properties of
the beam are given in Table I. The motor was driven by a
Glentek GA377 pulse width modulation (PWM) servomotor
amplifier. The shaft encoder of the motor was used to
measure the hub angle of rotation. The shaft encoder has
a count of 5000 per revolution, i.e. a resolution of 0.072
degrees.

An infrared light-emitting diode (LED) and a Hamamatsu
S1352 position sensitive detector (PSD) were used for mea-
suring the deflection of the tip of the beam. A dSPACE
DS1103 controller board was used for real-time controller
implementation. A sampling frequency of 20 kHz was used
in order to avoid aliasing.

III. SYSTEM IDENTIFICATION

In this work, an experimental approach is taken to model
the dynamics of the flexible manipulator. The following
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Fig. 3. Identified model (—) and experimental (· · · ) frequency response
of amplifier input voltage u to hub angle θh.
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Fig. 4. Identified model (—) and experimental (· · · ) frequency response
of amplifier input voltage u to tip deflection wtip.

frequency response functions (FRFs) are determined for
designing the control system:

Gθhu (iω) � θh(iω)

u(iω)
, (1)

Gwtipu (iω) � wtip(iω)

u(iω)
(2)

and

Gytipu (iω) = Gwtipu (iω) + LGθhu (iω) (3)

where u(t) is the input voltage, θh(t) is the hub angle mea-
sured by the shaft encoder, wtip(t) = w(L, t) is the flexural
tip deflection measured by the PSD. It is worth noting that
the tip position ytip(t) � y(L, t) = w(L, t) + Lθh(t), which
leads to the expression (3) for the FRF Gytipu (iω).

A dual channel HP35670A spectrum analyzer was used for
determining the FRFs. A band limited random noise signal
(2 to 102 Hz) was generated using the spectrum analyzer and
applied to the motor as the input, u(t). The corresponding
outputs θh(t) and wtip(t) were also recorded using the
spectrum analyzer. The input-output data was processed to
generate the FRFs (1) and (2) in a non-parametric form. In
Fig. 3 and 4 the nonparametric FRFs of (1) and (2) are plotted
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along with corresponding parametric fits,

Gθhu (s) =
420.73

(
s2 + 0.5028s + 1305

)

s (s + 1.65) (s2 + 15.35s + 1.596 × 104)

×
(
s2 + 1.437s + 5.462 × 104

)

(s2 + 20.9s + 1.015× 105)
(4)

and

Gwtipu (s) =
−31153.01

(s2 + 15.35s + 1.596× 104)

×
(
s2 + 3.108s + 6.386 × 104

)

(s2 + 20.9s + 1.015 × 105)
. (5)

Note that the poles characterizing the flexible modes of the
beam in Gθhu(s) and Gwtipu(s) are identical. Data beyond
80 Hz were discarded as these frequencies were far beyond
the maximum bandwidth of the motor (which is close to
60 Hz). Fig. 3, clearly illustrates the collocated nature of
Gθhu(s).

IV. CONTROLLER DESIGN

This section discusses and details the control design
scheme proposed in this paper. The control scheme consists
of two negative feedback loops.

A. Resonant controller design (Inner loop controller)

Feedback controllers which increase the effective damping
and at the same time guarantee unconditional stability of
the closed-loop system are always preferred, as they avoid
closed-loop instabilities due to spill-over effects [13]. It is
known that a collocated velocity feedback controller [13]
possess such properties. However, the implementation of this
controller requires the realization of a differentiator, which
is not possible for systems with large bandwidth. Another
drawback of the velocity feedback controller is that it results
in a high control effort at all frequencies. Ideally, for vibra-
tion damping purposes, the control effort should be restricted
to the resonance frequencies only. Resonant controllers are
a class of controllers that guarantee unconditional closed-
loop stability of collocated systems. The model structure
of Resonant controllers are such that they approximate a
differentiator over a narrow bandwidth around the resonance
frequencies. Resonant controllers were first proposed in [10].
The motivations for their model structure comes from passive
RL network controllers for piezoelectric shunt damping, see
[14], [15] and [16].

As the poles characterizing the flexible modes of Gθhu(s)
and Gytipu(s) are identical, system resonances can be
damped by designing a feedback loop around either Gθhu(s)
or Gytipu(s). Here, Gθhu(s) is chosen due to its collocated
nature. Damping can be achieved by shifting the closed-loop
poles of Gθhu(s) deeper into the left half plane.

