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ABSTRACT 

The finite element method (FEM) is extensively used in analysis of a wide range of 

nonlinear geotechnical problems. The finite element method can handle simple and 

complex constitutive soil models, and solve problems with complicated geometries and 

boundary conditions with reasonably accurate results.  On the other hand, mesh distortion 

and entanglement of elements, occurring inevitably in failure zones with high stress/strain 

concentration, are main drawbacks of the common finite element solutions such as the 

Updated Lagrangian method. In addition, efficacious application of the method requires 

experience and a certain amount of trial and error, particularly when choosing an optimal 

time and spatial discretisation.  

Adaptive finite element methods provide a means for obtaining more reliable solutions by 

continuously adjusting the discretisation in time and space according to the current 

solution. These procedures automatically refine, coarsen, or relocate a mesh to achieve a 

solution with a specified accuracy in an optimal fashion. Although a significant amount of 

research has been devoted to adaptive finite element analysis in solid mechanics, the 

application of adaptive methods has been less considered in nonlinear geotechnical 

problems due to the complexity. Modelling of problems in geomechanics is typically 

sophisticated due to nonlinear constitutive laws, large deformations, changing boundary 

conditions and time-dependent behaviour. A variety of adaptive finite element techniques 

have been developed to tackle nonlinear problems in solid mechanics. However, the 
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application of these methods to geomechanics is still a challenge. Amongst the various 

adaptive techniques, the r-adaptive and h-adaptive finite element methods are probably the 

most favoured and most established. r-adaptive finite element method attempts to eliminate 

the mesh distortion by refining the mesh in the finite element domain. On the other hand, h-

adaptive finite element method is based on the idea of generating a new mesh by dividing 

the area of original elements where the interpolation should be improved to achieve higher 

accuracy or to avoid mesh distortion.       

In this Thesis, the h-adaptive finite element technique will be employed to solve some 

complex geotechnical problems involving material nonlinearity, large deformation, 

changing boundary conditions and time-dependent nonlinearity. To achieve this, the main 

features of the technique including advanced mesh generation algorithms, error estimation 

methods and a procedure for remapping of state variables will be discussed and developed 

in company of a robust analysis program. The performance of the h-adaptive finite element 

method is then represented by considering the accuracy and efficiency of the method in 

solving some classical geomechanics problems such as the bearing capacity of footings, 

expansion of cavities, and the stability of slopes.  

In addition, this Thesis will address the performance and the efficiency of alternative error 

estimation techniques for particular geotechnical applications involved with changing 

boundary conditions and inertia forces, such as static and dynamic penetration of an object 

into soil.  Such problems are categorised as one of the most sophisticated problems of 

computational geomechanics due to their extreme nonlinearity.   
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This Thesis will also present a new and innovative combined adaptive method for tackling 

geotechnical problems with relatively large deformations.  This robust method is based 

upon an elegant combination of the Arbitrary Lagrangian-Eulerian (ALE) method and the 

h-adaptive finite element method developed as a part of the Thesis.  The proposed method 

takes advantage of r-refinement as well as h-refinement finite element techniques, and yet 

eliminates the individual drawback of each method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

  

                                                                                                  

 

PREFACE 

The research work presented in the Thesis has been performed in the Discipline of Civil, 

Surveying and Environmental engineering, school of Engineering, at the University of 

Newcastle, Australia under supervision of Prof. Daichao Sheng from September 2007 to 

September 2011. During the term of candidature, a number of papers were published which 

are listed below: 

Kardani M, Nazem M, Abbo AJ, Sheng D, Sloan SW, “Refined h-adaptive finite element 

procedure for large deformation geotechnical problems”, Computational 

Mechanics, Vol 49, 21-33, 2012  

Nazem M, Kardani M, Carter JP, Sheng D, “A comparative study of error assessment 

techniques for dynamic contact problems of geomechanics”, Computer and 

Geotechnics, Vol 40, 62-73, 2012 

Kardani M, Nazem M, Sheng D, Carter JP, “Large deformation analysis of geomechanics 

problem by combined rh-adaptive finite element method”, Under co-authors’ 

review 

Kardani M, Nazem M, Abbo AJ, Sheng D, “A study of adaptive finite element methods in 

solving large deformation problems in geomechanics”, IV European Conference 

on Computational Mechanics (ECCOMAS2010), Paris, France, 2010 

Kardani M, Nazem M, Abbo AJ, Sheng D, “A comparative study of h-adaptive and r-

adaptive finite element methods in geomechanics”, Proceedings of 9th World 



xi 

  

                                                                                                  

 

Congress on Computational Mechanics and 4th Asian Pacific Congress on 

Computational Mechanics (WCCM2010), Sydney, Australia, 2010 

Nazem M, Kardani M, Carter JP, Sheng D, “Application of h-adaptive FE method for 

dynamic analysis of geotechnical problems”, Proceeding of the 2nd International 

Symposium on Computational Geomechanics (COMGEO2011), Cavtat-

Dubrovnik, Croatia, 590-495, 2011 

Kardani M, Nazem M, Sheng D, “Application of h-adaptive FE method for analysis of 

dynamic contact problems in geomechanics”, International Conference on 

Computational Contact Mechanics, Hannover, Germany, 2011 

Kardani M, Nazem M, Carter JP, “A combined rh-adaptive finite element method for         

geotechnical problems”, Twelfth Pan American Congress of Applied Mechanics 

(PACAM 2012), Port of Spain, Trinidad, 2012 



CChhaapptteerr  11  ––  IInnttrroodduuccttiioonn                                                                                          11  

                                                                                                  

 

 

 

 

 

 

 CHAPTER 1 

INTRODUCTION 



CChhaapptteerr  11  ––  IInnttrroodduuccttiioonn                                                                                          22  

                                                                                                  

 

1.1. MOTIVATION 

The finite element method (FEM) is a robust method for analysing a large number of 

problems in engineering where analytical solutions cannot be obtained. In geotechnical 

engineering, involved with a wide range of nonlinear problems, this method can obtain 

reasonable solutions. Nonlinearity may arise in a problem due to several reasons: nonlinear 

stress-strain relations, large deformation, changing boundary conditions and time-

dependent behaviour. These resources, when combined, make the analysis of nonlinear 

problems a very challenging task. Adaptive finite element techniques have been developed 

to tackle nonlinear problems arising in solid mechanics over the past decades. Although 

these methods have been well established in the literature for solving many problems of 

solid mechanics, their application in geomechanics, due to the complex and nonlinear 

nature of problems, is still a challenge.  

Adaptive finite element techniques have been the interest of many researchers over the last 

three decades, and a variety of adaptive techniques have been proposed in the literature. 

These mainly include p-adaptive, r-adaptive, h-adaptive and hp-adaptive methods. r-

adaptive and h-adaptive FE methods are probably the most favoured and common 

techniques among engineering applications, and are well established in solid mechanics. 

The r-adaptive FE method has recently been considered in solving some geotechnical 

problems. A variant of this method, namely as Arbitrary Lagrangian-Eulerian method, is 

able to solve a large number of geotechnical problems involving, particularly, large 

deformations. The method, however, is not efficient in providing a solution to some 
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complex problems in geomechanics since its accuracy severely depends on the initial 

density of its finite element mesh. This issue becomes more pronounced in problems 

involving strain localisation and shear bands. On the other hand, standard finite element 

procedures, such as the Updated-Lagrangian method, can fail to provide a solution to large 

deformation problems. An example where this failure may take place is the deep 

penetration of frictional piles or penetrometers into a soil layer. Such penetration problems 

usually cause severe mesh distortion. A typical distorted mesh occurring during penetration 

of a cone into a layer of soil is depicted in Figure 1.1.  Such a distortion results in a 

negative Jacobian of an element, leading to a spontaneous termination of the analysis. 

The h-adaptive finite element technique, on the other hand, has attracted less attention in 

geomechanics, due to the complex features involved. The implementation of this method 

requires robust and efficient numerical algorithms for mesh generation, mesh optimisation, 

error estimation and remapping of state variables. Despite these complexities, the main 

advantage of the h-adaptive finite element method 

is that the numbers of nodes and elements, unlike r-

adaptive finite element method, can vary during the 

analysis and the elements can be resized based 

upon a prescribed precision. The analysis of 

geotechnical problems by this method may provide 

more accurate results which in turn lead to cheaper 

and safer designs. In this study the main aims are to 

develop the h-adaptive finite element method into a suitable framework for solving 

Figure 1.1. Mesh distortion 
under a cone. 
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nonlinear problems of geomechanics and to study the performance and reliability of the 

method in analysing such problems.  The main outputs of this research work will include a 

detailed study of efficiency of the h-adaptive finite element method in geotechnical 

problems as well as a robust numerical analysis tool for a wide range of nonlinear problems 

of solid mechanics, particularly geomechanics. 

1.2. OBJECTIVES 

The goal of this study is to improve h-adaptive FE technique as well as to develop a new 

combined rh-adaptive FE technique to solve nonlinear problems in geomechanics. It 

includes the development of accurate numerical algorithms for efficiently analysing 

geotechnical problems involving material nonlinearity, large deformations, time-dependent 

behaviour and changing boundary conditions. Some important aspects of the h-adaptive FE 

method which will be addressed in this study are as follows: 

 To develop the h-adaptive FE method into a computer program and compare the 

robustness and efficiency of the method with standard FE method and r-adaptive 

technique. 

 To study alternative methods of mesh generation and mesh optimisation in 2D 

domains and to find an appropriate and effective meshing technique for h-adaptive FE 

method in geomechanics problems. 

 To study the performance of error estimation methods and to address the applicability 

of each method in geotechnical problems. 
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 To implement an effective technique for remapping state variables between two finite 

element meshes with different topology and to study the efficiency as well as 

accuracy of this technique. 

 To demonstrate the efficiency of h-adaptive FE method in specific problems of 

geomechanics involving large deformation and contact mechanics such as installation 

of piles and penetration of objects into a soil layer.  

 To generalise h-adaptivity to geotechnical problems involved with dynamic loads. 

 To develop a new combined rh-adaptive technique to analyse large deformation 

problems of geomechanics. 

1.3. OUTLINE 

This Thesis consists of eight chapters including this introduction. A summary of each 

chapter is given here. 

Chapter 2 provides a brief literature review of finite element method and adaptivity. This 

chapter also introduces alternative adaptive finite element techniques. The chapter 

concludes with an introduction to the governing equations of nonlinear finite element 

analysis.  

In Chapter 3 the h-adaptive FE, which is the main subject of this study, is described. The 

chapter begins with an introduction to h-adaptive FE techniques and its main components. 

The chapter then discusses several methods of mesh generation. Various error estimation 
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methods are also discussed in this chapter. Finally, the chapter explains a procedure for 

remapping nodal and state variables between two meshes with different topology. 

The implementation of the h-adaptive FE technique into the existing code at the University 

of Newcastle, SNAC, is the subject of Chapter 4. A brief introduction to the Triangle code, 

the mesh generator employed in this study, is presented. Then the format of the data file 

including the topology of domain, material properties, loading conditions and analysis 

configuration are explained. The chapter also describes the adopted methods for estimating 

error. Also the remapping procedure applied in this study is explained in this chapter.  

Chapter 5 addresses the aspects of implementation of the h-adaptive finite element method 

in problems of geomechanics involving dynamic forces and changing boundary conditions.  

A literature review followed by the finite element formulation and an introduction to 

contact mechanics for h-adaptivity are provided in this chapter. 

Chapter 6 introduces a new rh-adaptive finite element method for analysing nonlinear 

problems in geotechnical engineering.  The philosophy as well as the numerical algorithm 

of the proposed method is explained in this chapter. 

The adaptive finite element method developed in Chapters 3-5 and the rh-adaptive finite 

element method presented in Chapter 6, are used to analyse several numerical examples in 

Chapter 7. These examples include the problem of cavity expansion, biaxial test, rigid strip 

footing on an undrained layer of soil subjected to static as well as dynamic loads, static and 

dynamic penetration of objects into a layer of soil, the analysis of a vertical cut, the 
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indentation of a cylinder object into a soil layer, and the bearing capacity of a two-layered 

soil under a rigid footing.  

Chapter 8 presents a summary of important conclusions obtained from this Thesis.   
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CHAPTER 2 

FINITE ELEMENTS AND ADAPTIVITY 
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2.1. INTRODUCTION 

The basic idea of the finite element method is that a region of continuum can be 

approximated by a finite number of interrelated subregions or elements. In fact, the region 

can be substituted and be modelled by a broken continuum. The process of creating these 

subregions is often called discretization. The discretization strategy depends on the region 

and the aim of the analysis. It is noticeable that the finite element method was originally 

developed by structural engineers, where the skeletal structures naturally resolve into finite-

size elements. On the other hand, the aircraft industry made early contribution to the 

breaking of solid structures into elements (meshing). This method was mainly used where 

the exact solution to a problem cannot be obtained. Obviously, the denser the discretization 

is the more accurate the result would be. Therefore, obtaining an accurate result could be a 

time consuming process. Adaptive finite element techniques are generally used to adjust the 

discretization throughout the analysis process in the way to lead to a more robust and 

reliable solution in a shorter time. 

In geotechnical engineering, there is a wide range of nonlinear problems for which 

adaptivity can improve the accuracy of numerical solutions. For example, adaptive time 

stepping for controlling the time (load) discretisation has been used successfully to solve 

many geotechnical problems (Sloan and Abbo, 1999a, 1999b; Sheng and Sloan, 2001, 

2003; Allix et al. 2010). Automatic substepping in explicit stress integration, which adjusts 

the strain increment size according to the current stress state, is another form of adaptivity 
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that has proved to be highly effective in implementing advanced constitutive models 

(Sloan, 1987; Sloan et al., 2001). In contrast, adaptive spatial discretisation has attracted 

less attention in the field of geomechanics, perhaps because of the prevalence of the small-

deformation assumption.  

The finite element method with adaptive spatial discretisation has been an active research 

area over the last three decades. A number of techniques have been developed, with the 

most common ones in dealing with large deformation problems being the r-adaptive and h-

adaptive methods (Li and Bettess, 1997). The r-adaptive method adjusts the spatial 

discretisation, but usually does not increase the overall number of elements and the nodes. 

The h-adaptive method, on the other hand, adjusts the spatial discretisation by continuously 

increasing the mesh density in zones where a more accurate response is expected. Although 

it is well established in solid mechanics, the h-adaptive finite element method has attracted 

less attention in geomechanics with the work of Hu and Randolph (1998, 1999) being a 

notable exception. As finite element analysis becomes increasingly common in 

geotechnical engineering, with many practical problems involving the complex features 

listed above, there is a pressing need for reliable methods that control the discretisation 

error within a desired limit. 

This chapter presents a brief literature review of h-adaptive finite element method. 

Alternative adaptive finite element techniques are introduced. The chapter ends up with the 

equations governing the nonlinear large deformation problems. 
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2.2. LITERATURE REVIEW 

A normal procedure for solving the engineering problems by using an h-adaptive finite 

element method includes continuously increasing the number of discretization points in a 

defined region and resolving the global system of equations to calculate the relative change 

in the numerical solution.  An h-adaptive method starts with an initial model of the mesh 

which also describes the geometry of the region and boundary conditions as well as 

specifying an error tolerance according to a desired criterion. The h-adaptive FE strategy 

subdivides the integration region into successively smaller sub-regions (Huerta et al., 

1999), thus changing the density of the elements to yield a more accurate solution while 

keeping the element order constant. In the case of small deformations, where the mesh 

geometry does not change throughout the solution process, the h-adaptive method can be 

used to generate a better mesh at the end of the analysis with a repeated analysis being 

expected to improve the solution accuracy.  

In the literature, it is common to use the h-adaptive method in this way for small 

deformations (e.g. Boroomand and Zienkiewicz, 1999; Rannacher and Suttmeier, 1999; 

Khoei et al., 2007).  In the case of large deformations, where the mesh is continuously 

updated according to the current displacements, the h-adaptive method provides a natural 

strategy for controlling the discretisation error as the solution proceeds.  The approach is 

thus well suited to handling problems associated with large deformations, such as mesh 

distortion, but reports of its use in the literature for this purpose are scarce.  Another 

advantage is that, for the same level of accuracy, an h-adaptive solution is usually 
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substantially cheaper than a conventional solution that is based on a constant (perhaps 

substantially higher) number of elements.  

