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Large Sample Properties of Separable Nonlinear
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Abstract—In this paper, the large sample properties of the sepa-
rable nonlinear least squares algorithm are investigated. Unlike the
previous results in the literature, the data are assumed to be com-
plex valued, and the whiteness assumption on the measurement
noise sequence has been relaxed. Convergence properties of the
parameter estimates are established. Asymptotic accuracy anal-
ysis has been carried out, in which the assumptions used are rel-
atively weaker than the assumptions in the previous related works.
It is shown under quite general conditions that the parameter esti-
mates are asymptotically circular. Conditions for asymptotic com-
plex normality are also established. Next, a bound on the deviation
of the asymptotic covariance matrix from the Cramér–Rao bound
(CRB) is derived. Finally, a sufficient condition for the nonlinear
least squares estimate to achieve the Cramér–Rao lower bound is
established. The results presented in this paper are general and can
be applied to any specific application where separable nonlinear
least squares is employed.

Index Terms—Asymptotic analysis, consistency, Cramér–Rao
bound, nonlinear least squares, variable projection problem.

I. INTRODUCTION

A. Background

Consider a complex scalar valued sequence , which
is governed by the model

(1)

where is a vector-valued nonlinear function of the
unknown complex valued parameter vector of dimension

. Note that we use to denote the conjugate transpose of
. As a consequence of (1), each of the members of the

complex scalar valued sequence of functions is
linear in and nonlinear in . The parameter is assumed to
be a complex-valued vector of dimension with bounded
norm. Here, we are concerned with the problem of estimating
the parameters and from samples of the noise corrupted
measurements of the sequence . The observed sequence
is given by

(2)
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where is the additive measurement noise sequence. Let
us introduce the notations

(3)

(4)

(5)

so that the complex vector-valued function can
be written using (1) as

(6)

We will maintain

(7)

so that

(8)

One way to estimate the true parameter from the observations
is to solve (8) in a least squares sense, i.e., to seek for the global
minimum point of the loss function

(9)

and estimate as

(10)

However, the optimization problem in (10) is separable in the
sense that it can be solved for and separately. From the theory
of linear least squares [1], [2], it follows that for a given , the
loss function (9) can be minimized analytically with respect to

, and the minimum is achieved at

(11)

where is the pseudo-inverse of . Note that we
assume to have a full column rank , which in general is
a mild assumption. We will address this point later. Substituting
(11) in (9), we have the concentrated loss function

(12)

where is the orthogonal projection operator onto the
null space of given by

(13)
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Using (12), the optimization problem in (10) reduces to

(14)

The optimization problem in (14) is often referred to as a vari-
able projection problem; see [3]. In general, such optimization
problems must be solved numerically. Finally, using , one
obtains the estimate of as

(15)

B. Contributions and Motivation

As mentioned in [4] and references therein, the nonlinear least
squares (NLLS) is ubiquitous to parameter estimation problems
in signal processing. In this paper, our object is to study the
statistical properties of the variable projection problem. In Sec-
tion II, we carry out the consistency analysis assuming to be
correlated. The additional constraints imposed on are much
weaker than the whiteness assumption made in previous related
works [5], [6].

In Section III, the accuracy analysis is carried out in a very
general framework (the noise is correlated, parameters are com-
plex valued, and the data are complex valued). Under very mild
conditions, the circularity and asymptotic normality of the es-
timates are established. The new expressions presented in this
section generalize many previous results in context of specific
applications; see, for example, [7]–[10].

In Section IV, we will give a bound on the loss of statistical
efficiency. We also establish a sufficient condition on the model
for which the NLLS achieves the CRB and thereby give an al-
ternative interpretation of the result proved in [11].

Finally, in Section V, we extend the previously derived results
for real-valued data. All the results derived in this paper can be
readily extended to the case where the model structure is given
by

(16)

II. PARAMETER CONVERGENCE

In this section, our aim is to establish sufficient conditions to
ensure the strong convergence of the parameter estimates. In the
rest of the paper, will be assumed to satisfy the following.