In general, a resonant controller is defined as

K (s) =

N∑

i=1

αis
2

s2 + 2δiωis + ω2
i

(6)
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Fig. 5. Plot of distance between the real parts of the open-loop and close-
loop poles h1 versus α1 and δ1, for the 1st flexible mode.
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where αi, δi and ωi are the design parameters, and N is the
number of modes that need to be controlled. In the current
context N = 2, which implies

K (s) = K1 (s) + K2 (s) , (7)

where

K1 (s) =
α1s

2

s2 + 2δ1ω1s + ω2
1

(8)

and

K2 (s) =
α2s

2

s2 + 2δ2ω2s + ω2
2

. (9)

Here, the resonant filters K1(s) and K2(s) are determined
independently. Each ωi is set to the ith natural frequency of
the flexible manipulator and the value of αi and δi are varied
such that the absolute distance between the real parts of the
open-loop and closed-loop poles, hi, is maximized. Fig. 5
and 6 show that for a given range of αi (0 ≤ αi ≤ 150),
there exists a value of δi which maximizes the absolute value
of hi. The controller obtained for this range of α is

K (s) =
150s2

s2 + 378.3s + 1.59 × 104

+
150s2

s2 + 445.8s + 1.014 × 105
. (10)
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Better damping can be achieved by increasing the range
of α. However, this would result in a controller that has
a higher gain. The high magnitude could amplify high-
frequency noise which could lead to degradation of the
closed-loop performance. Here, it is possible to determine
the resonant filters independently because there is sufficient
frequency spacing between the system poles and zeros and
the action of the resonant filters is mostly uncoupled [10].

It is worth noting that in closed-loop, the Resonant con-
troller K(s) will not shift the pole located at the origin. This
can be seen by setting

Gθhu (s) =
a (s)

s × b (s)
(11)

and

K (s) =
s2 × p (s)

q (s)
(12)

and noting that

G
(cl)
θhu (s) =

Gθhu (s)

1 + K (s)G (s)

=
1

s

(
a(s)

q(s)b(s) + sp(s)a(s)

)
. (13)

B. Outer loop for positioning

Integral controller was implemented in the outer feed-
back loop to provide precise tip positioning. In designing
the integral controllers, the gross response of the flexible
manipulator to a step input needs to satisfy the following
specifications: 1) Zero steady-state tip position error, 2) Rise
time and settling time of less than 1 and 1.5 s, respectively
and 3) Overshoot of less than 2 %.

An important property of an integral controller is that a
positive error will always result in increasing the control
signal while a negative error will result in a decreasing
control signal, regardless of the magnitude of the error, [17].
This property is desirable because the error introduced by
the motor friction, which becomes visible when the tip is
nearing the given set-point or moving at a very slow speed,
can be eliminated.

In order to wrap an integral controller around Gytipu(s)
such that the resulting closed-loop has an acceptable stability
margin, G

(cl)
θhu (s) must not have a pole at the origin. This can

be checked using the standard root-locus criterion. A simple
way to correct this problem would be to add or augment the
Resonant controller with a rational function C(s). In other
words the pure Resonant controller in the inner feedback
loop is replaced by

Ka(s) = K(s) + C(s), (14)

see also the illustration in Fig. 7. In order to avoid a large
increase in the model order of the controller and at the same
time push the pole at s = 0 well into the left half plane, a
phase-lead compensator is used,

C(s) =
Kpl (s + α)

s + β
(15)

r KI
s

u
G(s)

C(s)

K(s)

Ka(s)

θh

ytip

Fig. 7. Augmented Resonant controller Ka(s) and integral controller KI
s

.

where Kpl, α and β are the design parameters.The param-
eters can be chosen using root-locus approach. The use of
of phase-lead compensator and guidelines on pole placement
using them are given in detail in [18].

Here we set

C(s) =
70 (s + 10)

s + 70
, (16)

which implies that the augmented Resonant controller is
equal to

Ka(s) =
70 (s + 10)

s + 70
+

150s2

s2 + 378.3s + 1.59 × 104

+
150s2

s2 + 445.8s + 1.014× 104
. (17)

V. SIMULATION AND EXPERIMENTAL RESULTS

This section presents simulation and experimental results
obtained from the control schemes proposed in this paper.