The three main components of an h-adaptive finite element method are: error estimation, 

which controls the mesh refinement process; mesh generation, in which a new mesh is 

generated from scratch or by refining a previous old mesh; and remapping, which transfers 

the state parameters between two meshes. 

The first papers on adaptive finite element methods appeared in the late seventies (e.g. 

Carey, 1976; Hyman, 1977; Babuska and Rheinboldt, 1978). Since then a vast number of 

publications have been devoted to this subject aiming to develop new algorithms and to 

improve the existing techniques of adaptivity components. 

An important task in solving a problem by finite element method is to divide the main 

region into a number of small subregions known as elements. This process, mainly 

described as mesh generation, provides the input data for the analysis. To decrease the 

analyst’s interaction with the mesh and therefore increasing the accuracy and efficiency of 

the adaptive method, development of an automatic mesh generation scheme is deemed 

necessary. Several automatic mesh generation algorithms which have been introduced in 

the last decades can be found in e.g. Ho-Lo (1988), George (1991) and Owen (1998). The 

importance of an efficient mesh generator is emphasized by using h-adaptive algorithms 

where based upon the result of an error estimator, the new element sizes are obtained from 

the previous element distributions and a mesh refinement needs to be undertaken. 
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Another essential procedure in an adaptive technique is assessing the error of the solution 

computed within a given mesh. The error measurement procedure attempts to control the 

spatial discretisation error in the finite element domain which, in turn, determines the 

distribution of the elements in future mesh discretisation. Two most common approaches 

for evaluating the error are: error indication and error estimation. Error indicators are 

usually based on the value of intuitive parameters (geometrical, mechanical, etc.) which can 

be easily computed to keep the processing cost low. The error indicators usually take 

advantage of some readily available quantities from finite element computation to evaluate 

the error. The main drawback of using error indicators is that they are problem dependent, 

i.e., the analyst needs to choose a proper indicator for the specific application. Moreover, 

error indicators only specify the regions where the mesh requires to be refined but the error 

is not quantified and it needs the user’s judgment on the density of the mesh.  Error 

estimators, on the other hand, approximately evaluate the error of a given norm. They are 

based on mathematical foundations and are usually more expensive to apply. However, 

because of their alibility to provide the quantity of the error, they have attracted more 

attention than the error indicators in the literature.  

A vast literature review on error estimation and adaptive methods was presented by 

Babuska et al. (1986) and Brebbia and Aliabadi (1993). Ladevèze and Oden (1998) edited a 

book presenting the latest advances in adaptive techniques in engineering field. The 

adaptive finite element methods are also discussed in books by Zienkiewicz and Taylor 

(1989) and Szabo and Babuska (1991).  
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Babuska and Rheinboldt (1978) introduced an initial posterior error estimator by using the 

norms of negative Sobolev space corresponding to the given bilinear form. In their method, 

they estimated the error by evaluating the residuals of the approximate solution and 

obtained more accurate answers. In their method, they developed the mathematical basis of 

self-adaptive techniques. By applying a self-adaptive strategy, one can achieve to a desired 

accuracy in a finite element domain just by refining certain elements. Their research was 

later followed and improved by themselves and the others (e.g. Kelly et al., 1983; Bank and 

Weiser, 1985). Later around 1982 the computer graphics techniques had started to be used 

in mesh generation programs. 

Shephard (1986) presented a self-adaptive procedure by combining Babuska’s error 

estimation method with a geometric model and automatic mesh generation. Zienkiewicz 

and Zhu (1987) introduced recovery based error estimators which use the recovered 

solution instead of the exact solution to estimate the error. This technique (generally 

referred to as Zienkiewicz-Zhu or Z2 error estimator), is based on obtaining recovered 

values of gradients by averaging or using the 2L  projection, to achieve a reasonable 

estimation of error. In 1992, the same authors corrected and improved their recovery 

technique and named it Superconvergent Patch Recovery (SPR) method (Zienkiewicz and 

Zhu, 1992a, 1992b, 1994). This method uses a least square smoothing technique to recover 

a more accurate value of the stresses at a node using the stresses at Gauss points in a small 

set of elements (a patch) around the node.  

Later, researchers attempted to improve the recovery process by combining equilibrium 
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and boundary conditions, e.g. Wiberg and Abdulwahab (1993), Wiberg et al. (1994), 

Blacker and Belytschko (1994), Tabbara et al. (1994) and Lee et al. (1997). Babuska et al. 

(1994a, 1994b) successfully proved the robustness of Superconvergent patch recovery 

method over residual-type approaches by considering optimum robustness index in many 

performed tests. Boroomand and Zienkiewicz (1997) introduced a new Superconvergent 

method called Recovery by Equilibrium in Patches (REP) in which the stress field that 

satisfies the equilibrium in a weak form can replace the one of the finite element 

approximation. Therefore, in this method there is no need of considering superconvergent 

points. Paulino et al. (1997) introduced a new error estimation based on nodal sensitivities. 

Mahomed and Kekana (1998) suggested an error estimating method by using strain energy 

equalisation. Until then, the improvement in   the error estimation methods was mainly 

focused on elastic problems. Boroomand and Zienkiewicz (1999) generalised their previous 

energy norm recovery procedure in estimating error for adaptivity in nonlinear problems of 

elasto-plasticity. Huerta and Diez (2000) introduced a residual type error estimation 

including pollution assessment for nonlinear finite element analysis. It is also possible to 

use an incremental form of error estimation based upon a global error measure in the 

constitutive equations (Gallimard et al. 1996). In recent years a new approach to a 

posteriori error estimation has been introduced which is known as Goal-oriented error 

estimation or dual method. This method is based on controlling the local quantities or other 

quantities of interest like a specific displacement or stress rather than controlling global 

quantities such as energy norm. The related mathematical analysis of this method is 

described by Rannacher and Suttmeier (1998). Also, some researchers have applied this 
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method to solve the different problems in engineering applications. For example, Wriggers 

et al. (2000) applied this method to problems including contact. Oden and Prudhomme 

(2001) presented a study of this method for two dimensional applications.  

After estimating the error, the next step in an adaptive method is to optimise the mesh to 

achieve a better accuracy in solution. Therefore, a criterion needs to be defined for 

optimising the mesh. Various mesh optimality criteria have been presented in the literature. 

Among them, there is a simple strategy proposed by Zienkiewicz and Zhu (1987), (ZZ), 

which is based on an equal distribution of discretisation error between the elements in the 

current mesh. Onate and Bugeda (1993) proposed a different mesh optimality criterion 

(OB) based on the equal distribution of the density of error (ratio of the square error norm 

over every element and its measure). Later, Li and Bettess (1995, 1997) improved the ZZ 

strategy by relating the desired size of element to their current size (LB) based on equal 

distribution of error in each element in the new mesh. Diez and Huerta (1999) proved that 

using the LB criterion provides the cheapest mesh with the lowest number of elements and 

minimum number of degrees of freedom for a given accuracy. 

Comparatively, the condition implied as the mesh optimality criteria in the strategy 

proposed by Onate and Bugeda (1993) leads to a very dense mesh where the number of 

elements can be even five times more than the LB and ZZ strategies. Diez and Huerta 

(1999) introduced an alternative refinement criterion which is a combination of the LB 

technique and OB strategy known as ULA. The major feature of ULA strategy is to 

associate the global relative error with a local prescribed accuracy.  
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After assessing the error, a new mesh is generated according to the refinement criterion. 

Then, two different approaches are available to continue the analysis. One is to restart the 

analysis with the new mesh from time zero. This avoids the cumbersome process of 

transferring variables from one mesh to another, but is only appropriate for small 

deformations.  For large deformations, the new mesh represents the current deformed 

configuration  and cannot be used as the initial undeformed configuration, thus making a 

restart of the analysis infeasible (e.g., in penetration problems such as those described by 

Sheng et al., 2009).  An alternative strategy, which is known as remapping or convection, is 

to transfer the history-dependent variables and displacements from the old mesh to the new 

mesh. Different approaches for remapping are available in the literature such as global least 

square projection (Oden and Brauchli, 1971), element-based transfer which uses an 

extrapolation algorithm based on shape functions, and patch-based transfer or least-square 

approximation techniques (Boroomand and Zienkiewicz, 1999). By remapping state 

variables, the analysis continues with the new mesh for the next load increment. Thus, the 

total number of load increments is not increased, but with a cost of remapping the state 

variables between the old and new meshes. 

Various h-adaptive finite element strategies can be devised by combining different forms of 

error estimators, mesh generators, and remapping techniques.  For example, Hu and 

Randolph (1998) proposed an h-adaptive finite element procedure for geotechnical 

problems in which the error is estimated using the Superconvergent Patch Recovery (SPR) 

technique to recover the strains at Gauss points. The mesh refinement procedure is based on 

a minimum element size criterion. To transfer the stresses and soil properties from the old 
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mesh to the new mesh two interpolation strategies, a modified form of the unique element 

method and the stress-SPR method, were applied. This method has been used to analyse the 

bearing capacity of strip and circular foundations on non-homogeneous soil where the 

strength increases linearly with depth. The strategy proposed by Hu and Randolph (1998) is 

based upon small strain analysis where the effect of rigid body rotations is neglected. 

As mentioned above, the h-adaptive method has been used mostly for small deformation 

problems with only a few studies focusing on large deformations mainly on other areas 

rather than geomechanics (Peric et al., 1999; Hu and Wriggers, 2002).  The key aim of 

previous work was to improve the accuracy of the solution, with little attention being 

devoted to important issues such as mesh distortion (Khoei and Lewis, 2002). 

2.3. FINITE ELEMENT METHOD 

The finite element method is a powerful tool for analysis of many problems in several 

engineering disciplines. Although it is difficult to find the exact orientation date of this 

method, by tracing it back, it seems to have been first introduced to the engineering in the 

mid 1950s by Argyris and Kelsey (1954) and Turner et al. (1956). The term “finite 

element” was, however, applied for the method by Clough (1960) for the first time. This 

method and its aspects have attracted the interest of many researchers over the past decades 

and a vast range of publications is available in the literature. 

To use the finite element method for solving physical problems, first a mathematical model 

of the problem needs to be generated. This model can be governed by differential equations 
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assumptions on geometry, material law, loading, and boundary conditions. Then the finite 

element analysis solves the mathematical model. It is clear that the finite element solution 

will be based on the selected mathematical model with all its specific assumptions. 

Therefore, the choice of an appropriate mathematical model is one of the most important 

steps in engineering analysis.  

The finite element method has also been known as a robust tool for solving nonlinear 

problems in many engineering applications such as solid mechanics and fluid dynamics. In 

geotechnical problems, nonlinearity may occur for several reasons; material nonlinearity, 

geometrical nonlinearity, changes in boundary conditions, time dependency. Material 

nonlinearity happens when the stress-strain relationship is not linear. In geomechanics, 

there are several well-established material models for predicting nonlinear behaviour of soil 

under different situations. Geometrical nonlinearity is observed when deformations, 

including displacements and rotations, are so large that the effect of geometry change may 

not be neglected during the analysis. In other words, the volume of body changes due to 

large deformations and it cannot be considered as a constant. In some problems, the 

boundary conditions are not constant during the analysis resulting in a nonlinear behaviour. 

Such problems usually involve contact mechanics. Some time dependant problems may 

also represent a nonlinear behaviour. For instance, this behaviour may be observed when 

the external forces are changing with time in a dynamic analysis. Consolidation of soils is 

another well-known time dependent problem in geomechanics.  
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2.4. ADAPTIVE FINITE ELEMENT METHODS 

The finite element solution technique is a numerical procedure which usually starts with an 

initial mesh and aims to generate a solution with a desirable accuracy in a specific 

parameter. However, we do not have an initial sufficient knowledge of the model to meet 

the accuracy criteria in a single try. A common finite element strategy to solve problems 

involved with large deformation is the Updated-Lagrangian (UL). In the UL method the 

material particles are connected to a computational grid. The spatial position of this 

computational grid is updated according to incremental displacements at the end of each 

time step.  Potentially, mesh distortion and entanglement of elements can occur in the 

material mesh due to continuous change in geometry, leading to a negative Jacobian of 

finite elements or a significant loss of accuracy in the solution. Mesh distortion and 

overlapping of elements in zones with high stress and strain concentration is almost 

inevitable if the finite element mesh is fine enough to achieve acceptable results. This 

phenomenon can be observed while solving a wide range of geotechnical problems such as 

bearing capacity of relatively soft soils under a footing, penetration of objects into soil 

layers, lateral movements of pipelines on seabeds, pull-out capacity of anchors embedded 

in soft soils, and slope stability analysis. 

Consequently, adaptive finite element methods try to achieve a solution with a specific 

accuracy in a determined parameter by refining, coarsening or relocating a mesh. The 

analysis by these methods usually adapts an initial mesh which requires no specific 

consideration as a priori. Then an incremental analysis begins to provide the error in a 
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prescribed parameter. If the error does not satisfy the prescribed accuracy, the mesh will be 

adjusted through adaptive methods aiming to achieve the desirable accuracy with least 

effort.  Incremental solving method for nonlinear equations which is the nature of finite 

element method will help the adaptive mesh generation to refine the mesh based on the 

partial results of the previous increment. Therefore, adaptive finite element techniques can 

eliminate the mesh distortion by, if necessary, generating an undistorted new mesh at the 

end of the UL analysis. 

Although the development of adaptive finite element methods started in the second part of 

1970s and many researchers have devoted their study to this subject during last three 

decades ,e.g., Babuska et al. (1983,1986,1995), Flaherty et al. (1989), Duncan(1998) and 

Bern et al. (1999), there is not enough information to suggest which strategy is most 

efficient. The adaptive finite element methods are usually classified as: 

 p-adaptive FE method 

 r-adaptive FE method 

 h-adaptive FE method 

 hp-adaptive FE method 

These methods are briefly reviewed in the following. 

2.4.1. p-adaptive FE method 

In a p-adaptive finite element method, mesh is refined by locally increasing the degree of 

interpolating polynomial functions, p, (Figure 2.1). During the analysis by this method, 
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number of nodes and the type of generated elements may change to obtain a more accurate 

solution. This strategy is acceptably powerful when used with hierarchical basis, since 

portions of the stiffness and mass matrices and load vector will not change by increasing 

the polynomial degree of the basis. The use of hierarchical p-adaptive method was first 

introduced by Zienkiewicz et al. (1970) and was successfully applied by Peano et al. (1979) 

and Szabo (1979, 1986). Schwab (1999) has explained the theory and application of this 

method in solid and fluid mechanics in details. According to Partheymuller et al. (1995) 

while this method is less common than h-adaptivity and r-adaptivity, it is widely 

considered to be more accurate and efficient for smooth elemental integrands. 

 

2.4.2. r-adaptive FE method 

r-adaptive finite element method tries to improve the solution to a problem by relocating 

the nodes in the finite element domain (Figure 2.2). In this method, the topology of the 

problem, i.e. the number of nodes and the elements connectivity, remains constant. For the 

refinement the nodes are moved to desired locations so that the mesh would be finer in 

some areas and coarser in others. It might seem that r-adaptive alone is not sufficient to 

Figure 2.1. p-adaptive finite element method 

p-adaptive
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find a solution with a specific accuracy as it relies completely on the initial mesh. 

Therefore, if the analysis is started with a very coarse mesh, it would be impossible to 

achieve a high level of precision at any time. To achieve a more precise solution one needs 

to start the analysis with a fine mesh which is normally increasing the computation cost.   

 

A classic example of this approach is the so-called Arbitrary Lagrangian-Eulerian method. 

Nazem et al. (2006) demonstrated the ability of this method in solving general large 

deformation problems of geomechanics. Khoei et al. (2008) presented an extended finite 

element formulation based the ALE technique for large deformation analysis of solid 

mechanics problems. Although powerful, the r-adaptive method does not directly address 

problems like localised deformation or stress concentration. 