Assumption 1: is a stationary, zero mean, circular
process with bounded fourth-order moment [12], [13] so that

(17)
where is a Hermitian and Toeplitz matrix defined in terms
of the autocorrelation sequence of as .
Moreover, the sequence is absolutely summable, i.e.,

(18)

exists so that the process has a bounded spectral density. We
will use and respectively, to denote the supremum

and the infenum of the spectral density of . Immediately, it
follows that [14]

eig (19)

where eig denotes an eigenvalue of .
In contrast to the previous related work [5], [6], here, we allow
to be correlated. This is motivated by many practical appli-

cations where the additive noise may not be white.1 The con-
dition on circularity in Assumption 1 is very common. For in-
stance, we can verify the validity of this assumption when the
measured data are the discrete Fourier transform of real-valued
data [12] or a complex-valued signal recorded at the receiver in
a typical telecommunication or array application [15]. This con-
dition alone, however, is not sufficient to ensure the consistency
of NLLS. To see that, consider the concentrated loss function

. It is readily verified from (12) and Assumption 1 that

tr (20)

where is the noise-free concentrated loss function ob-
tained by using in (12). Assuming that the loss
function converges (in a stochastic sense) to its expected
value as (which is true in most of the cases), we can
easily notice that in general

(21)

The second term in the right-hand side of (20) does not in gen-
eral have the same minimum point as the first term.2 There-
fore, we need a stronger constraint in the form of (18) to ensure
consistency (although it is much weaker than the whiteness as-
sumption). Intuitively, from (21), one would expect bias effects
in finite sample cases, even if the estimates are consistent. We
need a few more assumptions.

Assumption 2: The magnitude of the derivative of the func-
tion with respect to the real or imaginary part of is
bounded from below for all and for all , where
denotes the th component of .

Assumption 3: Introduce

(22)

There exists a compact set and an integer such
that whenever

eig
(23)

for finite and . The true parameter vector .
Assumption 2 can be seen as an identifiability condition. If

Assumption 2 does not hold, the observed data fails to carry
enough information about the parameter for large , even
in absence of the measurement noise. However, this condition
might be redundant if is not considered large. Assumption 3
is a persistence of excitation condition [2], [16], which ensures

1If the noise statistics is known to the user, it is possible to prewhiten the
noise. We will come back to this point later.

2On the other hand, if��� = � I , the inequality in (21) can be replaced by
an equality since trf��� (���)g = N � p is independent of ���.
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that the information about the parameter can be extracted suc-
cessfully from the observed noise-corrupted data. This means
that is full column rank, and is
bounded on for all . We have the following proposi-
tions.

Proposition 1: Introduce the noise-free loss function

(24)

Then, under Assumptions 1–3

(25)

uniformly for all with probability one.
Proof: Combining (24) and (9) and using definitions

(3)–(8), we have

Re

(26)
Since the fourth-order moments of are bounded, using er-
godicity results [2], the first term on the right-hand side of (26)
converges to with probability one. It remains to be shown
that the second term on the right-hand side of (26) converges to
zero with probability one. Using Kronecker’s lemma [17], [18],
it is sufficient to show that is a Cauchy sequence on

with probability one, where

Re

Consider . Since
, using Chebychev’s inequality [19], we have

Prob

(27)

where we have used (19) in the last inequality and introduced

(28)

Recall from Assumption 3 that is uniformly bounded
for all . Therefore, for any given and , it is possible
to make the right-hand side of the last inequality in (27) arbi-
trarily small by increasing sufficiently. Hence, is
a Cauchy sequence with probability one, and the proposition
follows.

Proposition 2: Let the sequence of functions be
uniformly convergent (as ) to a continuous function

on a compact set , and let have a unique global
minimum point at . Let be a global minimum point of

in . Then, converges to as .
Proof: See [20] and [21].