A. Resonant and Integral controller

The effect of damping introduced by the augmented Res-
onant controller Ka(s) on the resonant modes were first
evaluated. In Fig. 8 the simulated closed-loop frequency
response of Gθhu (s) is plotted along with its experimental
counterpart. It is evident that the experimental results match
the simulations except near the second resonant mode. This
is due to the fact that the second resonance is very close to
the maximum bandwidth of the motor.

In Fig. 9, experimentally determined closed-loop fre-
quency responses of Gθhu (s) and Gwtipu (s) are plotted
along with their corresponding open-loop frequency re-
sponses. A significant damping in the first and the second
resonances of both Gθhu (s) and Gwtipu (s) is evident from
the plots. In particular, Fig. 9 (a) illustrates 20 dB and 19 dB
damping on the 1st and 2nd modes of Gθhu (s) respectively.
Furthermore, Fig. 9 (b) shows damping of 18 dB on the 1st

and 2nd mode of Gwtipu (s), respectively.
Having the flexible manipulator significantly damped by

the augmented Resonant controller, experiments were per-
formed to slew the tip to a set-point ytip = πL

4 m, with
the present position being set to zero. For the sake of
comparison, initially, the tip was slewed in open-loop to
obtain the open-loop time response of the tip position and tip
deflection. The amount of time the input voltage u needed
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Fig. 8. Simulated (—) and experimental (· · · ) closed-loop frequency
responses of amplifier input voltage u to hub angle θh using augmented
Resonant controller Ka(s).
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Fig. 9. Open-loop (· · · ) and closed-loop (—): Frequency responses of
(a) amplifier input voltage u to hub angle θh, (b) amplifier input voltage u
to tip deflection wtip using augmented Resonant controller Ka(s).

to be applied to the motor in order to slew the tip to the set-
point was determined through simulation. Fig. 10 illustrates
that the open-loop control resulted in a tip position response
with a large steady-state error, slow rise and settling times,
and a highly oscillating tip.

Similar slewing experiments were performed with an
integral controller in the outer feedback loop. Here, root-
locus approach was used in selecting the integral controller
gain KI . Fig. 11 (a) shows the closed-loop time response of
tip position ytip with KI = 30. It is apparent from the plot,
that ytip has a zero steady-state error, a zero overshoot, a rise
time of 0.5 s and a settling time of 1.0 s. The high gain in KI

has allowed the tip position to have zero steady-state error
in 1.3 s. Fig. 11 (b) illustrates that the Resonant controller
completely suppresses the tip vibrations during, and at the
end of the slewing maneuver.

A faster response of ytip can be obtained by increasing
the value of KI , but this comes at the expense of a higher
overshoot. Fig. 12 (a) shows the response ytip when KI is
increased to 45. It can be observed that the rise and settling
times have decreased to 0.2 s and 0.6 s respectively, while the
overshoot has increased from 0 to 6.6 %. It is worth noting
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Fig. 10. Experimental (—) and simulated (−−): Time response plots of
(a) Tip position ytip, (b) Tip deflection wtip, in open-loop.
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Fig. 11. Experimental (—) and simulation (−−): Time response plots of
(a) Tip position ytip, (b) Tip deflection wtip, using augmented Resonant
controller Ka(s) and integral controller for KI = 30.
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Fig. 12. Experimental (—) and simulation (−−): Time response plots of
(a) Tip position ytip, (b) Tip deflection wtip, using augmented Resonant
controller Ka(s) and integral controller for KI = 45.

that, even for a faster tip position response, Fig. 12 (b) does
not show any indication of tip vibrations.

B. Robustness analysis

The robustness of the proposed controller scheme is
analyzed here. The first robustness test was performed by
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Fig. 13. Time response plots of (a) Tip position ytip, (b) Tip de-
flection wtip, using augmented Resonant controller Ka(s) and integral
controller with tip mass = 92 g (—), tip mass = 35 g (−−) and no
mass (...).
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Fig. 14. Time response plots of (a) Tip position ytip, (b) Tip de-
flection wtip, using augmented Resonant controller Ka(s) and integral
controller for large step input command, πL
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attaching a certain amount of mass to the tip to alter the
dynamics and natural frequencies of the flexible manipulator.
This test is performed to study closed-loop performance of
the controller with a change in payload. Two masses are
used here, the first has a weight of 35 g (which is 14 %
of the flexible beam weight) and a second set has a weight
of 92 g (which is 35 % of the flexible beam weight). With
these masses at the tip, Fig. 13 shows no elevation in the tip
vibrations, but a small overshoot in the ytip response.