2.4.3. h-adaptive FE method 

h-adaptive finite element method is based on generating a new mesh, using the same type 

of element, by dividing the area of basic elements where the interpolation must be 

improved to achieve more accuracy. In this method, the connectivity of the elements and 

Figure 2.2. r-adaptive finite element method 

r-adaptive
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the total number of degree of freedom may change but the degree of interpolation 

 

polynomial functions remains the same. This approach is particularly effective in 

improving the solution accuracy for problems involving large deformation, localised 

deformation, moving boundaries, post-failure response, steep gradients and sharp fronts. As  

finite element analysis becomes increasingly common in geotechnical engineering, with 

many practical problems involving the complex features listed above, there is a pressing 

need for reliable methods that control the discretisation error to within a desired limit.  

Since h-adaptive finite element method is the main subject of this Thesis, the method will 

be explained in details in Chapter 3. 

2.4.4. hp-adaptive FE method 

An alternative way to apply adaptivity is to combine two different adaptive methods 

simultaneously. The most well-known combination is hp-adaptivity. The hp version 

combines both h-adaptive and p-adaptive strategies to exploit the strength of each method 

while avoiding their individual weaknesses. The purpose of developing this strategy is to 

minimise the computational cost by requiring a minimum number of parameter according 

Figure 2.3. h-adaptive finite element method 

h-adaptive
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to Oden et al. (1989) while still obtaining accurate approximate solution. Each new 

adaptive mesh is created by estimating the error on the previous mesh and executing the h-

adaptive and p-adaptive refinement procedures on the existing mesh according to the result 

of adaptive method. With this combination, high rates of convergence can be achieved 

when singularities are present. A review and application of this method was presented by 

Verfurth (1996) and Schwab (1999). 

2.5. GOVERNING EQUATIONS  

In this section, the general formulation of a nonlinear finite element analysis is prescribed. 

This formulation considers material nonlinearity as well as geometrical nonlinearity. A 

nonlinear analysis by finite element method is usually performed by increments (or time 

steps). At each increment, a portion of the loads, including external loads and body forces, 

is applied on the body and the correspondent incremental displacements are obtained by 

solving the nonlinear global equations. The incremental strains can be computed from the 

incremental displacements and these strains are then used to determine the stresses within 

the continuum. This procedure usually requires a stress-integration scheme provided that 

the relation between the stresses and strains is nonlinear. The stresses are then used to find 

the internal forces which must be, to a tolerance, equal to external forces so that the 

equilibrium is satisfied. In the following, the fundamental equations in a nonlinear finite 

element analysis are briefly discussed. 

Note that the governing equations presented in this chapter are for static analysis. 
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Later, the h-adaptive method also applied to solve the problem involving dynamic analysis 

and contact mechanics. The related governing equations of those problems are presented in 

detail in Chapter 5. 

2.5.1. Equilibrium equation 

Assume that the analysis starts at time 0 and all state variables which satisfy equilibrium at 

time t are known. If further loading is applied at time t+t the domain of the problem will 

deform, and equilibrium will need to be checked and satisfied. In theory, equilibrium will 

be achieved if the following equation satisfied  

0t t t t t t
t t t t t t t t t t t t
ij ij i i i iV V A

dV b u dV T u dA     
                  (2.1) 

where u denotes a displacement field that satisfies the displacement boundary conditions, 

ij is the Cauchy stress tensor, ij represents the variation of the linear strain tensor 

consistent with the virtual displacements ui, V is volume of the body, bi is the applied 

forces per unit volume, Ti are the components of the surface traction per unit area and A is 

the surface area. For the adaptive finite element methods developed in this study, including 

the h-adaptive as well as the combined rh-adaptive technique, an Updated-Lagrangian (UL) 

framework has been adopted.  In the UL method, all variables are referred to the last 

equilibrium configuration. Therefore, to solve Equation (2.1), all quantities must be 

transferred to the configuration at time t. Moreover, the Cauchy stress tensor may change 

significantly due to possible rigid body motion occurring in a large deformation analysis.  
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To avoid this, objective stress rate is introduced into Equation (2.1).  In this study we use 

the Jaumann stress rate, J  , one of the most commonly used stress rates , which is defined 

as follows  

ijJ
ij ik jk ik kj

d
w w

dt


                          (2.2) 

where w is the spin tensor, and is given by 

1

2
ji

ij
j i

uu
w

x x

 
     


                       (2.3) 

and u represents the displacement vector. 

Linearization of Equation (2.1) in an UL frame-work and employing the Jaumann stress 

rate in Equation (2.2) provide 

           
   

t t t

t t t t t

t t t t t t
ijkl kl ij ij ij ik jk jk ik ijV V V

t t t t t t t t t t
i i i i ij ijV A V

C d d dV d dV d d d dV

b u dV T u dA d dV

         

     
   

    

      

  
  

 (2.4) 

where 

1

2
k k

ij
i j

u u

x x
  


 

  (2.5) 

Linearisation of Equation (2.4) by the finite element method provides the matrix equation 
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governing the equilibrium of the body. In its rate form, the equilibrium equation is 

expressed by  

=int ep extF K U F    (2.6) 

where Kep represents the stiffness matrix, and Fext and Fint represent the external and the 

internal force vectors, respectively.  The stiffness matrix and the internal force vector are 

obtained by 

t t t
epep T t T t t T t t

l l nl nl l lV V V
dV dV dV    K B C B  B σ B B σ B           (2.7) 

t
int T t

lV
dV F B σ                        (2.8) 

where, for two dimensional plane strain conditions, the corresponding B matrices at the ith 

node of an arbitrary element, and the stress matrices are defined as 

1 2

2 1

0

0

T

i i

l
i i

N N

x x

N N

x x

  
   

  
   

B                      (2.9) 
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0 0

0 0
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i i
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i i
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  
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  
   

B                   (2.10) 
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σ                    (2.13) 

 11 22 12

Tt t t  σ                       (2.14) 

Note that N denotes the nodal displacement shape functions.  

2.5.2. Constitutive equations 

Based on the theory of plasticity, the constitutive equations governing the elastoplastic 

behaviour of the material are usually derived by the following assumptions: 

 The incremental strain tensor, ij , is decomposed into an elastic part, e
ij , and a plastic 

part, p
ij . 

  e p
ij ij ij                              (2.15) 
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 A yield function of the form  , 0ij if     describes the elastic domain, and  

represents a set of hardening parameters.  

 As yielding occurs, the stress state must not lie outside the yield surface as the plastic 

deformation occurs , i.e., 

  0t t
ij it t

ij i

f f
f  

 
 

    
 

                        (2.16) 

 The direction of the plastic strain is normal to a surface called the plastic potential g. 

This rule is known as the associated flow for f g  and non-associated flow for 

f g , and is expressed by 

p
ij

ij

g 



 


    (2.17) 

where   is a plastic multiplier.  

The stress rate can be obtained by 

e e
ij ijkl klC                             (2.18) 

where eC  represents the elastic constitutive matrix. Substituting (2.15) and (2.17) into 

(2.18) gives 

e e
ij ijkl kl ijkl

kl

g
C C  




    


                         (2.19) 
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To find the plastic multiplier, we may assume a common hardening law 

 ,i iB                                  (2.20) 

where B is a variable derived from the hardening laws and is typically a function of the 

current stresses and hardening parameters. Inserting (2.19) and (2.20) into (2.16),   can be 

found as follows 

 ,

e
ijkl kl

ij
kl kl

e
ijkl m

ij kl m

f
C

D
f g f

C B




 
 

  

  


  
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   
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
                    (2.21) 

The elastoplastic constitutive relation is obtained by substituting (2.21) into (2.19) 

according to 

 ep
ij ijkl klC                             (2.22) 

where 

 ,

e e
ijmn klpq

mn pqep e
ijkl ijkl

e
pqrs m
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f g
C C

C C
f f f

C B

 
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   
 

 
  

   
  

             (2.23) 

Equations (2.22) and (2.20) define a system of ordinary differential equations which must 

be integrated at each integration point to find the stresses.  For a given strain increment, this 
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integration takes the following form 
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
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         (2.24) 

Considering large deformations, the constitutive equations must be objective, i.e., a rigid 

body rotation should change neither the stress components nor the strain in the material.  

This condition, termed as the principle of stress objectivity, may be satisfied by adopting 

the so-called rate-type formulation in the finite strain plasticity, and, therefore, replacing 

the stress rate in Equation (2.22) by an objective stress rate.  As mentioned before the 

Jaumann stress rate defined by Equation (2.2) is adopted in this study.  Thus, Equation 

(2.22) may be rewritten as following 

J ep
ij ijkl klC                                    (2.25) 

Introducing (2.2) and (2.25) into (2.24) the following integration equations are obtained 
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     (2.26) 

which describe the stress-strain relations, and need to be solved at every integration point 

during each equilibrium iteration.  Note that ij in (2.26) is defined by 
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CHAPTER 3 

h-ADAPTIVITY AND ITS ASPECTS 
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3.1. INTRODUCTION 

In this chapter the h-adaptive finite element method is discussed in detail. In an h-adaptive 

finite element procedure, the analysis starts with a relatively coarse mesh. During a typical 

time-step, necessary iterations are performed until equilibrium is achieved. Then an 

automatic procedure, based upon error estimators or error indicators, usually determines the 

regions where the mesh requires refinement for the future increments. After generating a 

new mesh, all state variables such as stresses and hardening parameters must be 

transformed from the old mesh to the new mesh. It is clear that three main components of 

an h-adaptive FE procedure include error estimation, mesh generation and mapping of state 

variables. This chapter describes these three important aspects of an h-adaptive FE method. 

3.2. h-ADAPTIVE FINITE ELEMENT METHOD 

h-adaptivity is probably the most common adaptive technique used in modern finite 

element applications. However, its implementation is quite a challenge, since in every stage 

of refinement a new mesh which can be totally different from the old mesh is generated.  

This approach is based on subdividing the integration region into successively smaller sub 

regions. In this way a new mesh is produced using the same type of elements used in the 

old mesh by changing the density of the elements to satisfy the requirements of the 

solution. Therefore, the topology of the main domain is changed to obtain a desired 

accuracy. In fact, h-adaptive procedures generate a sequence of approximate meshes which 

are aimed at converging to a proper mesh gradually or eliminating mesh distortion in the 
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finite element domain. In order to verify the accuracy in each stage, an error assessment is 

used to provide a clue for the later mesh refinement. During error assessment, the error in 

each element is calculated and is compared with a prescribed limit. If the error is above the 

limit, the element must be divided into some new smaller elements in the next mesh. The 

new area of element is calculated using an optimality criterion. The computational cost of 

an h-adaptive finite element analysis is normally higher than an r-adaptive method because 

at each step, if required, a new mesh must be generated based upon an error measure and 

then all the state parameters need to be recalculated by transferring data from the old mesh 

to the new mesh. In this method, the projections of the state parameters can be quite a 

challenge as the topology of the new mesh may significantly differ from the topology of the 

old mesh. h-adaptive finite element method, on the other hand, does not depend on an 

initial mesh to find a solution and the accuracy of the solution improves as the analysis 

proceeds. In other words, the number of degrees of freedom can change arbitrarily to 

achieve a prescribed accuracy. This method is generally more accurate than r-adaptive and 

p-adaptive techniques but the implementation of the method is rather more complicated and 

challenging.  

As mentioned before, three main components of an h-adaptive finite element analysis 

include error estimation, mesh generation, and remapping of state variables. These 

components will be explained in the followings. 
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3.3.  ERROR ESTIMATION 

In an h-adaptive finite element analysis, since an exact solution is usually not available, a 

posteriori error estimation is always a necessary requirement. The error estimators measure 

the quality of the approximate solution and serve as a guide through the mesh refinement 

procedure which is aimed at decreasing the discretization error. Two major types of error 

estimators are residual error estimators and recovery based error estimators. The residual 

type of error estimator was first introduced by Babuska and Rheinboldt (1978). It uses the 

residual of the finite element solution implicitly or explicitly to estimate the error. In the 

implicit type, an approximation of the error is obtained by solving local boundary value 

problems which are involved with the residuals of the finite element solution as data. The 

accuracy of this type of error estimators depends on the way boundary conditions are set 

and the local problem is solved. The explicit type, on the other hand, directly uses the 

residuals of the mesh solution to estimate the error.  Babuska et al. (1994a) showed that the 

accuracy and robustness of this type of error estimators depends on regularity of the 

problem and the mesh used for the finite element analysis. Recovery based error estimators 

were first introduced by Zienkiewicz and Zhu (1987). In this method a more accurate or 

super convergent solution which is computed from the finite element approximation 

through recovery techniques replaces the exact solution to compute the error. In the present 

work the recovery based error estimation is chosen over the residual type for its following 

advantages: 
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 The concept is simple as the error is defined as the difference between the recovered 

solution *u and the finite element approximation û and can be shown as 

     * * ˆe u u   (3.1) 

  where the exact solution u in any norm can be replaced by the recovered one. 

 As some parts of recovered solution are automatically computed during the finite 

element computation process, little additional computations are involved. Therefore 

the method is computationally more efficient. 

 If the recovery process is superconvergent, as Zienkiewicz and Zhu (1992a) have 

shown, the estimator will always be asymptotically exact. 

By solving several numerical benchmark problems as well as a ‘patch test’, Babuska et al. 

(1994a, 1994b) showed that the recovery type of error estimators is more robust and more 

accurate than the residual based methods in all cases. 

As been noted first by Rank and Zienkiewicz (1987) and later by Ainsworth and Oden 

(1993), for every residual based estimator there is a corresponding recovery- based process 

with the exact same performance. However, the reverse is not true. Therefore, not only 

every residual based error estimator can be replaced by its identical recovery based one but 

also the recovery method offers even more possibilities.  

In the following, recovery based error estimation is explained in more details. 
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3.3.1. Recovery based error estimation 

In general, error is known as the difference between the exact value of a specific parameter 

in a solution and its value which is obtained through the finite element approximation. So 

the error can generally be shown as 

ˆe s s                                                (3.2) 

where s is the exact solution and ŝ  is the finite element approximation. Some of the 

parameters considered in the error assessment are displacement, strain and stress. 

The direct use of the local error calculated from Equation (3.2) is not convenient as the 

exact solution is not available. Therefore, the mathematical norms, such as energy or 2L  

norms are usually used to measure the discretization error. The 2L  norm can be associated 

with errors of any quantity. For the stress in an element, i, the 2L  norm of the error is 

defined in form 

   
1

2

2
ˆ ˆ

T

L
e d   



 
    
 
                               (3.3)   

where   is the exact stress, ̂  denotes the finite element approximation and  is the 

defined problem region. 

On the other hand, the error in each increment can be quantified using energy norm 

expressed as 
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   
1

2

ˆˆ
T

e d   


 
     
 
                                                                                   (3.4) 

in which,   and ̂  are representing the exact and the finite element incremental strain 

fields. In the specific case of elasticity the Equation (3.4)  can be written as 

   
1

2
1ˆ ˆ

T
e D d    



 
    
 
                                  (3.5) 

Clearly the only difference between the energy norm formulation for elasticity and the 2L  

norm is the weighting D. 

Again, as is generally unknown it is replaced with *  which is the recovered stress 

obtained from a recovery procedure such as local nodal-point averaging (ZZ) by 

Zienkiewicz and Zhu (1987) , Superconvergent Patch Recovery (SPR) by Zienkiewicz and 

Zhu (1992a, 1992b) or Recovery by Equilibrium of Patches (REP) by Boroomand and 

Zienkiewicz (1997). So for example the estimated relative error in elastic mode can be 

obtained from 

   
1

2
* * 1ˆ ˆ

T

es
e D d    



 
    
 
                                 (3.6) 

For each specific element i, Equation (3.6) can be re-written as 
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    
1

2
* * 1ˆ ˆ

Ti

ies
e D J d    



 
    
 
                           (3.7) 

in which ii  when
1

n

i
i
   . Also, J  is the determinant of the Jacobean transformation 

matrix. 

Clearly, no matter how we calculate the error in each element (using energy norm or 2L  

norms) the relationship between the error on whole domain and the element contributions is 

shown as 

1

22

1

n

i
i

e e


    
                                        (3.8) 

where i represent an element contribution and n is the total number of elements. 

The error obtained this way is then used to refine the area of the elements in current mesh. 