Assumption 4: is dense. The noise-free loss function
has a unique global minimum point in the set

, and is an interior point of . Moreover, is a
continuous function of on .

Proposition 2 is quite well known and has been used fre-
quently as an important tool for convergence analysis. Assump-
tion 4 is a common identifiability condition. Often, it is required
that be restricted to satisfy Assumption 4. The problem of es-
timating the sine wave frequencies from noisy observations [10]
is such an example. We also point out that a necessary condition
for Assumption 4 to hold asymptotically as is Assump-
tion 2. If the noise-free data do not obey the model (1), then we
will have model error. If the model is correct, the noise-free loss
function will have a global minimum at . This is
not the case if the model is incorrect. Then, the minimum point
of would be dependent. We are ready to state our
main result in this section.

Proposition 3: Under Assumptions 1–4

(29)

almost surely, where we have denoted .
Proof: The proof follows by combining Propositions 1

and 2 with Assumptions 4 and 5.
Remarks:

• If the model is correct, almost surely.
• The proof presented here does not assume anything re-

garding the correctness of the model. Hence, the result
in Proposition 3 is valid in the presence of model errors.
Note that in presence of model errors, the true parameter
vector . That would lead to regular bias ef-
fects. However, analysis of such bias effects are beyond
the scope of this paper.

• Assumption 3 implies that is a bounded se-
quence. However, by proper normalization of the loss
function , one can ensure the consistency of
the parameter estimates even if does
not exist. The proof of consistency presented here can
be accordingly modified to include that case as well.
As a matter of fact, faster convergence of the parameter
estimates results if diverges at a higher rate.
However, such examples are rarely encountered in prac-
tical problems.

We point out here that if the noise statistics is known, that
knowledge can be incorporated in the estimation algorithm
using the framework of maximum likelihood estimation [22].
In such an approach, an alternative estimate of the parameter

is obtained as

(30)

where .
Eliminating as in (10)–(12), we get

(31)

where

(32)
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is the Cholesky decomposition of . Using similar calcula-
tions as presented here, it is possible to establish the consistency
of under milder conditions (Assumption 1 can be relaxed).
This phenomenon can easily be explained since the modified
loss function (31) involves a prewhitening step, where the data
is transformed by .

III. ASYMPTOTIC ACCURACY

In this section, we explore the second-order statistical prop-
erties of the estimates. For that purpose, let us introduce some
further notations. Since the statistical properties of a complex-
valued quantity is usually expressed in terms of the joint statis-
tical properties of its real and imaginary parts, it is convenient to
use an associated real-valued parameter vector. Let the param-
eter vectors , , and [see (22)] be expressed in terms of their
real and imaginary parts as

(33)

Following the usual convention, the joint statistical properties
of the estimates and will be expressed in terms of the
statistical properties of the estimates of the real-valued vectors

(34)

Moreover, we will use , etc., to denote the true values of ,
etc. Note that the mapping from the complex-valued parameter
vector , etc., to the associated real-valued parameter vector
is bijective: Any function of can equivalently be expressed as
functions of the associated real-valued parameter vector . With
a slight misuse of notation, we maintain the same functional
symbol to denote the equivalent function as well. For example,
we use , and so on. We need the following dif-
ferentiability assumption.

Assumption 5: The function is at least twice differ-
entiable with respect to and on .

Proposition 4: Let be the Hessian matrix and
be the gradient vector of the loss function eval-

uated at . Then, under Assumptions 1–5, the asymptotic
(as ) estimation error is given by

(35)

Proof: Recall that . Using this fact in the
Taylor’s series expansion of in the neighborhood of
and neglecting the third and higher order terms in
(which is valid only asymptotically for large since is a
consistent estimator of ), the proposition follows. The details
of the proof are available in many related books and papers; see
[2] for example.

