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Abstract--This paper utilizes a narrowband high frequency 

distributed transformer model to estimate partial discharge 
location. Here a narrow band of frequencies within the frequency 
response of the system, that exhibit resonant pole behavior, is 
specifically targeted. It is proposed that the observed response is 
due to the interaction of residual winding inductance with 
capacitance to ground. This physical phenomenon is inherently 
distributed; hence regions within the frequency response related 
to this interaction will be dependent upon the input location. With 
this premise an algorithm that estimates the location of the partial 
discharge by iteratively comparing the proposed model at various 
locations within the winding with the observed partial discharge 
frequency response is implemented. The algorithm was tested on a 
single phase of a 66kV/25MVA interleaved transformer winding 
where the partial discharge was injected via an oil immersed 
point-plane 7.5kV source. 
 

Index Terms-- Power Transformer, frequency, partial 
discharge, fault location, modeling, state space methods, 
simulation, transient response 

I.  INTRODUCTION 

ARTIAL discharges within an insulation system over a 
period of time can have catastrophic consequences [1]. In 

order to mitigate such circumstances it is important to regularly 
monitor the degree and severity of partial discharge (PD) 
activity.  

 Partial discharge monitoring tools generally monitor the 
magnitude, relative phase location (w.r.t mains frequency) and 
frequency of occurrence. The results of which provide an 
indication of the insulation system health with particular 
emphasis on the magnitude which is generally expressed in 
picocoulombs. A shortcoming of this type of monitoring is that 
these signals are recorded externally and have possibly 
undergone significant levels of attenuation during their 
transmission through the winding system of the transformer. 
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Knowledge of the source location of a partial discharge would 
be invaluable not only for transformer maintenance but also for 
more realistic estimates of the true partial discharge magnitude 
and the corresponding insulation system health [1-3]. 

 A partial discharge can be considered to be a brief 
exchange of charge within the insulation system. This 
discharge itself can be modeled as an ideal current impulse. By 
determining the frequency response of the measured response 
to a partial discharge, an approximation of the transfer function 
between the PD location and the measurement point is 
obtained. Incorporating this with an accurate model of the 
system can provide an estimate of the partial discharge site [4].  

 The paper presented extends on the author’s work 
presented in [5] via improvements in the model and its 
implementation. Further improvements are made with the 
addition of a cost function which automates the estimate of the 
PD location. The overall approach is a significant step forward 
from previous results. 

II.  THEORY 

A.  The Distributed Transformer Model 

Most partial discharge localization techniques use a 
distributed model approach. This is generally in the form of a 
high order lumped parameter model, commonly an RLC ladder 
network [6, 7]. Difficulties arise with these models since they 
are only suitable for frequencies up to a few hundred kHz [8]. 
This is clearly a limitation since partial discharges are high 
frequency in nature and as such much of the high energy 
regions within their signature are not fully utilized. This results 
in a lower monitoring sensitivity than could actually be 
achieved. However, to target these higher frequencies, 
consideration is required for effects such as traveling waves 
and the influence of measurement equipment on the results [8]. 

 For frequencies above a few hundred kHz one of two 
approaches to transformer modeling is generally undertaken. 
The first approach is an area that has seen significant research 
activity of late particularly in the transient over voltage area. 
This is MLTL or Multiconductor Transmission Line model. 
The premise of MLTL is that each entry of a winding be 
considered as multiple parallel transmission lines. The 
incidence of a high frequency signal at the junction will be 
coupled into all of the parallel paths [9].  The second approach 
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is to model a system with circuit elements that dimensionally 
represent areas of the system not greater than one tenth of the 
wavelength of the maximum frequency being analyzed [10, 
11]. This approach ensures that traveling wave effects will be 
negligible. One difficulty that arises in this approach is the 
mathematical size of the model that is required to be generated 
as authors choose to model a ladder section as a physical turn 
within the winding [8]. 

 Both techniques mentioned above rely on a physically 
accurate model.  Akbari et al [12] has described the search for 
a model that is functional at high frequencies as being an 
unsolved problem since the transformer winding is inherently 
complex with a non-linear and frequency dependent nature.  