Therefore, a new finer mesh is generated as the result. In h-adaptive method, this process is 

repeated and it generates meshes which are expected to converge to a proper mesh. In 

practical computations, the refinement must no longer take place when an acceptability 

criterion is satisfied. The acceptability criterion sets a threshold of the prescribed 

computational accuracy, so when the criterion is satisfied the solution has achieved enough 

accuracy. In general, the acceptability criterion can be stated as 

es prs                                           (3.9) 
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where prs is the prescribed accuracy and es is defined by 

 
1

2 2 2

es
es

h es

e

e






                                     (3.10) 

in which 
h

 represents the energy norm obtained from finite element solution. In an 

optimal mesh a high convergence rate can be achieved by equally distribution of the error 

among elements. Therefore for each element i, the criterion is given by 

1
2 2 2

i h es
prs mes

e
e e
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
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 
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                              (3.11) 

So considering the ratio 

i

es
i

m

e

e
                                           (3.12) 

it is obvious that the refinement must be stopped if  

1.0i                                                (3.13) 

Otherwise, the new size of the element for the refinement process can be calculated from 

i
i old
new p

i

A
A


                                         (3.14) 
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where i
oldA  represents the current element size, i

newA  is the prescribed size of the element in 

the next mesh and p is the polynomial order of the approximation. 

3.4. MESH GENERATION 

Mesh generation is the procedure of dividing the problem domain into some elements 

which are used as the input of finite element programs for analysis. Modelling the geometry 

is an essential part of the analysis as the mesh can tremendously influence the accuracy and 

efficiency of the solution. It is also a time-consuming task. The mesh generators can be 

categorized in various fashions based on their aspects. They can be classified based upon 

the dimension and the shapes of the generated elements as: 

 2-dimensional triangles 

 2-dimensional rectangles 

 3-dimensional tetrahedral 

 3-dimensional bricks 

On the other hand, from the connectivity point of view, two main categories can be 

distinguished as follows: 

 Structured 

 Unstructured 

Different methods of two or three dimensional structured or unstructured mesh generation 

have been presented in the reviews and surveys which are available in references by Ho-Le 
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(1988) and El-Hamalawi (1997). The latest of above classification is more noticeable and 

will be explained further in the following sections.  

3.4.1. Structured mesh generation 

A structured mesh generator produces elements with regular connectivity that can be 

expressed as a two or a three dimensional array. In this approach nodal placement are 

computed directly from some given functions by using some simple algorithms which are 

referred as algebraic algorithms like in Laplacian mesh generation or by manually 

decomposing the problem domain into simple patches. The patches are necessarily non-

intersecting and their union results in the parent domain (isoparametric and transfinite 

methods). This type of mesh generators are computationally easy to handle as only the 

spatial coordinates of the points needs to be stored. However, according to Ho-Le (1988) 

the density of the mesh is not easily controllable and the shape of mesh can be disturbed if 

the patch itself has a disturbed shape or has a large aspect ratio. Three most known 

structured mesh generation methods include Laplacian mesh generation, isoparametric 

mapping by Zienkiewicz and Philips (1971), and transfinite mapping method.  Due to their 

limitations, the structured mesh generation methods are not considered in this study.   

3.4.2. Unstructured mesh generation 

Unstructured mesh generators are generally boundary based and typically require some 

form of boundary discretisation to be specified. Then, in every step of element generation, 

the geometry of the unmeshed region will be assessed and the boundary definition is 
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preserved. Unstructured meshes are often characterized by irregular connectivity, and are 

efficient in the sense that they permit elements to be highly concentrated in zones where 

they are needed. Unstructured mesh generators have now superseded structured ones, 

noticeably in the engineering applications, due to their flexibility and robustness specially 

for meshing complicated and irregular regions.  However, the need of keeping the track of 

connectivity as well as coordinates of elements makes these methods computationally 

expensive. Two most known unstructured mesh generation methods are advancing front 

method and Delaunay method which will be described in the following. 

a) Advanced front method 

Advanced front method was introduced by George (1971) for generating unstructured 

meshes. Later, Lo (1985) presented a new mesh generation algorithm where the initial 

advancing front boundary of the region is defined by a set of lines known as segments and 

all nodes are generated within the boundary of the region. Then each triangular element is 

formed by connecting the end nodes of a segment to an interior node assuming that it does 

not intersect the advancing front. Peraire et al. (1987) presented a new version of advancing 

front method for steady state solution of Euler equations in two dimensions. His work made 

the basis of all other researches in this field which are more concerned with the methods of 

generating the elements and the nodes simultaneously. In this method, nodes are generated 

along the boundary of the region, which establishes a front. Then, based on the element 

densities at different positions, the internal nodes are produced to link sets of double nodes 

on the front. At this stage a layer of elements is created which does not necessarily have  
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the same shape as the front. Afterward, the front end is replaced with the new element 

edges and the process is continued by generating the new interior nodes until the whole 

region has been meshed, as shown in Figure 3.1. 

There has been a great progress in the mesh generation schemes which use the advancing 

front method in the last few years. These schemes are mainly concerned with procedures 

for controlling the direction of mesh stretching and the element size. More recent 

modification and development in this method can be found in Lo and Lee (1994), Lau and 

Lo (1996) and Zienkiewicz and Wu (1994). The advancing front method usually generates 

nicely graded meshes with high quality triangles. Also by considering the domain boundary 

as the initial front, the consistency of the boundary is preserved. However, checking the 

intersection of edges and overlapping of elements can be really time-consuming and in 

complicated regions identifying and selecting points based on a selected front and then 

validation of new elements can be a major problem. 

Figure 3.1. Advancing front with one layer of triangles  
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b) Delaunay method 

Delaunay method is probably the most popular and the most time-efficient method 

available for generating triangular unstructured meshes. The main characteristic feature of 

this method is that the circumcircle (or circumsphere in 3D) of every triangle (or 

tetrahedral) does not contain any other nodal points of the triangulation. This type of 

triangulation is generally known as Delaunay triangulation (DT).  

The idea of DT was presented by Boris Delaunay based on mathematical work of Dirichlet 

and Voronoi in 1934. A two dimensions Voronoi diagram (also known as Dirichlet 

Tessellation) is based on a group of vertices which divide a plane region into subregions 

bound by line segments. Each subregion is indicated with a Voronoi cell and belongs to one 

vertex and contains that part of the main region which is closer to this vertex than any other 

vertex in the group. Delaunay showed that the Voronoi diagram could form a unique 

triangulation just by connecting each of its two neighboured vertices, by a new edge. The 

Voronoi diagram for eight vertices in the plane is shown in Figure 3.2. 

Later, various algorithms using the main feature of DT were established by researchers 

which no longer need to construct Voronoi diagram. Lawson (1977) presented topological 

flipping technique which is used to obtain the DT directly from any arbitrary triangulation. 

As an alternative to Lawson’s technique, Sibson (1973) introduced the flipping algorithm 

for two dimensional domains, where an arbitrary triangulation is converted into a Delaunay 

triangulation by flipping the diagonals of two neighbouring triangles. Then, Chew (1989) 
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proposed a constrained version of the Delaunay method for domains with irregular non-

convex boundaries. Also a basic algorithm was introduced by Rebay (1993) for meshing a 

two dimensional irregular region using the Bowyer-Watson node insertion method.  

In early eighties DT attracted the attention of researchers as not only a mathematical 

method for triangulation but also a robust and highly efficient technique for generating the 

computational meshes. However, as a mesh generator, it needs to be combined with a fast 

and effective node insertion technique.  

Based on the point insertion scheme, mesh generation methods using DT can be classified 

into non-incremental and incremental methods. In non-incremental methods, positions of 

all vertices are determined before triangulation. Works by Lee and Schechter (1980) which 

developed “divide-and-conquer” method and Fortune (1987) and O’Rourke (1993) which 

presented sweeping methods are examples of the non-incremental methods. On the other 

Figure 3.2. The Voronoi diagram (dotted lines) and the Delaunay triangulation  

(solid lines) 
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hand, in incremental methods, vertices are added one at the time to a gradually growing 

triangulation starting from a single triangle. An example of this method is presented by 

Green and Sibson (1978). 

Using Delaunay triangulation increases the quality of mesh and computational efficiency 

even for complex domains by reducing the user intervention. Also as noted by Lawson 

(1977), the DT maximizes the minimum angle in the triangulation. Therefore it minimizes 

the largest circumcircle that can be constructed around any triangle. In other words, 

Delaunay triangulation automatically avoids the creation of long thin triangles with small 

internal angles. Sloan (1993) presented a fast algorithm for generating constrained DT 

using the Voronoi diagram. Sloan’s scheme is based on permitting certain edges to be 

specified in the final triangulations, such as those that correspond to region boundaries or 

natural interface. Therefore, it allows more control on the way mesh is distributed and it is 

suitable for contour plotting applications. 

3.5. REMAPPING 

In an adaptive mesh refinement the result of error estimation is used to regenerate an 

efficient finite element mesh based upon the new areas of the elements. Then, two different 

approaches are available to continue adaptivity process up to achieving the accessibility 

criteria. One solution is to restart the analysis with the new mesh. By doing so, one can 

avoid the necessity for transferring variables between meshes and can get stable numerical 

results. However, this increases the number of increments which are required to complete 
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the analysis. Also, in more complicated problems, analysis may begin with meshes which 

are totally inappropriate for the earlier stages of loading. An alternative strategy, which is 

known as remapping, is to transfer the history-dependent variables and displacements from 

the old mesh to the new mesh. A remapping process must consider the following important 

aspects: 

 Conservation of plasticity consistency, 

 Equilibrium achievement, 

 Compatibility of the history-dependent internal variables transfer with new 

displacement field,  

 Keeping the numerical diffusion of remapping at a minimum. 

After remapping the state variables, the analysis will be continued with the new mesh from 

the start of the next load increment. Therefore, there is no need for re-analysing the 

previous increments and the total number of increments does not change. Although 

applying remapping to an adaptive method makes it computationally more complicated, the 

total required time to achieve the result is dramatically decreased. For this reason, the 

adaptive method with remapping process has been considered in the present work. 
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CHAPTER 4 

IMPLEMENTATION OF h-ADAPTIVITY  
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4.1. INTRODCUTION 

In this chapter, the procedure of analysis by an h-adaptive finite element technique, being 

adopted in this study, is described in more details. Here, h-adaptive finite element method 

is discussed for two dimensional domains using a mesh generator tool in combination with 

a robust finite element analysis program, SNAC.  SNAC is a robust analysis program written 

in FORTRAN, and has been developed and improved at the University of Newcastle, 

Australia, during the past two decades. 

The algorithm of the h-adaptive finite element procedure developed in the present work is 

shown in Figure 4.1. The analysis starts with generating a coarse mesh on the domain based 

upon the user information. 

In the first increment, UL step use a relatively coarse mesh over the domain of the problem. 

In this step, an adaptive implicit time-stepping (Sloan and Abbo, 1999a) is used to solve the 

nonlinear global equations, during which an automatic explicit stress-integrator solves the 

nonlinear differential constitutive equations due to material nonlinearity. At the 

achievement of equilibrium, the nodal coordinates are updated according to the incremental 

displacements and the error in the finite element mesh is evaluated by an error estimator. If 

the error satisfies an acceptability criterion, the analysis will be continued using the same 

mesh in the next increment. Otherwise, the new area of each element will be calculated 

according to the estimated error and a new mesh will be generated. Then, all state variables 

such as stresses and hardening parameters are transferred from the old mesh to the 



CChhaapptteerr  44--  IImmpplleemmeennttaattiioonn  ooff  hh--aaddaappttiivviittyy                                                                                                                                                      5533  

                                                                                                  

 

Figure 4.1. Procedure for h-adaptive finite element analysis  
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new mesh and the analysis will be performed using the new mesh in next increment. This 

transfer process occurs at integration points as well as nodal points. Since the topology of 

the new mesh is potentially different to the topology of the old mesh, the code must store 

the information of two meshes in memory simultaneously, demanding a precise memory 

reallocation routine. This information must include the total number of nodes and their 

spatial coordinates, the number of elements and their connectivity, the boundary conditions, 

the applied loading, and all state variables at the Gauss points. 

In some stages of the process it may be observed that further refinement may not improve 

the results and also lead to mesh distortion due to the generation of very small elements. To 

avoid this problem, a minimum element area is prescribed for every region inside the 

meshed domain.  This guarantees that the area of each individual element will not be 

smaller than a minimum value, even if the associated error estimator indicates otherwise. In 

addition, the solution algorithm can terminate the mesh refinement at any time-step, thus 

allowing the analysis to be continued with the last generated mesh for the remaining load 

increments. 

In the following sections, the components of the h-adaptive method will be explained in 

more details. In the first part, the implementation of error estimation process is described in 

details. Then, the mesh generator, which is used to generate a coarse mesh as well as 

refining the current mesh based upon specific element areas, is explained. In the next 

section, the format of the input file and the necessary considerations are discussed. At the 

end, the implementation of remapping procedure is presented.  
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4.2.  ERROR ESTIMATOR 

Among others, three different techniques of error assessment are employed in this work, 

and their application as well as their efficiency in solving different geotechnical problems 

will be addressed.  In the following, these techniques will briefly explain. The first method 

used to estimate the error in the finite element domain is the one introduced by Boroomand 

and Zienkiewicz (1999) based on the energy norm in nonlinear problems of elasto-

plasticity. In this method, the error in an increment can be calculated by an energy norm 

defined as 

   
1

2

ˆˆ T
e d   



 
     
 
                                                                                   (4.1) 

in which,   and ̂  represent the exact and the finite element incremental strain fields, 

  and  ̂  denote the exact and the finite element approximation of stresses, respectively 

and Ω is the problem domain. 

To estimate the error, the stress and strain fields are replaced by their recovered values, *  

and * , which are calculated by using the superconvergent patch recovery procedure. So 

the Equation (4.1) can be rewritten as   
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* * * *
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   
        

  
                                                         (4.2) 
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where nel  is the total number of elements in the domain   and *
ele  represents the 

estimated error in each element calculated by 

  * * *

1

ˆˆ
ngp

el i i i i i
i

e w    


                                                                                       (4.3) 

in which ngp  is the total number of Gauss points in an element and iw  is the standard 

Gauss quadrature weight. 

Also, the error in the finite element domain, E, can be obtained by 

1

2
* *

1 1

ngpnel
T

j ij ij
i j

E w  
 

 
  
 
                                                                                                    (4.4) 

For elastoplastic materials, particularly in problems involving large deformation, the error 

indicator based on the stress field may not be the most efficient since the stresses in the 

plastic zones tend to remain on the yield surface while large plastic strains may occur due 

to further loading.  Belytschko (1996) suggested an error indicator based on the recovered 

Green-Lagrange strain tensor, and showed that this indicator is effective in mesh 

refinement of plastic zones.  For dynamic contact problems of geomechanics, such as 

dynamic penetration of an object into a soil layer, this type of error assessment is 

potentially a good candidate due to the highly localised deformations occurring around the 

contact surfaces.  Based on the Green-Lagrange strain tensor, EG, the error in each element 

and the error in the finite element domain can be obtained by 



CChhaapptteerr  44--  IImmpplleemmeennttaattiioonn  ooff  hh--aaddaappttiivviittyy                                                                                                                                                      5577  

                                                                                                  

 

    
1

2* * *Th h
el G G G G ele E E E E dV                                                                                 (4.5) 

1

2
* *

1 1

ngpnel
NN

T
j Gij Gij

i j

E w E E
 

 
   
 
                                                                                                     (4.6) 

Another meaningful error measurement can be defined based on the plastic dissipation and 

the rate of plastic work (Peric et al. 1994).  The plastic dissipation function, Dp, is defined 

by 

p T pD Aa                                                                                                                    (4.7) 

where p  is the plastic strain, A is the hardening thermodynamical force, and a represents a 

set of variables associated with the hardening of the elastoplastic material.  For a non-

hardening material, the errors in each element and the error in the finite element domain 

based on the plastic dissipation can be assessed from 

    
1

2* * *Th p ph
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 
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 
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With knowledge of the error in each element and the error in the finite element domain, the 

relative error in the solution,  , can be found from  
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Again, in the mesh refinement procedure, the error is compared with a prescribed accuracy, 

 , according to 

                                                                                                                                 (4.11) 

Obviously, if the condition (4.11) is satisfied no more refinement will be needed. 