Next, the properties of the Hessian matrix and the
gradient vector will be explored. Since we are con-
cerned about the asymptotic distribution of , it is not required
to establish the almost sure convergence of the relevant quanti-
ties (i.e., and ), but it would be sufficient to
establish weak convergence in probability; see [17] and [18] for
details. For what follows next, we use the following differenti-
ation notations for a complex vector-valued function of a

real and vector-valued parameter , where we
use

(36)
Further, the matrix of first-order derivatives will be denoted by

(37)

Assumption 6: The following limit result holds:

Re

Re
(38)

where

(39)

This assumption may appear to be restrictive. However, one can
notice that neither nor is required to be bounded
by Assumption 6. As a matter of fact, most signal models that
satisfy Assumptions 2 and 3 can be shown to satisfy Assump-
tion 6 as well.3 Recall that for consistency, it is necessary that
Assumptions 2 and 3 are satisfied. In that sense, Assumption 6
is not restrictive at all. Our next proposition is a consequence of
Assumption 6.

Proposition 5: Under Assumptions 1–6, the asymptotic co-
variance matrix of is given by

Re

Re Re (40)

where

(41)

is assumed to have full column rank.
Proof: Differentiating the loss function in (9) with

respect to the th element of and evaluating at , we
get, using (6) and (8)

(42)

Re (43)

Hence, to compute the second-order moment of the gradient
vector , using Assumption 1, we have

Re

Re (44)

Next, we consider the asymptotic properties of the Hessian ma-
trix . Consider the second derivative of the loss func-

3To the best of the knowledge of the authors, all the signal models that satisfy
Assumptions 2 and 3 satisfy Assumption 6 as well. However, a rigorous math-
ematical treatment of this issue is beyond the scope of this paper.
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tion with respect to the th and the th element of . At
, we get, using (1), (3), and (4)

Re

(45)

Re

Re (46)

Var Re

Re

Re (47)

Note that in the first equality in (47), we have used (17), whereas
in the inequality, we have used (19). Now, using Assumption 6,
for large , we see from (46) and (47) that the mean of each el-
ement of the Hessian is large compared with the stan-
dard deviation. Hence, each element of the Hessian
converges in mean square sense to the corresponding expected
value,4 i.e.,

Re

Re (48)

for large . Hence, from (35), (44), (48), and Proposition 4, the
result follows.

Theresult inProposition5wasderivedin[5],assuming and
to be bounded asymptotically. Note that if and are

asymptotically bounded,Assumption 6 is satisfiedanyway.From
that point view, Proposition 5 can be seen as a generalization of
theresultsgivenin[5].However,fromanapplicationpointview,it
mightbetoorestrictivetoassume and tobeasymptotically
bounded, as illustrated by the following example.

Example 1: Consider the problem of estimating frequencies
of complex cisoids in noise:

(49)

where are real-valued amplitudes of the sinusoids
having frequencies . A comparison of (49) with (1)
reveals that the problem of estimating the frequencies
and the associated amplitudes can be framed as a
separable nonlinear least squares problem. Using the analysis
presented so far, we can easily verify that the variable projection
estimates of the associated parameters are consistent. It follows
after a few steps of calculations that (using our usual notations)

(50)

(51)

4Apparently, the right-hand side of (48) may approach 0 or diverge as N !
1. If P (���� ) converges to 0 and Assumption 6 is satisfied, then the standard
deviation of the left-hand side of (48) converges at a faster rate than its mean.
Therefore, the stochastic variation of the left-hand side of (48) can be neglected
compared with the mean value. This is true even when the right-hand side of
(48) diverges, because in that case, the mean diverges at a faster rate compared
with the standard deviation.

Clearly, in this case, neither nor are bounded for all
and . However, it is readily verified that Assumption 7 is satis-
fied here so that an analogous asymptotic analysis as Proposi-
tion 5 can be carried out.

Assumption 7: The matrix-valued function is an an-
alytic function of .