The second robustness test was performed against the size
of input commands. Fig. 14 shows no loss of performance
in the ytip and wtip responses when a larger input command
of πL

2 m was used. The ytip response still has similar rise
time, settling time and overshoot regardless of the size of
input commands.

VI. CONCLUSIONS

In this paper frequency-domain system identification was
used to model a single link flexible manipulator. The identi-

fied models have accurately predicted the frequency and time
responses of the flexible manipulator. The transfer-functions
characterizing the collocated hub angle θh(t) response to the
input u(t) and the noncollocated tip position ytip(t) response
to the input u(t) were found to have the same dynamic
modes. This allows for the damping of the tip position ytip(t)
response, indirectly, by damping the collocated hub angle
θh(t) response. A Resonant controller was designed to damp
the highly resonant modes of the flexible manipulator. The
Resonant controller performed successfully in damping those
modes. It was also found that the proposed control scheme
was robust to perturbations in the resonance frequencies of
the flexible manipulator and the size of input command.
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Abstract

A single-link flexible manipulator is fabricated. This flexible
manipulator is modeled as a SIMO system with the motor-
torque as the input and the hub angle and the tip position
as the outputs. The two transfer functions are identified using
frequency-domain system identification. A polynomial based
feedback controller is designed to damp hub angle response.
This controller also damps the tip position response. Apart
from damping the system, the feedback controller also provides
substantial robustness. Finally, an integral controller is also
designed to achieve zero-steady state error in the tip position.

1. INTRODUCTION

Over the past two decades the need for high speed
manipulation and high payload to weight ratio in robot
manipulators has triggered a significant growth in the
research and development of the flexible manipulators [1].
Flexible manipulators are a suitable choice to realize such
needs since they are light in weight, require small sized
actuators and consume low energy for actuation [2]. However,
the use of these flexible manipulators at a high speed poses
challenging problems in designing their control system. The
control system must be designed not only for precise tip
positioning but also for suppressing the vibrations arising due
to the flexible nature of the manipulator. Thus, for developing
such a control system, advanced control techniques are
generally required.

In an early work, [3], Cannon and Schmitz employed
a control scheme where a Linear Quadratic Gaussian
(LQG) controller was designed with measurements from
the noncollocated tip position sensor used as the controller
input. Their results suggested a satisfactory step response
and accurate tip positioning. However, the LQG controller
designed was not robust to modeling errors and was of
very high order. In [4] an LQG controller was designed
based on a reduced-order model obtained using Hankel-norm
minimization. The closed-loop performance obtained using
this controller closely matched the one obtained from an
LQG designed based on the full-order model. Nevertheless
this does not guarantee robustness. The noncollocated control
approach introduced in [3] and [4] was further studied in [5]
with an aim to improve the closed-loop system’s robustness.
In [5], the authors presented a control scheme with two

feedback loops. The controller in the inner loop was an
LQG design and the controller in outer loop was an H∞

design. The H∞ controller was designed for the purpose
of incorporating robustness and also for attenuating the
disturbances. Experimental results in [5] suggested that the
control scheme was more robust to uncertainties. The use of
noncollocated measurements have resulted in non-minimum
phase systems whose close-loop stability can be sensitive
to errors in the model parameters [6]. Nevertheless the
noncollocated measurements are used because they give
precise tip position control [3], [4], [5].

Collocated sensors such as a shaft encoder or a strain
gauge placed at the root end of the flexible manipulator have
also been used in the control of flexible manipulators [7],
[8]. The main advantage of using collocated sensors is that
their measurements result in a passive transfer function, and
hence requires simpler controllers to stabilize the system [9].
In [8], measurements from the shaft encoder and a strain
gauge, placed at the root end of the flexible manipulator,
were used to measure the hub angle and strain, respectively.
The measurements from the shaft encoder were used for
positioning the flexible manipulator, while the strain gauge
measurements were used for damping the vibrations. A
control strategy based on these measurements increased the
stiffness of the flexible manipulator and caused the flexible
manipulator to undergo smaller vibration levels while in
motion.