Otherwise, by assuming equal distribution of error over the elements, the new element area, 

newA , can be obtained from the old element area, oldA , according to 

1
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p

new old

i

E

NA A
e

 
 

  
  
 

                                                                                                (4.12)

in which N represents the total number of elements in the old mesh and p is the polynomial 

order of the shape functions. After calculating the new area of each element, a mesh 

generation algorithm, based on the Delaunay triangulation, is used to generate a new mesh 

for the entire domain of the problem. 

4.3. THE MESH GENERATOR 

In this study the mesh generation is based on a program named Triangle which is a mesh 

generation code written in C++ by Shewchuk (1997) at Carnegie Mellon University as part 
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of the Quake project (tools for large-scale earthquake simulation). It has been improved 

during the last decade and its latest version (1.6), which was released in 2005, is available 

as a free open code. Triangle takes advantage of various existing Delaunay triangulation 

algorithms such as the incremental insertion algorithm of Lawson (1977), the divide-and-

conquer algorithm of Lee and Schachter (1980) and the plane-sweep algorithm of Fortune 

(1987) to generate high quality meshes for two-dimensional domains. Triangle is a fast and 

robust tool to construct Delaunay triangulations, i.e. constrained Delaunay triangulations 

and Voronoi diagram. In this code the quality of the generated mesh is guaranteed, making 

sure there is no angle smaller than twenty degrees, by using Reppert’s Delaunay refinement 

algorithm. More details about Triangle program is given by Shewchuk (1996).  

Triangle was chosen over the other available packages for mesh generation in this work 

because of the facilities it provides for users to specify constrains on angles and triangle 

areas and to define the holes and concavities in the domain. It is a very fast procedure and it 

can provide a coarse mesh on a specified domain as well as a finer mesh from an existing 

mesh. Also, the input format of the program is very simple, which makes it possible to 

introduce complicated domains and necessary constrains without much effort. The 

availability of Triangle’s source code made it possible to apply new changes to the code. In 

this work, significant improvement has been made to Triangle, to make it compatible with 

the requirements of this study. For example, keeping track of the previous stage of the mesh 

for the refinement procedure, dealing with problems involving large deformation like 

constantly changing domain, constrains on the minimum element area and regions with 

different maximum and minimum element areas. Also, the order of the generated nodes is 
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optimised in terms of memory allocation and the time spent for analysis and it is facilitated 

to avoid mesh distortion during the refinement procedure. Also, some changes have been 

applied in the original code of Triangle to make it compatible with the analysing program, 

SNAC. The main body of input file is described in the section 4.5.3.  

4.3.1. Pre-processing and analysis 

The analysis starts with generating a coarse mesh on the domain based upon the 

information in the input file and the prescribed minimum area of the elements in each 

region. In the first increment, the global nonlinear equations are solved to achieve 

equilibrium. This includes the calculation of all state variables and nodal displacements. 

Then, the error in the current mesh is calculated by an error estimator technique and the 

program checks if the error is acceptable. If yes, the analysis will be continued in the next 

increment keeping the topology of the problem unchanged, i.e., the desirable accuracy has 

been achieved and no mesh refinement is necessary. Otherwise, for all the elements with 

the estimated error above an acceptable accuracy, a new area will be assigned to minimise 

the error. Then, the old mesh is refined according to the new sizes of elements. In this 

stage, the information of the new mesh as well as the information of the old mesh must be 

stored in the memory of the computer simultaneously. After generating the new mesh, all 

state parameters such as stresses as well as nodal displacements need to be transferred from 

the old mesh to the new mesh. This remapping is quite a challenging process because the 

topology of the new mesh, including number of the nodes, their spatial coordinates, number 
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of the elements and their connectivity, is totally different to the topology of the old mesh. 

Details of the remapping process are discussed in Section 4.4.   

4.4. REMAPPING 

After generating the new mesh based on the estimation of the error, all variables such as 

stresses and displacements need to be transferred from the old mesh to the new mesh. The 

state variables in general can be classified in two groups; the nodal variables and those 

stored at integration points. 

Nodal variables can be transferred from the old nodes to the new nodes by a direct 

interpolation. In other words, if the new coordinates of a node matches the coordinates of 

an old node, the displacement will remain unchanged. If a new node is generated on one of 

the segments with a prescribed displacement it will inherit the characteristics of that 

segment. The displacements of other new nodes will be calculated by substituting their 

spatial coordinates in the displacement shape function of the surrounding old element. 

Transferring the information from old Gauss points to the new Gauss points is quite a 

challenge as the new mesh can be completely different from the old mesh. In this work to 

compute the nodal quantities of interest (such as stresses), the super convergent patch 

recovery technique developed by Zienkiewicz and Zhu (1992a, 1992b) is used. This 

technique has been successfully used with h-adaptive as well as r-adaptive finite element 

methods (Hu and Randolph, 1998; Nazem et al.,  2006), and assumes that the quantities in a 
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patch can be modelled using a polynomial of the same order as the displacements. Thus, for 

two-dimensional quadratic elements, the stresses over a patch may be written as 

    P a  (4.13) 

where the matrix notation is used instead of the component notation and 

2 2P 1, , , , ,x y x xy y     (4.14) 

and 

 1 2 3 4 5 6a , , , , ,
T

a a a a a a  (4.15) 

Zienkiewicz et al. (1993) proposed the use of normalised coordinates in Equation (4.14) 

instead of global coordinates to avoid ill-conditioning of equations, particularly for higher 

order elements. The normalised coordinates in a two-dimensional patch, *
ix  and *

iy , can be 

written as  
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where xmin and xmax represent the maximum and minimum values of the x-coordinates in the 

patch, respectively, and ymax and ymin are defined similarly for the y-coordinates. A least 

square fit is then used to find the unknown values of a by minimising 
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in which  * *,i ix y  are the stress values at Gauss points and m is the number of Gauss 

points in a patch. Finally, a is found by 

-1a A b  (4.18) 

where  
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The stresses at any node or Gauss point in the new mesh can be obtained by substituting its 

normalised coordinates in Equation (4.13) for its surrounding patch in the old mesh. As the 

topology of the mesh has changed, it is possible to find more than one enclosed patch for a 

specific Gauss point or node. In this case the final value of stresses is equal to the mean of 

the calculated stresses in each patch. 

For elastoplastic materials, the stresses and hardening parameters remapped by this method 

may violate the equilibrium and consistency of plasticity in the new mesh. Ideally, 

transferring the state variables from an old mesh to a new mesh should not cause any 

straining and hence the equilibrium should be satisfied for both the old and new mesh. 
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Moreover, the remapped stresses must lie inside or on the yield surface. Unfortunately, 

there is no simple way to satisfy these two conditions. In this work, if a stress point after 

remapping is found to lie outside the yield surface, it is projected back to the yield surface 

using the stress correction procedure described in Sloan et al. (2001). In their suggested 

procedure, first, the total applied strain increment is divided into sub-increments according 

to the estimation of the local error. Then, it attempts to correct the stresses in a way that the 

global integration error in stresses falls below an acceptable tolerance. After these 

corrections are executed, equilibrium is enforced by conducting additional iterations at the 

global level (if needed). 

New nodal restraints can be considered by projecting the old nodes restraints on their 

matched new nodes and also generalising the information of the restrained segments for all 

the new nodes which have been generated on those segments. An identical method is used 

to construct the loads on the new nodes and edges using the information from old mesh. 

4.5. OTHER ASPECTS OF IMPLEMENTATION 

4.5.1. Memory management 

Developing the program including all the components of h-adaptivity has some difficulties 

in the software engineering point of view. In an h-adaptive procedure number of nodes and 

elements change in each mesh refinement. Therefore, using static arrays for storing this 

information is impossible. On the other hand, during the remapping process, both 

information (e.g. nodes, elements, state variables and etc) of the old mesh and the new 
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mesh need to be available simultaneously. To manage the memory in the best way in the 

software just dynamic arrays are considered. One of the most difficult ways to manage the 

memory in an h-adaptive finite element code is utilising dynamic arrays. The sizes of the 

arrays are dynamically changed to adopt the required size of the newest mesh. The 

information of the old mesh is only required at the time of remapping. After transferring the 

data from old mesh to the new mesh, the memory allocated to the information of the old 

mesh is freed.  

4.5.2. Ordering optimisation 

The order of the generated nodes may not be optimum, in terms of memory allocation and 

the time spent for analysis. This may lead to extra storage for some global sparse matrices 

such as the stiffness matrix. Consequently, the time spent for solving the global equations 

may increase dramatically. Any symmetric n n  can be considered as the adjacency matrix 

of a graph.  Therefore, it is possible to reduce the bandwidth (the maximum distance 

between two adjacent vertices) of those matrices by using an appropriate reordering of the 

indices assigned to each vertex (Figure 4.2). In this study, the Reverse Cuthill-McKee 

(RCM) algorithm (Cuthill and McKee, 1969) has been applied for reordering the nodes. 

This is done by obtaining the coordinates of the nodes and their connectivity which is 

described in terms of a triangulation as an input. Then the algorithm computes the 

adjacency information, carries out the RCM algorithm to get the permutation and applies 

the permutation to the nodes and triangles. 
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4.5.3. Input file  

In the Input file, the necessary information for finite element analysis is introduced to the 

program. The information mainly includes the definition of geometry, boundary conditions, 

material properties, loads information and the analysis procedures. 

The first two lines of the Input file (“Snac.Poly”) are the headers which will appear in all 

output files. The third line includes the switches which can be set by the user to describe the 

way of generating mesh in Triangle and the desired outputs. In most cases in this work the 

combination of these switches has been set in a way to generate a six noded Delaunay 

Figure 4.2. Corresponding adjacency matrices (a) before reordering and (b) after RCM 
reordering 

a)  Corresponding adjacency matrix with a bandwidth of 7 

b)  Corresponding adjacency matrix with a bandwidth of 7 
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triangulation with a domain which has been defined in the input file considering the limit 

on minimum area of the elements. Clearly, the configuration of the domain in the input file 

is only used to generate the first coarse mesh. After that, Triangle retrieves its initial 

information of the domain from the previous mesh. Definition of the geometry should 

appear after the third line.  

In the geometry part, the domain of the problem is defined by a combination of some points 

and segments. In general each point represents the intersection of two segments. A segment 

can be a straight line or a curve. The domain of the problem may consist of several regions. 

A region is a partially enclosed area of the main domain with a specific material property 

and element type. This facilitates the definition of a domain including several types of 

materials and elements. For each region a minimum area of element needs to be defined. 

This minimum element area represents the density of the mesh in each region during the 

process of mesh generation as well as mesh refinement. Also, whether the region needs to 

be consider as a fixed region, can be specified in the time of its definition. A region can be 

recognised by defining an arbitrary internal point. The mesh generator automatically 

considers the closest enclosed area around this point as a region.  

Cavities (an enclosed area in which no element is generated) can also be defined in any part 

of the domain. Cavities remain unchanged during the process of mesh generation and mesh 

refinement. A cavity can be defined in a similar fashion to a region.  

Boundary conditions such as nodal restraints or contact surfaces can be applied to a point or 
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a segment in the input file. Note that the definition of boundary conditions here is different 

to the common method of assigning boundary conditions in finite element programs, where 

these conditions are usually applied on nodes. 

As mentioned before, material properties are defined individually for each region of the 

domain. Obviously, all elements generated during meshing will inherit the properties of 

their surrounding region.  

Loads including external nodal forces, body forces and prescribed displacements can also 

be specified for any points or segment. These loads are automatically assigned to the 

correspondent nodes and the elements in the mesh. 

The last part of the input file includes some commands controlling the analysis procedure 

and outputs. In this part, the total analysis time, increment, refinement step and other 

commands which lead the analysis process can be specified. In this section, user can 

specify the frequency of remeshing and the type of error estimation technique to be used. 
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5.1. INTRODUCTION 

In many geomechanics problems, soil is subjected to dynamic loads while interacting with 

a structure or an object.  Among others, examples include the dynamic penetration of an 

object into a layer of soil due to its initial kinetic energy, the lateral capacity of a pile 

subjected to a dynamic impact, and the investigation of the dynamic pullout capacity of an 

anchor embedded in soil.  The analysis of such problems demands robust computational 

techniques able to deal with their highly nonlinear and complex nature, and is yet one of the 

most challenging and sophisticated tasks in computational geomechanics.  The complexity 

is mainly due to nonlinear soil behaviour, large deformations accompanied by severe mesh 

distortion, changing boundary conditions due to contact, and time-dependent behaviour.  

Furthermore, in penetration problems the interfaces between the soil and the penetrometer 

may change continuously, which necessitates the contact mechanics formulation. A typical 

distorted mesh occurring during the analysis of penetration of a cone into a layer of soil is 

depicted in Figure 1.1.  Such distortion often results in a negative Jacobian of an element, 

leading to a spontaneous termination of the numerical analysis. 

In this chapter, the formulations of dynamic analysis and contact mechanics in an h-

adaptive finite element framework are explained in details. Also alternative error 

assessment techniques to deal with such problems, based on the energy norm, the Green-

Lagrange strain, and plastic dissipation, will be explained.  The performance of the h-

adaptive finite element method as well as the performance of these error assessment 

techniques will be investigated by solving a few numerical examples in Chapter 6. 
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5.2. LITERATURE REVIEW 

In many problems of geotechnical engineering the loads are applied at a relatively slow rate 

so that the effect of the inertia forces maybe be ignored in the analysis.  However, if the 

loads affect a domain in a short time the effect of the inertia forces needs to be considered 

throughout the analysis process to achieve an accurate solution. Moreover, the soil may 

undergo large deformations, leading to severe mesh distortion. Therefore, the adaptive 

techniques have attracted attention to tackle possible mesh distortion in various fields of 

dynamic problems of engineering. Some of the early works in this area include using an r-

adaptive method for strain localization problems (Ortiz and Quigley, 1991) and also 

applying an h-adaptive method for transient solid mechanics problems with the aim of 

capturing localised shear band and strain localisation (Belytschko and Tabbara, 1993). 

Gallimard et al. (1996) and Ladevèze and Moës (1996) have used a residual error estimator 

to deal with dynamic problems. Later, Wiberg and Li (1994) suggested an h-adaptive finite 

element procedure to refine the mesh and time step automatically based on the spatial and 

time discretisation error. Their work was based on a recovery error estimator. The work of 

Deb et al. (1996) is another effort of developing an h-adaptive method to capture the shear 

band for dynamic strain localisation in elasto-plastic continuum. One of the first 

applications of the h-adaptive technique in geomechanics was presented by Hu and 

Randolph (1998), where the analysis is performed assuming small deformations within 

each load step, and is followed by updating the mesh according to the computed 

incremental nodal displacements and then remeshing the entire problem domain.  Silva et 
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al. (2000) employed an h-adaptive strategy to deal with the plastic and visco-plastic 

behaviours in a two-dimensional non-linear dynamic analysis. Also, Khoei and Lewis 

(2002) studied the localised failure due to material instability using an h-adaptive finite 

element method in metal powder forming. Khoei et al. (2005) applied the h-adaptive 

strategy using Cosserat continuum while regularizing rotational and the conventional 

freedom in the governing equations to locate the shear band.  

Contact problems are common challenges in various fields of engineering. The importance 

of the contact analysis comes from the real world where almost no movement is possible 

without considering the contact between at least two surfaces.  Finite element method is a 

robust way to tackle the contact related problems. In addition, since the boundary 

conditions are continuously changing in contact problems h-adaptive finite element method 

is seemingly well suited to analyse such problems. Some of the early research works on 

using adaptivity to solve the problems involving frictionless contact has been undertaken 

with the emphasis on choosing a suitable error estimator. Some error estimators were 

introduced for small deformation frictionless contact (e.g. Kikuchi and Oden, 1988; 

Hlavacek et al., 1988) considering the underlying mathematical base of the problem. 

Johnson and Hansbo (1992) proposed a residual based error estimator to be used for 

unilateral membrane problems. Later, their approach was completed by Wriggers et al. 