This, again, is a mild assumption in the sense that in many
practical applications, this assumption is satisfied. Note that

is linear in . Using this fact combined with Assump-
tion 7, we have as an analytic function of and .
We also need the following definition. Let us introduce the map

such that

Re Im
Im Re

(52)

Then, it is well known (see [13] and [14], for example) that is
an isomorphism with respect to matrix multiplication, i.e.,

(53)

Note that from the by property of the isomorphism, it also fol-
lows that

(54)

We are now ready to state the main result of this section.
Theorem 1: Let us define

(55)

Then, under Assumptions 1–7, the asymptotic covariance ma-
trix is given by

(56)

where

(57)

(58)

(59)

and where we have omitted the arguments of the matrices for
simplicity.

Proof: Introduce the notation

(60)

Applying Cauchy–Riemann’s conditions [23] on analytic func-
tions, we get

(61)
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In what follows, we omit the argument for simplicity. From
(40) and (61), it follows by straightforward calculation that

(62)

In order to show the remaining part of the proposition, we apply
well-known block matrix inversion results (see, for example, [1]
and [14]) to get

(63)
where

(64)

Similarly

(65)

(66)

(67)

Hence, by (60) and (63)–(67), we get, after a straightforward
block matrix multiplication

(68)

Now from (62)–(68), one can readily verify (57)–(59).
Remarks:

• It follows immediately from (56) that the complex-valued
random vector is asymptotically circular, i.e.,

(69)

(70)

(71)

• The asymptotic covariance matrix of the real-valued pa-
rameter vector is given by , and
that of is given by .

• Assumption 7 is redundant if the parameter vector is real
valued. The associated analysis is exactly similar but sim-
pler. The resulting expressions are also similar, where
is a real-valued random vector with asymptotic covariance
matrix . We also have and

.
• There are applications where is real valued but is com-

plex valued. Using similar but more tedious calculations,
one can show that the covariance matrix of the real-valued
(in this case) parameter is given by (under Assumptions
1–6)

Re (72)

when is a white noise sequence. However, when the
noise is colored, the expressions take more complex
forms.

• There are many applications where is finite, but the
signal-to-noise ratio is large. It can be easily seen that the
expressions of the covariance matrix are the same in such
cases. In this context, it can be noted that such similar
expressions as (57) and (72) for the parameter variance
exist in the literature for large signal-to-noise ratio; see [7]
and [8].

Proposition 6: Under Assumptions 1–6, the real-valued es-
timate is an asymptotically jointly Gaussian random
vector with covariance matrix if is bounded
for all , . Furthermore, if Assumption 7 is
satisfied, then is asymptotically complex Gaussian dis-
tributed with covariance matrix .

Proof: Note that [see (43)]

Re (73)

Since is bounded for all , , the coefficients of in
the summation (73) are of bounded magnitude for all . There-
fore, it follows that is asymptotically Gaussian [2].
The proposition then follows from (35) since a linear transform
of a Gaussian random vector is Gaussian [19]. If Assumption
7 holds, then from Theorem 1, the complex-valued estimate

is complex Gaussian with covariance matrix .
Remarks:

• Note that if is bounded, then is finite for all
.

• If the parameters are real valued, then is Gaussian
with covariance matrix .

• Proposition 6 was proved in [5] for the special case when
is white and the data and the parameter are real valued.

• We point out here that the general requirements for asymp-
totic normality of the parameter estimates are quite strin-
gent in the sense that in many applications, would not
be bounded; see Example 1, for instance. However, we
point out that the condition on boundedness of has
been relaxed in [6] by imposing a few more constraints
when the noise sequence is assumed to be white.

IV. CRAMÉR–RAO BOUND

In this section, we compare the results derived in the last
section with the Cramér–Rao bound (CRB). Next, we derive a
bound on the loss in the statistical efficiency. Finally, we derive
a sufficient condition for the NLLS to achieve the CRB. First,
we have the next proposition giving an expression for the CRB.