In this work an experimental flexible manipulator setup
was fabricated to represent a typical flexible manipulator.
A control strategy using both collocated and noncollocated
measurements was developed for vibration suppression as
well as for the position control of the flexible manipulator.
A shaft encoder and a position sensitive detector (PSD)
were used for obtaining collocated and noncollocated
measurements respectively. The use of each measurement
would provide a specific benefit. The control strategy consists
of two feedback loops. In the first loop, a polynomial-
based pole placement controller, was designed to add
damping to the flexible manipulator. And in the second
loop, an integral controller was designed for precise tip
positioning. The input to the polynomial-based controller
is the collocated hub angle measurement, and the input
to the integral controller is the tip position (hub angle
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Fig. 1: Flexible manipulator

plus the noncollocated tip deflection measurement).

The remainder of the paper is arranged as follows. Section 2
provides a description of the experimental setup. Modelling
and identification of the system transfer-functions are pre-
sented in Section 3. Control strategies are devised in Section 4.
In Section 5, simulation and experimental results are presented
to illustrate the effectiveness of the control strategies. Finally,
the paper is concluded in Section 6.

2. EXPERIMENTAL SETUP

The flexible manipulator used here consists of an aluminum
beam clamped directly to the shaft of a Glentek GM4040-41
DC brush servo motor, see Figures 1 and 2 for illustrations of
the experimental setup. The dimensions and the mechanical
properties of the beam are given in Table 1. The motor is
driven by a Glentek GA377 pulse width modulation (PWM)
servomotor amplifier. The motor has a continuous stall torque
of 3.54 Nm and a maximum bandwidth of 58 Hz. The
tachogenerator and the shaft encoder of the motor are used
to measure the hub angular speed and hub angle of rotation,
respectively. The shaft encoder has a count of 5000 per
revolution or alternatively it has a resolution of 0.072 degrees.

An infrared light-emitting diode (LED) and a Hamamatsu
S1352 position sensitive detector (PSD) are used for
measuring the deflection of tip of the beam. The infrared
LED is fixed on top of the hub and the PSD is fixed at the tip.
The infrared LED emits a signal with a typical wavelength
of 880 nm and a typical output power of 2 mW. The PSD
is comprised of two electrodes that generate photocurrents
depending on position of the infrared spot light on the
sensor. A Hamamatsu C5923 signal processing circuit (SPC)
is used to drive the infrared LED and also to convert the
photocurrents into a voltage signal the magnitude of which is
proportional to the spot light position.

A dSPACE DS1103 PPC controller board is used for real-
time control implementation. A sampling frequency of 20 kHz
is used in order to avoid aliasing. Simulink is used to download
the controller into the controller board.

3. MODELING AND SYSTEM IDENTIFICATION

Analytical characterizations of the dynamics of flexible
manipulators have been investigated by many authors.
Hastings and Book [10] were among the first to present a

SPC

Flexible Beam

PSDLED

Motor

Encoder

w

u

θh
A/D

D/A

dSPACE

PWM

Spectrum
Analyzer

Fig. 2: Experimental setup for the flexible manipulator

TABLE 1: MECHANICAL PROPERTIES OF THE FLEXIBLE MANIPULATOR

Properties Values
Length, L 0.6 m

Thickness, hq 0.003 m
Width, v 0.05 m

Linear density, ρ 0.3975 kg/m
Radius of hub, r 0.025 m

Modulus of elasticity, E 6.894 x 10
10 Pa

Cross-sectional area-moment 1.125 x 10
−10 m4

of inertia, I

Hub moment of inertia 1.850 x 10
−3 Kg.m2

(including motor), Ih

Beam moment of inertia, Ib 2.862 x 10
−2 Kg.m2

PDE model for an undamped single-link flexible manipulator.
In [4] the authors presented finite order models based on
the PDE model presented in [10]. These finite order models
include additional terms to account for damping.

The flexible manipulator studied in [9] is modeled as a
pinned-free beam with the pinned end attached to the rotating
hub. The authors assumed that the beam deflection satisfies
the Euler-Bernoulli beam theory. Therefore position of any
arbitrary point y on the manipulator can be written as, see
Figure 3,

y(x, t) = w(x, t) + xθh(t), (1)

where w(x, t) is the beam flexural deflection and θh(t) is the
hub angle of rotation at time t. Using Hamilton’s Principle
along with the associated energy equations it was shown that
y(x, t) satisfies the fourth order partial differential equation

EI

∂

4
y

∂x

4
+ ρ

∂

2
y

∂t

2
= 0 (2)

with boundary conditions

EI

∂

2
y

∂x

2

∣∣∣∣
x=0

+ T − Ih = 0, w (0) = 0

EI

∂

2
y

∂x

2

∣∣∣∣
x=L

= 0, EI

∂

3
y

∂x

3

∣∣∣∣
x=L

= 0. (3)