(1994) and was used for the analysis of the contact between two elastic bodies. Later, the 

super convergent patch recovery error estimator, introduced by Zienkiewicz and Zhu 

(1987), attracted the researchers’ attention and was adopted in some research works to 

solve contact problems (e.g. Wriggers and Scherf, 1998). Also, Rannacher and Suttmeier 
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(1998) used the concept of dual error estimation and introduced a technique for evaluating 

the error in linear elastic problems. Later, their technique was extended by Rieger and 

Wriggers (2001) to problems involved with non-linear frictionless contact in three 

dimensions. The method proposed by Johnson and Hansbo (1992) was also used by 

Buscaglial et al. (2001) to develop a posterior error estimator based on the penalized 

approach for frictionless contact problems. The recovery-based error estimators were 

effectively used by Bessette et al. (2003) for modelling three dimensional penetration and 

impact problems within an h-adaptive procedure in an explicit finite element method. Many 

of contact problems also include dynamic loadings. Therefore, solving this type of 

problems has always been a subject of interest. Armero and Petocz (1998) conducted a 

study of the energy and momentum conservation algorithms for dynamic contact problems. 

Blum et al. (2008) described a discretisation using the space-time method by Galerkin to 

overcome problems involving dynamic contact. Also, a comparison on the efficiency of 

different adaptive methods for solving two dimensional contact problems can be found in 

the work by Franke et al (2010). 

5.3. FINITE ELEMENT FORMULATION 

As explained in Chapter 4, the h-adaptive finite element method employs the UL approach 

to solve the problem in each increment.  After the UL analysis a new mesh is generated 

based upon an error estimator followed by remapping of the state variables from the old 

mesh to the new mesh.  Therefore, the UL method is one of the main components of the h-

adaptive finite element method.  As such, the formulation for dynamic and contact analysis 
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of geomechanics problems is presented in a UL framework.  Then, other aspects of 

dynamic analysis of a continuum including alternative time-integration schemes, energy-

absorbing boundaries, satisfying equilibrium in the newly generated finite element mesh, 

and implementation of the h-adaptivity will be discussed in this section. 

5.3.1. Momentum equation and its discretisation 

In each time step of the analysis the h-adaptive procedure starts with an UL step to 

calculate the displacements, velocities and accelerations, which satisfy the principle of 

virtual work according to 

   
 

1 1k k k k k

c

P P

ij ij k i i k i i k i i k i i kV V V V S
k k

N N T T cS

dV u u dV u cu dV u b dV u q dS

t g t g dS

      

 
 

   

 

     



 
 (5.1) 

where P denotes the total number of bodies in contact,  is the Cauchy stress tensor, and 

is the variation of strain due to virtual displacement u.  The symbols u, u  and u 

represent material displacements, velocities and accelerations, respectively, while  and c 

are the mass density and damping of the material, b is the body force, q is the surface load 

acting on area S of volume V, gN and gT are the virtual normal and tangential gap 

displacements at contacts, and tN and tT represent the normal and tangential forces at 

contact surface Sc. 

To model the contact between two bodies including large deformations the so-called node-

to-segment (NTS) concept is employed, where a node on a slave surface may come into 



CChhaapptteerr  55--  hh--aaddaappttiivviittyy  ffoorr  ccoonnttaacctt  aanndd  ddyynnaammiicc  aannaallyyssiiss                                                                                                        7755  

                                                                                                  

 

contact with an arbitrary segment of the master contact surface, and is allowed to slide 

along the master surface a finite distance (Wriggers, 2006).  For large deformations, this 

technique facilitates the sliding of a contacting node over several elements.  With this 

assumption the last term in Equation (5.1), representing the virtual work due to normal and 

tangential components of the contact force, can be estimated according to 

 
1 1

c c

i i
c

n n
T c T c

N N T T c i N i TS
i i

t g t g dS u F u F   
 

                                                                        (5.2) 

where c
NF

 

and c
TF  represent the normal and tangential components of the contact force, 

respectively, and nc is the total number of slave nodes contacting the master surface. 

Linearisation of Equation (5.1) in the standard finite element framework provides the 

matrix form of the equation of motion as 

int
t t t t t t t t

ext
     Mu Cu F F                                                                                                (5.3) 

where M is the mass matrix, C is the damping matrix, Fint and Fext are the internal and external 

force vectors, respectively, u represents the displacement vector and a superimposed dot 

represents the time derivative of a variable.   

5.3.2. Time Integration 

The solution of the momentum equation in (5.1) requires a step-by-step integration scheme.  

In general, the dynamic time-integration schemes are classified as implicit or explicit.  

Explicit algorithms, such as the central difference method, find a solution for state variables 
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which satisfy the momentum equation at time t+t based exclusively on their values at 

previous time increments. Such schemes circumvent the solution of nonlinear equations, 

but are conditionally stable due to the fact that the size of each time step must guarantee 

that an elastic wave will cross the smallest size of any element in the problem domain.  This 

limitation generally results in selecting a very small time step or using a relatively coarse 

mesh.  Implicit time-integration schemes, on the other hand, provide a solution to the 

dynamic quantities at time t+t based upon their values at time t as well as the values at 

time t+t, requiring, however, the solution of nonlinear equations.  Several time-integration 

algorithms have been commonly used in dynamic analysis of geotechnical problems.  A 

recent study conducted by Kontoe et al. (2008a) revealed that the generalised-, method, 

previously developed by Chung and Hulbert (1993), outperforms the other algorithms 

investigated.  Then, Kontoe et al. (2008b) demonstrated the ability of this method in 

solving the dynamic coupled consolidation problems of geomechanics. The generalised- 

method is second-order accurate, and is adopted in this study for solving the momentum 

equation in (5.1).  The formulation of the method, adopting an iterative procedure based on 

Newton-Raphson method, is presented in the following. 

In the implicit generalised- method proposed by Chung and Hulbert (1993), the inertia 

forces in the momentum equation are measured at time t+(1-m)t while the damping 

forces and the internal forces are measured at time t+(1-f)t, viz, the momentum equation 

in (5.3) is written as follows 

       1 1 11 f f fm
t t t t t tt t

int ext

                Mu Cu F F                 (5.4)  
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in which m and f are two new integration parameters, and   

   
   
   
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
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 
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   
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    

    

  

  

u u u

u u u

F F F

F F F

  

  
                   (5.5)  

Substituting the equations in (5.5) into the momentum equation in (5.4) provides 

   
   

1 1

1 1

t t t t t t
m m f f

t t t t t t
f int f int f ext f ext

   

   

 

 

              

        

M u u C u u

F F F F

   
               (5.6) 

In the generalised- method, the displacements and velocities are computed by Newmark's 

equations according to 

 

21
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t t t t t t t

t t t t t t

t t
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 

 
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            
      

u u u u u

u u u u

  

   
                                                                           (5.7)  

in which  and  are the Newmark's integration parameters.  Rearranging the equations in 

(5.7), the velocities and accelerations at time t+t can be expressed in terms of the 

displacements at time t+t and other quantities at time t as follows  
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 2

1 1
2

1 1
1

2

t t t t t t t

t
t t t t t t

t
t

t t

  
  

  

 

 

   
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 
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                                                              (5.8) 
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Substituting t tu  and t tu  in (5.8) into the equations in (5.5) and simplifying will provide 
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            (5.9) 

Substituting the equations in (5.9) into the momentum equation in (5.4) and applying 

Newton-Raphson iterative method, the following equation is obtained which must be 

solved during ith iteration 
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in which Keff represents the effective stiffness matrix and is computed by 

 1 1eff f Ta      K M C K                                           (5.11) 

Note that the coefficients a0-a5 are defined by 
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                                                               (5.12) 

KT in Equation (5.11) represents the tangential stiffness matrix, and it defined as 
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 
t t
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t t
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
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    u

R
K u

u
                                                                                                 (5.13)                    

in which R is the stress divergence term. The tangential stiffness matrix is obtained by 

summation of the material stiffness, Kep, the stiffness due to geometrical nonlinearity, Knl, 

and the stiffness due to normal and tangential contact, KNs and KTs, i.e., 

T ep nl Ns Ts   K K K K K                                                                                                (5.14)                

In addition, the internal force vector can be calculated by the contribution of the Cauchy  

stress tensor and the nodal forces at the contact surfaces as follows 

 
1

c

t t i i

n
t t T t t t t c c
int N TV

i

dV


  



   F B σ F F                                                                           (5.15)                    

5.3.3. Energy absorbing boundaries 

When applying the finite element method with the finite boundaries the outgoing waves 

from the source (normally the structure) may reflect back to their source and the accuracy 

of the numerical solution can be significantly affected. Therefore, simulating an infinite 

medium is a major concern in dynamic analysis of soil-structure-interaction (SSI) 

problems, and the numerical model should guarantee that the waves would dissipate in a 

far-field of the source. 

The common way to avoid any wave reflection from truncated computational boundaries, is 

defining artificial boundaries which absorb the energy of incoming waves. Lysmer and 



CChhaapptteerr  55--  hh--aaddaappttiivviittyy  ffoorr  ccoonnttaacctt  aanndd  ddyynnaammiicc  aannaallyyssiiss                                                                                                        8800  

                                                                                                  

 

Kuhlemeyer (1969) introduced a very efficient artificial boundary known as the “standard 

viscous boundary” which is able to dissipate the waves in an acceptable rate and low 

computational cost. The standard viscous boundary is one of the most commonly used and 

efficient wave-absorbing boundaries provided that the boundary is not located within 1.2-

1.5 times the length of the shear wave (Kellezi, 1998).  Kontoe (2006) also studied the 

performance of the viscous boundaries by analysing a few plane strain as well as axi-

symmetric problems, and found that the standard viscous boundary is able to absorb both 

dilatational waves (P-waves) and shear waves (S-waves) effectively. This type of boundary 

has been adopted in dynamic analysis of geotechnical problems addressed in this Thesis, 

and is briefly explained in the following. 

The implementation of the viscous boundaries requires the replacement of the damping 

matrix, C, in the momentum Equation (5.3), by C  as 

int
t t t t t t t t

ext
     Mu Cu F F                                                                                              (5.16) 

where  

0
,

0
sT

c cL
p

V
dL

V

 
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 
C C N C N C                                                                     (5.17) 

in which the second term on the right hand side represents the contribution of the viscous 

boundary, L is the length of the side of the element modelled as the viscous boundary, N is 

the displacement shape functions of the element, and Cc is the constitutive viscous damping 
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matrix depending on the velocities of dilatational waves, Vs, and the shear waves, Vp, 

according to 

 2 1s

E
V

 



                                                                                                                (5.18) 

 
  

1

1 1 2p

E
V


  




 
                                                                                                     (5.19) 

where E and  are Young's modulus and Poisson's ratio, respectively. 

5.3.4.   Definition of contact  

In many geotechnical problems two solid bodies often come into contact, at a smooth or 

non-smooth interface, causing a nonlinear behaviour. The penetration of an object into a 

layer of soil is a typical example of such problems in which large deformation and material 

nonlinearity are combined with frictional contact nonlinearities (e.g. sliding, detaching and 

re-joining of the two contact surfaces) and make the analysis quite a challenge. In the 

literature, there are two methods available to solve a large deformation frictionless contact 

problem. The first approach is the node to segment element method (NTS-contact) based on 

the work by Wriggers and Simo (1985).  Sheng et al. (2005) employed this method to 

model the frictional contact associated with pile penetration. Also, Sheng et al. (2006) 

analysed the same problem by the NTS-contact considering a smoothed discretisation in the 

contact surfaces. The second approach is the mortar type method, based on the 

mathematical framework developed by Bernardi and Patera (1993). The mortar type 
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method uses higher order elements, and has been applied to the large deformation contact 

problems by Puso and Laursen (2003) and Fischer and Wriggers (2005, 2006).  

In this study, the NTS-contact method is employed to analyse problems involving changing 

boundary conditions. To model the interface between two bodies by the NTS-contact 

method, the contact surfaces are usually discredited as the slave and the master surface. 

There is no specific criterion to assign the slave or the master attribute to a surface. 

However, the choice of master and slave bodies needs to remain consistent throughout the 

analysis. In a large deformation problem, the size and the position of the contact surface is 

changing constantly but the following normal contact constraint should be always satisfied 

0Ng                                                                                                                               (5.20) 

in which Ng represents the gap between the two surfaces. This gap is known as the distance 

between the current location of a point on the slave surface, sx , and its closest projection on 

the master surface, mx , and can be defined according to 

 .N s mg  x x n                                                                                                            (5.21) 

where n is the unit normal vector of the master surface at the projection point. 

In contact mechanics, there are three main approaches to formulate the constitutive 

relations for the normal and the tangential directions. They include: (a) using the gap 

function and considering the related stresses as the reactions, (b) using the gap function to 
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define a method to calculate the stresses in two contact bodies, (c) using the penalty 

method.  In this work the third approach was chosen due to its common use in the 

engineering software (Wriggers, 2010; ABAQUS, 2008). The constitutive equations for the 

normal and the tangential directions based on the penalty method are discussed in more 

details in the following. 

a) Normal and tangential tractions 

In the penalty method, the normal pressure at the contact area, Nt , and its time derivative, 

Nt , are defined by 

.

.
N N N

N N N

t g

t g





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                                                                                                                      (5.22) 

in which Ng is the gap function calculated by Equation (5.21), and N represents the penalty 

parameter in normal direction. Using the gap constraint, the two contact bodies in each time 

step can be sticking to or sliding on each other. In the stick condition the relative tangential 

displacement between the two bodies would be zero. As soon as the bodies slip on each 

other a tangential movement occurs, i.e., the tangential displacement is a non-zero value, 

known as slip. The tangential displacement, Tt , and the tangential velocity, Tt , at the 

contact surface in a stick condition can be defined by 

.

.
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T T T
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T T T









t g

t g 
                                                                                                 (5.23) 
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where T  denotes the penalty parameter in the tangential direction and st
Tg  is the stick 

constraint. Using the friction coefficient,  , a slip criterion for a slave node sliding on the 

master boundary can be written based on the Coulomb friction law as follows 

0s T Nf t  t                                                                                                            (5.24) 

The value of   depends on the material properties of the two bodies in contact. For a fixed 

contact pressure, the evolution equation for total slip can be defined as 

 s Tsl
T s s T

T

g
 


 


t
g n

t
                                                                                                     (5.25) 

where s  is the slip parameter, s Tg  t  and T
T

T


t

n
t

.  

In general, the slip criterion function is defined as 

( , , ) ( , ) 0s T N v T N vf t g h t g  t t                                                                                    (5.26) 

where vg  is the total sliding distance, Nt denotes the normal pressure and h is obtained from 

experimental observation. Therefore the principle of plasticity consistency yields 

0Ts s s
s T N v T N v

T N v T N v

f f f h h
f t g t g

t g t g

    
      
     

t
t t

t t
                             (5.27) 

By considering v sg    in Equations (5.25) and (5.27), the slip parameter can be obtained 
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using 

1
.s T T T N N

N
T

N

h
g

h t
t

  


 
    



n g                                                                                  (5.28) 

In an elasto-plastic model the total tangential velocity, Tg , can be considered as the 

summation of the stick velocity, st
Tg , and the slip velocity sl

Tg .  Thus, Equation (5.23) can 

be written in a rate form at the contact interface as 

( )T T T s T  t g n                                                                                                             (5.29) 

Substituting the value of s  from Equation (5.28) into (5.29) provides the incremental 

tangential motion at the contact interface as  

 1 T T
T T T T T N N T

N
T T

v v

h
g

h h t
g g

  
 

 
      

    
   

t n n g n                                                (5.30) 

Therefore, the incremental tangential traction in a sliding motion can be computed knowing 

the tangential gap based on the total slip,
v

h

g




 and the normal gap based on the normal 

pressure, 
N

h

t




. Comparing the Coulomb friction law in (5.24) with the general friction law 

in (5.26) one can consider 
N

h

t





 provided 0
v

h

g





. Therefore, Equation (5.30) can be 

rewritten for Coulomb friction model as  
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 1T T T T T N N Tg    t n n g n                                                                                    (5.31) 

b) Discretisation of the contact surfaces 

In this work the node-to-segment contact method is used to solve the nonlinear finite 

element contact problems. In this method, the contact constraints considered for each slave 

node coming to contact with a straight or a curved segment on the master surface are shown 

in Figure 5.1. The Bezier polynomial can be used to present a smooth discretisation on the 

master surface. As shown in Figure 5.1, the slave node sx  is in contact with the segment 

defined by 1 2
m mx x  on the master. To find the correct interpolation between 1

mx and 2
mx  the 

neighbourhood nodes should be considered as well. Therefore, for each slave node two 

interpolating polynomials are defined, each including two tangent vectors and two middle 

nodes. The tangent vectors are formed by the lines between two adjacent nodes on the 

 

Figure 5.1. Smooth discretisation of the master surface in NTS contact 

s
x

1
mx

0
mx

3
mx

2
mx 01x
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1st interpolation 

2nd interpolation 
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master surface. The active polynomial will be the one closer to the slave node, i.e., the 

second polynomial for the case shown in Figure 5.1. 