Proposition 7: Under Assumption 5, and a few more reg-
ularity conditions [22] on the distribution function of , the
CRB of the estimation problem is given by

(74)
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Furthermore, if Assumption 7 holds, then the CRB for is given
by

(75)

and that of is given by

(76)

where is the Cholesky factor of , as before [see (32)],
and we have omitted the argument for simplicity.

Proof: The proof for (74) can be found in [24]. For the
remaining part, we see that (61) holds under Assumption 7 so
that

(77)

Noticing the similarity of

(78)

with the first equality in (63), we get (75) and (76) using (64)
and (65).

If is a white noise sequence so that
holds, then is a maximum likelihood estimate [1]. Therefore,
we expect that the asymptotic covariance matrix of the param-
eter estimates to achieve the Cramér–Rao lower bound. This can
be verified by comparing (74) with (40)

(79)

However, this does not follow immediately from the theory of
maximum likelihood estimation since some of the standard as-
sumptions [22] have been considerably relaxed in the current
context. For instance, the process is nonstationary in general
in the current context. Notice that if Assumption 6 does not hold,
(40) may cease to hold any longer. However, it is an open ques-
tion if there exists such an example where Assumption 6 ceases
to hold even when the conditions of consistency (i.e. Assump-
tions 2 and 3) hold.

If the noise covariance structure is known to the user, then
(31) should be used. If a similar analysis is carried out for
the loss function in (31), it can be shown that the associated
estimate achieves the CRB asymptotically. This is due to
the prewhitening step involved in (31), as discussed before.
However, in most practical applications, is generally
unknown to the user. In such a case, it is of interest to know
the difference in the achieved accuracy by NLLS and the best

achievable performance. In the next proposition, we present a
bound on the loss of statistical efficiency.

Proposition 8: The following inequality holds:

(80)

where for two matrices and , we write , if is
non-negative definite.

Proof: Note from (19) that

(81)

Similarly

(82)

Since the sum of two non-negative definite matrices is a non-
negative definite matrix, we get (80) by combining (81) and
(82).

The loss in efficiency is low if the spectrum of the noise se-
quence is flat. This observation is very common in the literature
of system identification. We can also verify that for white noise
where , there is no loss in statistical efficiency.
The bound given by Proposition 8 is applicable in quite general
cases. However, it might be interesting to investigate if the es-
timate can achieve the CRB even if the additive noise is not
white. The following proposition gives a sufficient condition in
that direction.

Proposition 9: If each of the columns of is an asymp-
totic eigenvector of , i.e.,

(83)

for some real-valued nonsingular diagonal matrix as
, then the estimate achieves the CRB asymptotically.

Proof: Using (83) in (40), we get

Re (84)

Now, by (83), we also have

(85)

Hence, by (74) and (85), we see that

Re (86)

Combining (84) and (86), we prove the proposition.
Following the results in Proposition 9, it might be interesting

to investigate the asymptotic eigenvalue distribution of a general
covariance matrix as . In this context, we use a
remarkable result [25], [26]. Let us introduce

(87)

(88)

Then, one can show that [25], [26] as

(89)

where is the spectral density of at frequency . This
result will play the main role in Example 2 in the next section,
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where we illustrate the result in Proposition 9 for a practical
application.

V. REAL-VALUED DATA

In this section, we consider the case where data are real
valued. The resulting analysis is similar. However, the expres-
sions are not exactly the same. Next, we briefly summarize the
results in case the data are real valued.

Proposition 10: If the observed data are real valued, then
under Assumptions 1–6 (with proper modifications), the asymp-
totic covariance matrix of is given by

(90)

where . Furthermore, if Assumption 7
holds, then is block diagonal with

(91)

where is defined as in (56)–(59).
Proof: The proof will follow the exactly similar set of cal-

culations given in Proposition 5 and Theorem 1. First, note that
for the real-valued data, the gradient vector is given by
[see (42) and (43)]

(92)

Notice that the difference between (44) and (92) is due to the fact
that for the real-valued data case, the circularity property of is
no longer there. Using exactly the similar steps as in (45)–(47),
one can readily verify using Assumption 6 (with proper modifi-
cations) that

(93)

Now combining (35), (92), and (93), we get (90). Furthermore,
if the Assumption 7 is satisfied, we can repeat exactly same steps
as in (61)–(68) to see that . Finally, (91) follows
since is a real-valued matrix in this case.