Here T denotes to the torque input and the other parameters
as defined in Table 1.
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The first three natural frequencies of the flexible
manipulator calculated from the PDE model are tabulated in
Table 2. Details on how to calculate the natural frequencies
from (2) are not presented here. Interested readers can refer
to [4]. Also presented in Table 2 are the experimentally
determined natural frequencies of the manipulator. The third
elastic mode could not be excited as it was out of the motor
bandwidth. The analytical and experimental results differ
by about 6%. This error could be due to reasons such as
the presence of the PSD at the tip of the manipulator. This
amounts to addition of a tip mass to the beam, which is not
accounted for in the PDE (2) and its associated boundary
conditions (3). In order to accurately model the system for
control design, here an experimental approach to modelling
(system identification) is taken.

The following frequency response functions (FRFs) are
determined for designing the control system:

Gθhu (iω) � θh(iω)

u(iω)
(4)

Gwtipu (iω) � wtip(iω)

u(iω)
(5)

and

Gytipu (iω) � Gwtipu (iω) + LGθhu (iω) , (6)

where u(s) is the input voltage, θh(t) is the hub angle
measured using the shaft encoder, wtip(t) = w(L, t) is the
flexural tip deflection measured using the PSD and the tip
displacement ytip(t) = y(L, t) is computed using (1). The
FRFs are first determined non-parametrically and parametric
models are later fit to them.

A HP35670A spectrum analyzer is used for the non-
parametric determination of the FRFs. A random noise signal
from 2 - 75 Hz generated using the spectrum analyser is
applied as the input u(t). The output measurements θh(t)
and wtip(t) are fed into the spectrum analyser. The spectrum
analyser processes the input output data and generates the
FRFs (4) and (5) in the non-parametric form. In Figures 4
and 5 the nonparametric FRFs of (4) and (5) are plotted along
with corresponding parametric fits. The parametric models fit
to data are

Gθhu(s) =
b(s)

a(s)
(7)

and

Gwtipu(s) =
p(s)

q(s)
, (8)

Hub
Tip

T

θh

w(x, t)
L x
y

Datum

Fig. 3: Flexible manipulator model.

TABLE 2: NATURAL FREQUENCY (HZ) OF THE SINGLE-LINK FLEXIBLE

MANIPULATOR

Mode No. Analytical Experimental
1 22.17 20.94
2 52.13 55.06
3 123.61 -
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Fig. 4: Identified model (—) and experimental (−−) frequency response of
amplifier input voltage u to hub angle θh.

where

b(s) � 367.0451
(
s

2 + 0.4428s + 1605
)

×
(
s

2 + 1.197s + 5.988e004
)

(9)

a(s) � s (s + 1.6)
(
s

2 + 16.72s + 1.768e004
)

×
(
s

2 + 23.35s + 1.193e005
)

(10)

p(s) � −33655.44
(
s

2 + 1.693s + 6.943e004
)

(11)

and

q(s) �
(
s

2 + 16.72s + 1.768e004
)

×
(
s

2 + 23.35s + 1.193e005
)
. (12)

It is worth noting that the poles characterising the flexible
modes of the beam in Gθhu(s) and Gwtipu(s) are the same
(i.e., s(s + 1.6)q(s) = a(s)). Hence damping the resonances
of Gθhu(s) using a feedback controller would also damp the
resonances in Gwtipu(s) and Gytipu.

4. CONTROLLER DESIGN

This section discusses the proposed control strategy for vibra-
tion damping and position control of the flexible manipulator.
The control strategy consists of a polynomial based controller
and an integral controller, as illustrated in Figure 6. In design-
ing the controllers, the response of the flexible manipulator
needs to satisfy the following specifications:

1) Zero steady-state tip positioning error
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Fig. 5: Identified model (—) and experimental (−−) frequency response of
amplifier input voltage u to tip deflection wtip.
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Fig. 6: Polynomial-based controller C (s) and integral controller Ki/s (s).
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Fig. 7: LQG state feedback controller with integral action scheme.

2) Rise time and settling time of less than 1 and 1.5
seconds, respectively.