 To overcome the problems highlighted, the current paper 
targets a narrow band of frequencies over which the non-linear 
and frequency dependent characteristics will not have a 
significant impact. The model used here takes advantage of a 
high frequency resonant pole response that is present after the 
capacitive region of an interleaved transformer winding 
frequency response (Figure 1). These features were originally 
highlighted by James et al [6]. The area of interest is Region C 
where this resonant peak was suggested by James et al [6] to be 
due to residual inductance within the winding. In Mitchell et al 
[5] a novel approach to PD location was proposed where this 
narrow frequency band was targeted since it is generated by an 
interaction that is distributive by nature, hence the response 
will be reflective of the input location. 
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Fig. 1.  Frequency Response from Bushing to Neutral 
    Region A – Self Resonant Frequency 
    Region B – Capacitive Region 
    Region C – Resonant Pole Region 
 

The proposed model in [5] has been modified here to 
include the 33pF PD injection capacitor CEX (Figure 2). This 
subtle inclusion improves the phase relationship between the 
model and the injected PD response.  

 The rationale behind this model is discussed in [13] 
where, to a fast transient burst, the first few turns of an 
interleaved transformer winding will appear like a series 
capacitance Cs. The remaining turns are then considered in 

series with each other and the shunt capacitance to ground 
resulting in CG. Utilizing this argument and introducing James 
et al [6] proposal, i.e. that residual inductances are significant 
at higher frequencies, the circuit in Figure 2 was proposed [5]. 
Note the frequency dependent resistance. This is necessary to 
represent a combination of losses due to dielectric loss and 
proximity and eddy current effects. Traveling wave effects are 
ignored since an upper frequency bound of 5MHz is used.  
This ensures that the relevant dimensions of each disc pair in 
Figure 2 (of the order of a few metres) is less than 10% of the 
wavelength of the highest frequency.  
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Fig. 2.  High Frequency Distributed Model 
A: High Frequency Model, B: Simplified Model 
vG = Shunt Capacitor voltage, vS = Series Capacitor voltage, 
vX = External Capacitor voltage, iL = Inductor current 

 

B.  Partial Discharge Location 

By considering a partial discharge to approximate a current 
impulse, the recorded partial discharge signal will provide the 
impulse response, hence the system transfer function, between 
the PD inception point and that of the measurement location 
[4]. The state space representation of the circuit shown in 
Figure 2B is given in (1). It follows from the model given in 
[5] with fundamental changes due to the addition of the 
injection capacitor CEX: 
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The transfer function can be found by taking the Laplace 
Transform of Equation (1): 
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Since a partial discharge is considered to approximate an 
impulse the input U(s) can be considered to be unity. 

 
Note that the PD injection location can be shifted in the model 
by changing the node k of N nodes in matrix B. 

III.  EXPERIMENTAL RESULTS 

A.  The Test Configuration 

Testing was conducted on a single phase of a 66kV 25MVA 
transformer. The primary winding is separated from the core 
and secondary winding. A split aluminum cylinder is used to 
represent the core, such that winding to core capacitive 
relationships are maintained. The winding is interleaved and 
has 80 turns per disc pair and 19 disc pairs in total. One end of 
the winding is terminated to ground and the other end is 
terminated via a 73kV Micafil Bushing. The bushing 
capacitance to ground is 100pF. 

 The injection test equipment consisted of an oil-immersed 
needle-plate electrode with a pressboard sandwiched in 
between. With the application of 7.5kV, steady streams of 
partial discharges were generated in the order of ~100pC. 
Partial discharges were injected into various locations 
throughout the winding. A broadband current probe and 
matching amplifier (DC-100MHz) were utilized in conjunction 
with a digital oscilloscope to record the data. The experimental 
setup is depicted in Figure 3. 

 The technique proposed in this paper only requires 
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measurement at one location. This presents two options, the 
neutral or the DDF tap on the bushing (if present). Figures 4 
and 5 show the digitally filtered time responses when recorded 
at the neutral and the bushing DDF tap. From a practical 
viewpoint, the DDF point may be a more convenient 
measurement location. However, for the demonstration of the 
technique proposed in this paper, the results obtained from the 
neutral location will be used due to the higher signal to noise 
ratio. 
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Fig. 3.  Test Configuration 

 