Therefore, this interpolation is used to find the contact residual and the tangent matrix. 

Now, considering [ 1, 1]     as the normal projection of the slave node on the master 

surface the interpolation can be defined by  

1 12 2 12 3 23 4 23( ) ( ) ( ) ( ) ( )m B B B B        x x x x x                                                          (5.32)   

in which B1, B2, B3 and B4 are the Bezier interpolation functions, generally known as 

3
1

2
2

2
3

3
4

1
( ) (1 )

8
3

( ) (1 ) (1 )
8
3

( ) (1 )(1 )
8
1

( ) (1 )
8

B

B

B

B

 

  

  

 

 

  

  

 

                                                                     (5.33) 

and the nodes 12x , 12
x , 23

x and 23x form the convex hull of the interpolation. For the case  

shown in Figure 5.1, 12
x  and 23

x  are defined by 

2 2
12 12 12 23 23 23( ), ( )

2 2
B B

m m

       x x x x x x x x                                                    (5.34) 

and the Bezier interpolation functions are based on three nodes as  



CChhaapptteerr  55--  hh--aaddaappttiivviittyy  ffoorr  ccoonnttaacctt  aanndd  ddyynnaammiicc  aannaallyyssiiss                                                                                                        8888  

                                                                                                  

 

1 1 2

2 1 2 3 4

3 4 3

1
( ) [ ( ) (1 ) ( )]

2
1

( ) [ ( ) (1 )( ( ) ( ) ( ))]
2
1

( ) [ ( ) (1 ) ( )]
2

B

B

B

B B B

B B B B B

B B B

   

     

   

  

    

  

                                                        (5.35)                    

when  is the parameter specifying the distance between the nodes 12
x and 23

x  and the 

nodes 12x and 23x , respectively. Obviously, the shape of active interpolation depends on the 

value of In the finite element model as the contact surfaces are deforming based on the 

displacement, can change as the analysis proceeds. Typical value of is .  Since 

12x and 23x  are the middle points of the vectors 1 2
m mx x  and 2 3

m mx x , respectively, the 

interpolation described in Equation (5.32) can be changed to 

3 3

,
1 1

( ) ( ) , ( )i im
m i m i m

i i

B B   
 


 

 x
x x x                                                                       (5.36) 

c) Projection point 

The projection point  of slave node on the master surface can be obtained using the 

nonlinear Equation (5.37) considering the minimal distance between the slave node and the 

master segment 

  ( )
( ) . 0m

s m





 


x

x x                                                                                                  (5.37) 

The following equation can be solved in an iterative linear form using Newton's algorithm  
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2

12

1 1

( ) ( ) ( ) ( )
. [ ( )]. [ ( )].m i m i m i m i

s m i i s m i

i i i

     
   

  



 

    
         

  

x x x x
x x x x

                    (5.38) 

in which i+1 represents the normal projection of the slave node on the master surface, . 

The projection on the straight segment between 1
mx and 2

mx  is considered as the starting 

value in the iteration, and is defined by 

1 2 1

0 2 1 2 1

( ).( )
2 1

( ).( )
s m m m

m m m m

  
 

 
x x x x

x x x x
                                                                                         (5.39) 

d) Normal contact 

The gap and its variation at the projection point are obtained by 

3

1

3

1

( ) .

( ) . ( )

s

s

i
N s i m

i

T
N s i i s N

i

g B

g B



  





    
     





x x n

η η n η B

                                                                      (5.40) 

Considering 1 2 3( , , , )T T T T T
s sη η η η η  as the vector of the nodal variations involved in desired 

polynomial and smoothed Bezier approximation, the gap variation can be stated as 

1

1 2 3

2

3

( )
( , , , )

( )

( )

s

T T T T
N sg








 
    
 
  

n

B n
η η η η

B n

B n

                                                                              (5.41) 
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Using the penalty method, the weak form of the normal contact can be written as 

c c
N N N N NS S

t g dS g g dS                                                                                              (5.42) 

and can be approximated by 

1

[ ( )]
cn

T
c s N s Ns N

s

C A g 


η B                                                                                              (5.43) 

in which, sA , represents the area of the slave surface. Then, the contact residual for each 

slave node s and its associated active master segment can be defined in the form of below 

vector 

( )
s

c
N N s Ns nA g F B                                                                                                         (5.44) 

To obtain the tangent matrix for one slave node, the linearisation of  (5.43) is required. The 

variation of the normal gap is calculated by (Wriggers, 2002) 

21 1

2

2 21 1

2 2
11

( ).

1
.( ) ( ).

m
N N

m m

g g

a

   
  

 
   

 
        

  

  
  

   

xη u
n n

x xη u
n

                                                    (5.45) 

where 11

( ) ( )
.

m m

a
 
 

 


 
x x

, and is defined as 
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2 1

2

11 2

1
. .

( )
.

m
N

m
N

g

a g


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

             


x η
η η n

x
n

                                                   (5.46) 

in which 

1

,. ( )T
s N  






η

n η B                                                                                                           (5.47) 

and  

2 1 . ( )Tm
s T 


    

x
η η η B                                                                                                (5.48) 

Equation (5.46) can be rewritten in the following form 

 1
,( ) ( ) ( )

s

T T
s T N N sH g           η B B η B                                                            (5.49) 

with 
2

1 1
11 2

( )
( )m

NH a g



 
 


x

n . Now, using the above derivation, the stiffness matrix for 

one slave node s is defined as 

,

1
,

1 1
, ,2

{ ( )( ( )) [ ( )( ( ))
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s
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A g
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 
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     

    

   
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

 

 

    


K B B B B

B B B B
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x

                                      (5.50) 
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in which 
2

1
2

.mb 





x
n . 

e) Tangential contact 

The incremental tangential displacement at time 1n nt t t    can be defined based on the 

change of the surface coordinate  as 

1
1 1

( )
( ) m n

Tn n ng
 



 


  


x

                                                                                           (5.51) 

Therefore, the tangential component of the traction in Equation (5.23) is given by 

1 1
tr
Tn Tn T Tng   t t                                                                                                         (5.52) 

 for current time step. Using the stick and slip criterion in (5.24), the tangential force at the 

contact point is given by 

1 1

1 1 1

tr
Tn Tn

tr
Tn N Nn Tn

in stick case

g in slip case
 

  





t t

t n
                                                                           (5.53)   

in which 

1

1
1 1 1 1

1
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( ) ( ) ( )
( )

m n
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Tn n n n n n

m n
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
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



   



   




x

n a
x

                 (5.54)   
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Equation (5.53) can be also considered in general form 
1

1
1 1( )

nT n n 
  t a  with 

1
1 1 1

1 1 1

( )
( )

( )
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n N Nn n n
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g sign slip
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
  

  


 


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x

                                                                      (5.55) 

The weak form of tangential contact can be approximated by 

1
1

.
c

s

n

T T Tn s
s

C g A 


 t                                                                                                         (5.56) 

Considering the variation of relative tangential displacement as 

( )m
Tg

 






x

                                                                                                             (5.57) 

the residual can be written as 

11 1
1 1 1

1

( ) ( )
. ( )

cn
m n m n

T n n s n s
s

C A A
     
 

 
  



 
 

  x x
a                                             (5.58) 

Therefore, the nodal force vector for one slave nose s is defined as 

1
1 1

( )
( )c m n

Ts n s nA 
  



 





x

F B                                                                                       (5.59) 

Note that Ng in Equation (5.49) can be neglected for the case of relatively small 

deformations and, therefore, Equation (5.59) can be written as 
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1 1( )clin
Ts n s T nA  F B                                                                                                      (5.60) 

where 
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                                                                                                       (5.61) 

The linearisation of the residual in (5.60), provides the tangent matrix for a stick and a slip 

case as 

1 1

1 1 1

( )( ( ))

( ) ( )( ( ))

stick T
Ts t s T n T n

slip T
Ts N n n s T n N n

A

sign A

  
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 

  


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K B B

K B B                                                           (5.62) 

5.3.5   Retrieving dynamic equilibrium 

After remapping the state variables, equilibrium in the new mesh is yet to be satisfied.  

Moreover, for elastoplastic soil models, the principle of plasticity consistency may be 

violated due to some stress points lying outside the yield surface.  In this study, we use the 

Newmark integration scheme to conduct further iterations to guarantee equilibrium as well 

as plasticity consistency.  Employing the Newton-Raphson method, the following equation 

needs to be solved in each iteration 
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


(5.63)

 

5.4. h-ADAPTIVITY AND DYNAMIC/CONTACT ANALYSIS 

The dynamic/contact analysis by the h-adaptive finite element method presented here 

includes four main steps.  In the first step, the Updated Lagrangian (UL) method is 

employed to solve the global governing equations to achieve dynamic equilibrium.  

Secondly, a new finite element mesh is generated based on the new sizes of the elements, 

usually obtained by an error estimator which calculates the error in each element and 

determines which regions of the mesh domain should be subdivided into smaller elements.  

In the third step, all nodal variables and state variables at integration points are transformed 

(or mapped) from the old mesh to the newly generated mesh.  Finally, an automatic 

procedure must be employed to check that dynamic equilibrium is satisfied at the global 

level and to check that the principle of plasticity consistency is satisfied at each integration 

point inside all elements.  

The implementation of the h-adaptive finite element method for the problems involving 

inertia forces and changing boundary conditions required significant improvement of 

several components of the finite element h-adaptive engine. As in nonlinear h-adaptivity 

the discretisation of the domain changes almost in each increment throughout the analysis, 

there are various contact/dynamic related parameters which need to be reconstructed based 
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on the new mesh. The energy absorbing boundaries, which are defined with a set of nodes 

and segments, need to be redefined considering the new nodes and segments generated on 

those boundaries. In contact problems considering Node-to-Segment algorithm, the 

discretisation on the slave body is usually finer than the mesh on the master body. In the 

adaptive procedure presented in this work, the slave body is free to refinement while the 

topology of the master body may remain unchanged during the analysis.  Therefore, 

keeping records of the contact points between two surfaces (finding two master nodes for 

each slave node) is a considerable challenge as the number of mesh points on the slave 

surface gradually increases during the analysis. It involves reallocating the node and 

element related arrays which store the data such as the boundary information and contact 

surfaces, according to the new size of the mesh and then setting the related values (e.g. gap 

in contact) for each node and element based on the available values in the previous mesh. 

Obviously for the nodes and elements which didn’t exist in the previous mesh, the 

corresponding data need to be calculated based on their virtual place in the old mesh. In 

addition, in large deformation problems the gap, a closest point projection on the slave 

surface to the master surface, needs to be computed in each increment. One of the main 

concerns is in considering the contact/dynamic related parameter such as the velocity and 

the mass acceleration in the equilibrium equations. Also, as the domain of the problem is 

consistently changing due to the necessary h-adaptive refinement, the velocity and the mass 

acceleration arrays need to be reconstructed, sufficient memory needs to be allocated for 

each of them and their  values need to be remapped from the previous mesh to the new 

mesh. This can be done using the same techniques which have been used in remapping the 
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displacements and the state variables as explained in section 4.4.  In addition, the stiffness, 

mass and damping matrices need to be regenerated considering their new size which is 

growing as the number of elements and nodes in the new mesh increase. On the other hand, 

it has been noticed when using the h-adaptive technique in a dynamic analysis, the time 

stepping and minimum element area considered for the refinement in each increment can 

have significant effects on the accuracy of the result. It is important to avoid any dramatic 

changes in the area of the element between two increments as it can easily lead the analysis 

to a severe mesh distortion. 

In the present work, author has not considered adaptive time stepping to solve the problem. 

The current h-adaptive method mainly concerns on the way discretisation is refined to 

achieve an accurate solution. Obviously by considering an adaptive time stepping the result 

would tend to be more accurate. To get the better result, the time stepping has forced in the 

analysis by dividing the total time in small section considering different minimum element 

area for refinement in each section. By doing so, the element tend to refine gradually 

throughout the analysis. 
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6.1. INTRODUCTION 

The adaptive methods have been used in a wide range of engineering problems to overcome 

mesh distortion issue due to large deformations or to achieve more accurate results using 

less number of elements. In solid mechanics the most commonly used adaptive techniques 

include r-adaptive and h-adaptive. Although these two adaptive methods are proved to be 

robust in solving different kind of problems, there are individual drawbacks within each 

method due to its nature. r-adaptive finite element method has been designed to eliminate 

possible mesh distortion by changing and optimising the location of nodal points without 

modifying the topology of the problem.  Therefore, to obtain an accurate solution by this 

method a relatively fine mesh is required at the beginning of the analysis, which increases 

the analysis time.  It is clear that the accuracy as well as the efficiency of the r-adaptive 

method rely critically on the density of the initial mesh, which in turn depends on the 

analyst’s experience and the problem being studied. On the other hand, h-adaptive finite 

element method improves the accuracy of the solution by gradually decreasing the size of 

the elements based on an error assessment approach.  In this method the initial density of 

the mesh is not usually important as it changes dramatically during the analysis.  Based on 

an error assessment criterion and an acceptable error tolerance, some elements may be 

subdivided into new smaller elements.  As the size of an element decreases, its vulnerability 

to distortion, viz., negative Jacobian or a large aspect ratio, increases. In the case of large 

deformations, a negative Jacobian of an individual element can lead to spontaneous 

termination of the analysis. 
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In solid mechanics, the combination of r- and h-adaptive methods was first presented 

within the framework of the boundary element method for solution of two dimensional 

problems (Ammons and Vable; 1998, Cao 1998; and Kita et al. 2000).  Later, Askes and 

Rodriguez-Ferran (2001) combined these two adaptive methods in a finite element 

framework.  Their work was based on assessing the error of the finite element domain and 

then finding an optimum size for each element. Based on the current element size, r-

adaptivity or h-adaptivity would be applied to refine or to generate a new mesh in the finite 

element domain.  Lang et al. (2003) used the rh-adaptivity in a two-dimensional moving 

finite element technique for solving the nonlinear time-dependent problems in fluid 

dynamics. Their work was an extent to some early presentation of rh-adaptivity in moving 

mesh finite element problems such as, Arney and Flaherty (1989) and Habashi et al. (2000).  

The combination of r-adaptive and h-adaptive finite element method in computational 

geomechanics has not been addressed in the literature to date. 

To eliminate the individual drawbacks of the r- and h-adaptive methods, and yet preserve 

the accuracy of the solution, a combined rh-adaptive finite element method for analysis of 

geotechnical problems is presented in this chapter.  This method can be used in static as 

well as dynamic analysis of sophisticated problems of geomechanics involved with large 

deformations and changing boundary conditions.  The proposed method is designed to 

improve the accuracy of the solution by the h-refinement strategy presented in Chapters 4 

and 5 while it handles mesh distortion issue by an r-adaptive refinement based on the 

Arbitrary Lagrangian-Eulerian (ALE) operator split technique developed by Nazem (2006). 
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This chapter is divided into two main sections.  The first section discusses the r-adaptive 

finite element method based on the ALE operator split technique.  The second section of 

this chapter is concerned with the new combined rh-adaptive strategy developed for 

nonlinear problems of geomechanics.  The robustness as well as efficiency of this new rh-

adaptive method will be presented by solving a number of numerical examples in Chapter 7 

of the Thesis.  