3) Overshoot of less than 2%.
4) Minimum of 10 dB damping in the first resonant mode

(in order to flatten its peak).
An LQG controller in conjunction with an integral action
scheme, see Figure 7, is also designed for achieving the above
specifications. This LQG based control scheme has been used
by other researchers, e.g. [7], and it is used here for the sake
of comparison with the proposed polynomial-based control
strategy.

A. Polynomial-based and integral controller

Let

C(s) � y(s)

x(s)
. (13)

be a proper controller. Standard results in control theory, [11],
show that the closed-loop system is given by

G

(cl)
θhu

(s) � Gθhu(s)

1 + Gθhu(s)C(s)
. (14)

and the corresponding closed-loop poles are roots of the
polynomial

c(s) � a(s)x(s) + b(s)y(s). (15)
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400 Open−loop Poles
  0.00
− 1.60
−11.68 + 345.20i
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Closed−loop Poles
−25.01
−24.99
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−81.68 + 34.519i
−81.68 − 34.519i
−81.68 + 345.22i
−81.68 − 345.22i

Fig. 8: Open-loop (O) and closed-loop (×) pole locations of the system.

As the model Gθhu(s) is of order 6, (15) would represent
a diophantine equation for any 12th order monic polynomial
c(s). If {pk}12

k=1 is a desired set of closed-loop poles, and
c(s) is the corresponding monic polynomial with {pk}12

k=1 as
its roots, then there exists a unique pair of polynomials y(s)
and x(s), of orders 5 and 6 respectively, with x(s) monic,
which satisfy (15). The coefficients of the polynomials y(s)
and x(s) can be determined by solving the linear equations
obtained by matching the coefficients in (15).

Solving for the coefficients though conceptually simple is
not numerically well conditioned. Moreover, the controllers
rendered by any arbitrary choice of {pk}12

k=1 need not be
stable. The former problem can be tackled by using suitable
preconditioning matrices. However, the latter problem
of restraining the controller to be stable has not been
satisfactorily solved to the authors’ knowledge.

In Figure 8 open-loop poles of Gθhu (iω) and the desired
closed-loop pole locations are presented. The controller poly-
nomials y(s) and x(s) obtained for the choice of the closed-
loop poles presented in Figure 8 are

y(s) = 61128.1795(s + 5.963)(s2 − 64.13s + 4557)

× (s2 + 48.39s + 5.956e004) (16)

and

x(s) = (s2 + 28.72s + 1861)(s2 + 150.3s + 6.004e004)

× (s2 + 519.5s + 1.948e005). (17)

A trade off between system damping and controller stability
needs to be considered while selecting the closed-loop pole
locations. The further away the closed-loop poles are placed
(from the open-loop poles) in the left half plane, the higher
the system damping can be achieved but this is at the cost of
making the controller less stable. In this work, the closed-loop
pole locations are optimized to give a high system damping
but with a reasonable gain and phase margin.

5. SIMULATION AND EXPERIMENTAL RESULTS

Here the damping introduced by the polynomial based
controller on the resonant modes are first evaluated. In
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Fig. 9: Simulated (—) and experimental (−−) closed-loop frequency
response of amplifier input voltage u to hub angle θh.
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Fig. 10: Closed-loop (—) and open-loop (−−). (a) Frequency response of
amplifier input voltage u to hub angle θh. (b) Frequency response of amplifier
input voltage u to tip deflection wtip.

Figure 9 the closed-loop FRF G

(cl)
θhu

(iω), (14), is plotted
along with its experimentally determined non-parametric
counterpart. Experimentally determined non-parametric
G

(cl)
θhu

(iω) is obtained by applying a random noise as
input u(t) using the spectrum analyser and the controller
implemented as suggested in in Section 2. It is fairly evident
that the experimental results match the simulations except
near the second resonant mode. This is due to the fact that the
second resonance is very close to the maximum bandwidth
of the drive.

In Figure 10 the non parametric (experimentally
determined) closed-loop responses G

(cl)
θhu

(iω) and G

(cl)
wtipu (iω)

are plotted along with their corresponding non-parametric
open-loop FRFs Gθhu (iω) and Gwtipu (iω) respectively. A
damping of the first and the second resonances are evident
from the plots. More precisely the magnitudes of the first and
second resonant modes are reduced by 10.5 dB and 5.7 dB,
respectively.