Note that the above result is in agreement with the results
derived in [5] and [6]. The results in Propositions 7 and 8 are
also modified if the data are real valued. The CRB is given by
(see [24] for details)

(94)

and the result in Proposition 8 is modified as

(95)

which is a fairly straightforward extension of the proof of Propo-
sition 8, using (94) and Proposition 10. Finally, if the parameter
vector is real valued, Assumption 7 is redundant. The covari-
ance matrix of is then given by . The result in
Proposition 9 also is directly applicable to the case when the data
are real valued. In the following example, we illustrate Proposi-
tion 9 for real-valued data.

Example 2: In this example, we consider a sine wave in noise
where

(96)

Here, we are interested in estimating the real-valued parameters
, , and from . Clearly, is linear in and nonlinear

in and . In this case, we will denote . Let us
denote [see (87) and (88)]

(97)

(98)

Using these notations, it is readily verified that

(99)

where , and denotes the Hadamard product
(i.e., element-wise multiplication) between two matrices. From
(89), we can see that each of and are real-valued
asymptotic eigenvectors of as , with an associated
eigenvalue . Thus, any linear combination of and

will also be an asymptotic eigenvector of , as
. Hence, using (98), we see that

(100)

for large and for all . Note that (100) is an vector
equation, where each component of the vector on the left-hand
side is a convergent infinite sum, and the corresponding compo-
nent on the right-hand side is the limit of the sum as .
Hence, we can differentiate (100) with respect to to get

(101)

Now, by Assumption 2, the derivative of the spectral density
is bounded for all (note that at this point, we are as-

suming that the autocorrelation sequence decays faster than
, which is a little stronger that Assumption 1). Therefore, on

the right-hand side of (101), the norm of first term is large com-
pared with that of the second term. Hence, for large , one can
approximate

(102)
for all . Combining (99), (100), and (102), we see from Propo-
sition 9 that the estimates of and will achieve CRB asymp-
totically as .

The results of Example 2 can easily be generalized for mul-
tiple sine waves in noise as well as in case where the sinusoids
are complex valued. We also point out here that the same result
for the complex-valued sine waves was derived in [11]. How-
ever, the method of analysis used here is easier and provides a
more clear perspective on this issue. For numerical illustrations
on this issue, see [11]. More illustrations can be found in [7],
where NLLS is dealt in a general context.

VI. CONCLUSIONS

In this paper, we attempted to carry out a complete asymp-
totic analysis of the separable nonlinear least squares algorithm.
Throughout the analysis, we have maintained rather mild as-
sumptions on the data model and the measurement noise se-
quence. The consistency analysis presented here can be seen as a
generalization of previously proved results but with the weaker
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assumptions that the data are complex valued and that the ad-
ditive noise can be colored. In the accuracy analysis, the results
of Proposition 5 have been proved under relaxed assumptions
(Assumption 6). It has also been shown in Theorem 1 that if
the functions involved are analytic functions of the parameters,
the estimates are asymptotically circular. Asymptotic normality
has been established. Next, the accuracy expressions were com-
pared with the CRB (Proposition 7), and we have given a gen-
eral bound on the loss in statistical efficiency in Proposition 8.
Finally, in Proposition 9, we have established a sufficient condi-
tion for the NLLS to achieve the CRB. If the measurement noise
is white, NLLS achieves the CRB under rather mild conditions.

It is interesting to investigate the existence of examples where
Assumption 6 ceases to hold in spite of Assumptions 2 and 3
being satisfied. In such a case, NLLS would be a consistent max-
imum likelihood estimate that may be unable to achieve asymp-
totic efficiency.
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