B.  Confirmation of the Model 

The Partial Discharge location technique utilized in this 
paper relies on two important properties. The first is that a PD 
will approximate an impulse such that the resulting frequency 
response observed at the neutral will, over the frequency range 
of interest, reflect the transfer function of that system. The 
second property is that there exists within the frequency 
response a region which has resonant pole behavior. The latter 
property is important since this response is inherently 
distributive and hence quite useful for PD location [5]. Figure 
6 plots the model over the targeted frequency regions against 
the FFT response of a PD injected into the bushing end of the 
winding (Signal data as per Figure 4). It is clear that both of 
these properties are satisfied. The resonant pole model over the 
narrow band of interest closely resembles the frequency 
response generated from a PD injected at the bushing, and by 
extension, the transfer function generated by the Vector 
Analyzer in Figure 1. Two areas of variation between the 
model and the PD ‘impulse response’ are the gain, and to a 
lesser extent, the phase offset. These variations are primarily 
due to the non-ideal nature of the ‘impulse’. The theory relies 
on the fact that the impulse in the frequency domain will be 
equivalent to unity (Equation 2). 

In practice this is not the case and will result in spectrum 
coloring with magnitude variation to be expected. In addition, 
pre-impulse samples used in the Fourier transform are 
observed as a time delay which results in an accumulating 
phase error with increased frequency. The algorithm proposed 
in this paper automatically compensates for magnitude and 
minor phase offset by looking at the overall response and 

adjusting as required. 
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Fig. 4.  PD Time Response at Neutral 
Injection point at disc pair 1 (Bushing) of 19 with 4ns sampling interval 
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Fig. 5.  PD Response at Bushing DDF Tap 
Injection point at disc pair 1 (Bushing) of 19 with 4ns sampling interval 
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Fig. 6.  PD Frequency Response when injected at the Bushing  
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C.  PD Location Algorithm 

Calibration of the model requires the acquisition of the 
bushing to neutral frequency response. This can be achieved 
via the injection of a calibration impulse and then performing 
an FFT or obtained directly using a Vector Analyzer. Once the 
frequency response is found the model parameters are required 
such that the resonant poles of the model and data response are 
aligned and have an appropriate level of damping.  Once this 
step is completed PD location can begin. 

 Unlike the authors’ proposal in [5] which relied on the 
zero location between the resonant poles within the magnitude 
response to estimate location, this paper extends on this work 
by comparing all frequency points within the frequency band 
with respect to both the magnitude and phase. This resulted in 
a more reliable and accurate outcome. 

 To compare the model and data waveforms a cost 
function (3) is used. The cost is calculated via the cumulative 
residual differences between corresponding complex data 
points such that the best possible match will have the lowest 
cost. The cost function is given by: 

 

10 10
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log log
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H H
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where:- 

H = Observed Partial Discharge frequency response 

Ĥ = Model frequency response 
 
This function is applied to the PD frequency response with 

the injection model of every disc pair within the winding (in 
this instance, 19 disc pairs). Comparative data to model 
examples for various PD injection locations over the narrow 
target frequency band are shown in Figures 7 through to 9. 
Plots of the cost function are given in Figure 10. The complete 
results are listed in Table I and plotted in Figure 11.   

 The results are good and the associated minima for the 
various injection locations depicted in Figure 10, provides 
evidentiary support that the modeling approach taken is 
appropriate.  
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Fig. 7.  Data versus Model for Disc Pair 1/19 
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Fig. 8.  Data versus Model for Disc Pair 9/19 
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Fig. 9.  Data versus Model for Disc Pair 17/19 
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Fig. 10.  Cost Function vs Winding Disc Pair (1-19) 
 

TABLE I 
PD INJECTION LOCATION VERSUS ALGORITHM ESTIMATE 

PD Disc Pair Est Disc Pair Error (%) 

***1/19 4/19 +16% 

3/19 3/19 0% 

5/19 7/19 +11% 

7/19 8/19 +5% 

9/19 9/19 0% 

11/19 10/19 -5% 

13/19 12/19 -5% 

15/19 15/19 0% 

17/19 13/19 -21% 

*** Calibration node at bushing 
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Fig. 11.  Estimated versus actual PD injection location 

IV.  CONCLUSION 

It has been proposed that the interaction within an 
interleaved power transformer winding of the residual 
inductance and the capacitance to ground is the physical 
phenomenon behind an observed resonant pole response. Since 
this interaction is inherently distributed, the response will be 
dependent upon the input location. As demonstrated in the 
paper the frequency response of a partial discharge will 
approximate the transfer function of the system with respect to 
the PD location. By implementing an algorithm that iteratively 
compares the proposed model at various locations within the 
winding with the observed frequency response, an estimate of 
the partial discharge location can be found. The results 
presented in this paper demonstrate the validity of this 
modeling approach.  
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