The goal of this paper is to achieve precise tip positioning.
Without loss of generality we wish to position the tip at ytip =
πL

2 with the current position being set to zero. This is normally
achieved by applying a step input with step size πL

2 . In order
to achieve precise tip-positioning with zero steady state error
an integral controller is used. The integral controller gain KI

is chosen such that the response of the flexible manipulator

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

y tip
 (m

)

(a)

0 0.5 1 1.5 2 2.5 3
−6
−4
−2

0
2
4
6

x 10
−3

t (s)

w tip
 (m

)

(b)

Fig. 11: Time response plots of the flexible manipulator using polynomial-
based and integral controller with hub angle and tip deflection feedback.
Experimental (—) and simulated (−−): (a) Tip position ytip, (b) Tip
deflection wtip.
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Fig. 12: Time response plots of the flexible manipulator using polynomial-
based and integral controller with hub angle and tip deflection feedback.
KI = 15 (—) and KI = 10 (−−): (a) Tip position ytip, (b) Tip
deflection wtip.

conforms to the given specifications. Figure 11 shows the time
response of the flexible manipulator in closed-loop to the step
input u(t) = πL

2 with KI = 10. It is apparent from the plot
(a) in Figure 11 that ytip has a zero steady-state error, a zero
overshoot, a rise time of 0.8 seconds and a settling time of
1.2 seconds. Plot (b) in Figure 11 shows that as a result of the
polynomial based controller, tip vibrations due to the resonant
modes are almost completely damped. The observed initial
deflection in the negative direction is a typical response of a
non-minimum phase system. Note that, the response of the tip
position and the tip deflection are very similar to simulation
results obtained from the identified models.

The rise time of ytip can be reduced by increasing the value
of KI , but this comes at the expense of a higher overshoot.
Figure 12 shows the response ytip when KI is increased to
15. It can be observed that the rise time has decreased to 0.5
seconds while the overshoot has increased from 0 to 3.1%. It
is worth noting that, even for a faster tip position response,
Figure 12 does not show any exacerbation of the vibrations.

Figure 13 illustrates the response ytip using the LQG
controller in conjunction with the integral action, refer to
Figure 7. The LQG controller is tuned such that it produces
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Fig. 13: Time response plots of the flexible manipulator using LQG controller
and integral action scheme with hub angle feedback. LQG (—) and proposed
controller (−−): (a) Tip position ytip, (b) Tip deflection wtip.
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Fig. 14: Time response plots of the flexible manipulator using polynomial
based and integral controller with tip mass. Tip mass = 92 g (—), Tip
mass = 35 g (−−) and No mass (...): (a) Tip position ytip, (b) Tip deflection
wtip.

a tip position response that is similar to the one produced by
the proposed controller. Figure 13 shows that ytip has a rise
time of 0.7 seconds but the tip deflection wtip appears to be
affected by the resonance modes.

The robustness of the proposed controller is examined by
attaching a certain amount of mass to the tip of the flexible
manipulator. Two masses are used here, the first has a weight
of 35 g (which is 14% of the flexible beam weight) and a
second set has a weight of 92 g (which is 35% of the flexible
beam weight). These masses alter the dynamics of the flexible
manipultor and also perturb or shift the resonances. Figure 14
shows the response ytip conforms to the given specifications
for both the cases. However, in the case of a LQG deterioration
in the performance is evident.

6. CONCLUSION

In this paper a single link flexible manipulator is fabricated to
represent a typical flexible robotic arm manipulator. Analytical
models could not correctly predict the flexible modes, as the
models did not account for the structural artifacts introduced
by the PSD and other unmodeled dynamics. Hence, an exper-
imental approach to modelling the flexible manipulator was
chosen. The transfer-functions characterising the collocated
hub angle θh(t) response to the input u(t) and the noncollo-
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Fig. 15: Time response plots of the flexible manipulator using LQG controller
and integral action scheme with tip mass. Tip mass = 92 g (—), Tip
mass = 35 g (−−) and No mass (...): (a) Tip position ytip, (b) Motor
torque T , (c) Tip deflection wtip.

cated tip position ytip(t) response to the input u(t) were found
to have the same dynamic modes. This allows for the damping
of the tip position ytip(t) response, indirectly, by damping
the collocated hub angle θh(t) response. A polynomial based
feedback controller was designed to damp the lightly damped
modes of the system. However, damping alone does not
guarantee a zero steady state error in the tip position ytip(t).
Hence an integral controller was designed to enforce this.
It was also noted that the polynomial based controller was
robust to perturbations in the resonance and rigid modes of
the manipulator.
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