6.2. ALE METHOD 

The kinematics of continuum mechanics problems are traditionally described in two main 

frameworks, namely as Eulerian and Lagrangian.  In a Lagrangian description of motion, 

which is commonly used in solid mechanics, the material particles are followed by tracing 

their spatial position in time.   On the other hand, the motion of matter can be described by 

recording the flow of physical particles along a fixed position in space.  This approach is 

known as Eulerian description, and it is commonly used in fluid mechanics.  In the 

literature, it is well recognised that the Eulerian and Lagrangian frameworks have their 

drawbacks, particularly when applied to a numerical analysis strategy.  For instance, the 

finite element method based on a Lagrangian framework usually fails to provide a solution 

in problems with relatively large deformations because the finite element (grid) nodes are 

attached one-to-one to the material points.  On the other hand, Eulerian grids are attached 

one-to-one to space, so that large boundary motion of the material cannot be accounted for 

accurately.  An ambiguity will exist in description of the interface zone in a fluid-structure 

interaction problem if the structure and the fluid are described by a Lagrangian and an 
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Eulerian method, respectively.  Such limitations motivated the researchers to develop a 

combined Lagrangian-Eulerian framework to describe the motion of a continuum, which is 

now named as the Arbitrary Lagrangian-Eulerian (ALE) method.  Noh (1964) initially 

suggested the concept of the ALE under the term 'Coupled Eulerian-Lagrangian', and 

employed the method to solve hydrodynamics problems with moving fluid boundaries 

using a finite difference framework.  Belytschko and Kennedy (1978) presented one of the 

first applications of the ALE method in a finite element framework to solve fluid-structure 

interaction problems.   

Researchers soon realised that the ALE method can be used in tackling solid mechanics 

problems involved with mesh distortion since the motion of the mesh points can be 

described arbitrarily.  In the ALE method, the displacement of material points and the grid 

points can be coupled in the global equations.  This coupling introduces a set of unknown 

mesh displacements into the global governing equations thus requiring a supplementary set 

of linear equations to be solved simultaneously.  In the so-called coupled ALE method, this 

new set of equations is usually expressed in terms of the material displacements and the 

mesh displacements.  Therefore, in a coupled ALE method the number of unknown 

displacements is normally doubled, which increases the computational time significantly.  

Benson (1989) presented an alternative ALE strategy in a decoupled form, called the 

operator split technique.  In this method the analysis is performed in two steps: an Updated-

Lagrangian (UL) step and an Eulerian step.  In the UL step, the global equations, written in 

terms of material displacements only, are solved to satisfy the equilibrium.  Then, the 

spatial coordinates of the material points are updated according to the incremental 
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displacements.  At this stage, mesh distortion may potentially occur. In the Eulerian step, a 

new arbitrary mesh is generated for the entire finite element domain without changing the 

number of nodes, the number of elements, and their connectivity.  Then, all state variables 

at nodal points as well as the integration points, such as displacements, velocities, and 

stresses, are transformed from the old mesh to the new mesh.  The operator split technique 

is more suitable to be combined with the h-adaptive finite element method explained in 

Chapter 4.  Therefore, the combined rh-adaptive strategy developed in this Thesis is based 

upon the combination of the ALE operator split technique and the h-adaptive procedure 

explained previously.   

Although well established in solid mechanics, the ALE operator split method has attracted 

less attention in geomechanics with a few exceptions.  Nazem et al. (2006) presented the 

application of the ALE method in tackling large deformation of geomechanics by 

developing a new mesh refinement technique based upon the relocation of nodes along 

boundaries followed by a static analysis.  This robust technique was then extended to the 

solution of consolidation problems of geomechanics by Nazem et al. (2008) as well as 

dynamic analysis of geotechnical problems involved with large deformations by Nazem et 

al. (2009).  Di and Sato (2007) also employed the ALE operator split technique to solve 

consolidation problems involved with large deformations.  

The combined rh-adaptive strategy explained in this chapter is based upon the operator split 

technique developed by Nazem et al. (2006).  The ALE operator split technique attempts to 

eliminate the mesh distortion by refining the finite element mesh without changing the 
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number of nodal points, number of elements, and their connectivity.  This method 

outperforms the coupled ALE procedure by dividing the number of unknowns in the global 

equations in half.  The analysis by the operator split technique includes two phases.  The 

first phase includes solving the problem by the UL method, as explained in Section 5.3.  

The second phase is mainly concerned with refining the finite element mesh to avoid 

distortion, followed by transferring the state variables from the old mesh to the new mesh. 

6.2.1. Mesh refinement 

The r-refinement procedure, coupled with the h-adaptive technique in this study, is based 

on the method developed by Nazem et al. (2006), and is slightly modified here.  This 

method is schematically shown in Figure 6.1, and is explained in the following.  

Figure 6.1a shows a typical finite element mesh at the beginning of a new time step. The 

boundaries of the problem, including the material interfaces and the boundaries of each 

discrete body, are shown by solid lines. At the end of the UL step in the operator split 

technique the incremental material displacements, ui, are known and the current spatial 

coordinates of all material points, xt+t, are obtained according to their last known position, 

xt, by 

t t t
i i ix x u                                                                                                                       (6.1)                    

In problems involved with relatively large deformations, the resulting mesh may be 

distorted, or vulnerable to distortion in future increments. The mesh at the end of the UL 
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step, representing a potential distortion, is shown in Figure 6.1b.  To refine the mesh, the 

nodes are relocated along the boundaries considering that the normal component of 

displacement on a boundary is zero, viz, the nodes are only permitted to move in the 

tangential direction of the boundary.  For this purpose, the boundaries are divided into 

quadratic functions (Nazem et al., 2008) using a spline interpolation technique (Lopez, 

2001).  Then all nodes are relocated along the boundaries, as depicted in Figure 6.1c.  The 

nodal relocation provides the prescribed mesh displacements of the nodes on the 

boundaries.  The values of prescribed displacements are then applied on the mesh at time t 

(Figure 6.1a), and an elastic analysis is conducted to find the incremental mesh 

displacement of all other nodes, r
iu , assuming small deformations only.  Finally, the new 

spatial coordinates of the nodes in the new mesh at the end of the increment,  t tr
ix


,  are 

obtained by adding the incremental mesh displacements to the nodal coordinates of the 

mesh at the beginning of the increment, according to 

 t tr t r
i i ix x u


                                                                                                                (6.2)  

Note that this mesh optimisation technique guarantees that the new mesh and the old mesh 

share the same number of nodes, number of elements and connectivity.  The nodal 

relocation procedure is probably the most important component of the mesh optimisation 

technique developed by Nazem et al. (2006), and it depends on the initial configuration of 

the boundaries at time 0 as it uses the normalised length of all segments on a boundary. 

However, when combined with the h-adaptive technique, the initial configuration of the  
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a. Finite element mesh at time t 

Figure 6.1. Mesh refinement procedure in the ALE method 

d. Refined mesh after elastic static analysis at time t t   

b. Deformed (possibly distorted) mesh at the end of UL step at time t t   

c. Boundaries after the nodal relocation at time t t   
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newly generated nodes on a boundary cannot be estimated accurately.  Therefore, in the 

combined rh-adaptive method developed here, the normalised lengths of the segments after 

the last h-adaptive refinement will be used. 

6.2.2. Remapping of state variables 

The remapping of state variables, such as stresses, is usually done by using the convection 

equation as 

( )r r
i i

i

f
f f u u

x


     


                                                                                                  (6.3) 

where rf  and f  denote the increments of an arbitrary state variable f with respect to the 

mesh and material coordinates, respectively, u is the material displacements and ur 

represents the mesh (grid) displacements. For two-dimensional problems, the gradients of f 

are calculated using the chain rule according to 

1 1 1

2 2 2

f f f

x x x

f f f

x x x

 
 

 
 

    
   

    

    
   

    

                                                                                                 (6.4)  

where   and  , represent the normal coordinates.  For an n-node element, the local 

derivatives of f are computed by 
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                                                                                                              (6.5) 

in which N is the nodal shape function.  Note that kf  represent the nodal values of f which 

are obtained by the super convergent patch recovery technique explained in Section 4.4.  

6.3. COMBINED rh_ADAPTIVE METHOD 

In this section, the combined rh-adaptive finite element procedure will be explained.  The 

first step of the rh-adaptive method includes an Updated-Lagrangian analysis.  Then, the 

error in the finite element solution is measured by an error estimator technique.  If the error 

is larger than a prescribed tolerance the h-adaptive component will be provoked to 

determine new element sizes.  Otherwise, the analysis will proceed by the ALE strategy to 

eliminate possible mesh distortion. For clarity, the required algorithm is illustrated 

schematically in Figure 6.2.  Each step of the analysis of a general problem of dynamic 

elastoplasticity is explained in more detail in the following. 

(1) Start the analysis by generating a relatively coarse mesh. 

(2) Perform Steps (3) to (26) for each time increment. 

(3) Perform Steps (4) to (10) for each iteration. 

(4) Form the effective stiffness matrix according to Equation (5.11). 

(5) Form the global equations as in (5.10) and solve for incremental displacements ui. 
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 Figure 6.2. Procedure for combined rh-adaptive finite element analysis 

Form the effective 
stiffness matrix by 

(5.11) 

Form the global equation (5.10) 
and solve for incremental 

displacement iu  

Generate a relatively 
coarse mesh 

 A 

Update the vectors of total 

displacement, ( )
t t
i
u , by Equation (6.6) 

Update the velocities and the 
accelerations according to (5.7) 

Find the incremental strains, integrated 
constitutive equations and the internal 

force according to (5.15) 

Find the unbalanced force vector 

Is equilibrium 
achieved? 

Go to A 
No 

Is error above the 
prescribed 
tolerance? 

Find the computational error 
of the finite element domain 

Yes 

Go to B 

No 

Find the new size of 
elements  
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 Figure 6.2. Procedure for combined rh-adaptive finite element analysis (cont’d) 

Allocate memory for all 
the state variables 

Regenerate the information of 
boundary condition for the new mesh 

Generate a new mesh using 
the new element size 

Recalculate the size of matrices and 
reallocate memory for the stiffness, 

damping and mass matrices 

 C 

Transfer all the variables from the 
old mesh to the new mesh 

Free the memory allocated for old 
mesh 

Retrieve the equilibrium and satisfy the 
principle of plasticity consistency at all 

integration points 

Is this the last 
increment? 

Increase the increment and 
go to A 

No 

End 

Yes 

Retrieve the information of the material 
points on the boundaries  

 B 

Relocate the nodes along all 
boundaries 

Perform an elastic analysis using 
boundary displacement and 

calculate the new location of all 
nodal points 

Transfer all state variables from old 
mesh to the new mesh 
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(6) Update the vectors of total displacements,  
t t
i
u , by 

     1
t t t t
i i i
 

  u u u                                                                                                      (6.6) 

(7) Update the velocities and the accelerations according to equations in (5.7). 

(8) Find the incremental strains, integrate constitutive equations, and find the internal 

force vector according to (5.15). 

(9) Find the unbalanced force vector and check for equilibrium. 

(10) If the equilibrium is achieved, exit the iteration loop. Otherwise, go to Step (4). 

(11) Find the computational error of the finite element domain using an error assessment 

technique. 

(12) If the error is greater than a prescribed tolerance, calculate the new size of each 

element assuming an equal distribution of error over the elements. Otherwise, go to 

step (18). 

(13) Generate a new mesh for the entire domain of the problem based on the new size of 

the elements. 

(14) Allocate memory for all state variables in the new mesh, including stresses, internal 

and external force vectors, contact force vector, displacements, velocities, and 

accelerations. 

(15) Regenerate the information of boundary conditions for the new mesh, including 

supports, prescribed displacements, and the contact surfaces. 

(16) Recalculate the size of matrices and reallocate memory for the stiffness, damping and 

mass matrices. 



CChhaapptteerr  66--  CCoommbbiinneedd  rrhh--aaddaappttiivvee  ffiinniittee  eelleemmeenntt  mmeetthhoodd                                                                                                      111122  

                                                                                                  

 

(17) Go to Step (23). 

(18) Retrieve the information of the material points on the boundaries. 

(19) Relocate the nodes along all boundaries,  

(20) Perform an elastic analysis using boundary displacements obtained in Step (19) as 

prescribed nodal displacements, and calculate the new locations of all nodal points. 

(21) Transfer all state variables from the old mesh to the new mesh as explained in Section 

6.2.2. 

(22) Go to Step (25) 

(23) Transfer all state variables from the old mesh to the new mesh as explained in Section 

4.4.  

(24) If required, free the memory allocated for old mesh. 

(25) Retrieve the equilibrium and the satisfy the principle of plasticity consistency at all 

integration points by conducting further iterations as explained in Section 5.3.4. 

(26) If this is the last increment, exit with the solution. Otherwise, go to Step (2), 

increasing the increment number. 
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 CHAPTER 7 

APPLICATIONS 
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7.1.  INTRODUCTION 

The h-adaptive and the rh-adaptive finite element methods presented in the previous 

chapters have been implemented into SNAC, the in-house finite element code developed by 

the Geotechnical Group at the University of Newcastle, Australia. SNAC has been used to 

analyse the numerical examples in this section. Although the methods described in this 

Thesis can be used to analyse general large deformation problems in continuum mechanics, 

applications are limited to geotechnical problems here.  

7.2. NUMERICAL EXAMPLES 

This chapter includes 8 numerical examples.  The first three examples present the 

application of the h-adaptive finite element method in tackling large deformation problems 

of geomechanics, and they address the cylindrical cavity expansion problem, the biaxial 

test, and the large deformation analysis of a strip footing.  The error estimator used in the 

first three examples is based only on the energy norm.  The forth and the fifth examples 

present a comparative study of three error estimation techniques introduced in Chapter 4 of 

this Thesis. These error estimation techniques include the energy norm, the Green-

Lagrange strain, and the rate of plastic dissipation. The efficiency and applicability of these 

techniques are studied by analysing the soil behaviour under a rigid footing undergoing 

static as well as dynamic loads, and the penetration of a cone into a soil layer at slow and 

fast rates. The last three numerical examples address the efficiency and robustness of the 

rh-adaptive technique, developed in Chapter 6 of this Thesis, compared to the h-adaptive 
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finite element method. This is conducted by analysing a vertical cut, the indentation of a 

cylindrical object into a soil layer, and the bearing capacity of a two-layered soil under a 

rigid footing.  

All examples have been analysed using 6-node triangular elements, with six integration 

points. Since the performance of such elements for the problems solved is quite 

satisfactory, other types of elements, such as quadrilateral rectangles, have not been used 

here.  On a smooth boundary the displacements are restrained in the normal direction only 

while the displacements of a coarse (or rigid) boundary are restrained in the normal as well 

as the tangential directions.  For some examples, a very fine mesh has been employed 

without refinement to produce benchmark results. These benchmarks are then used to check 

the results of a coarse mesh without refinement and the effect of the h-adaptive procedures. 

It should be noted that the h-adaptive finite element method is able to analyse the problem 

in hand based on a desired degree of accuracy. The minimum element area in each example 

is approximately the largest value of area which can provide results within a prescribed 

precision. 

7.2.1. Elastoplastic cylindrical cavity expansion 

The cavity expansion problem is one of the few cases that can be solved analytically using 

finite-strain plasticity, and is thus very useful for validating the finite element analyses. The  

internal radius of a cylindrical cavity is denoted as r0 while the outer radius is set to 60r0.  
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To simulate the effects of an infinite medium, a correcting elastic layer is added to the soil 

layer (Burd, 1986). Figure 7.1 represents the boundary conditions and material properties of 

the cavity used in this analysis. The soil is modelled by a Tresca material.  In Figure 

7.1,G , us  , and v, respectively,  represent the shear modulus, the undrained shear strength, 

and Poisson’s ratio of the soil. A total prescribed radial displacement of magnitude 6r0 is 

 

 

 

applied over 200 equal time increments. 

The analytical solution according to Yu (2000) is: 

2 2
0 0
2 2

u u

1 ln 1
r rG

s s r r

   
         

                                                                                           (7.1)  

where   represents the internal pressure of the cavity and r  is the current internal radius 

of the cavity. The numerical solution for the normalised internal pressure of the cavity  

  Soil Layer 
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  G = 66.66 kPa 

 v = 0.25 

Figure 7.1. The cavity expansion problem (geometry not to scale) 
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versus the normalised radial displacement is compared with the analytical solution in 

Figure 7.2. Good agreement between the analytical and the numerical solutions is observed. 

7.2.2.  Biaxial test 

In this example, a biaxial test is simulated using the Mohr-Coulomb model with a non-

associated flow rule. The problem is analysed for two different scenarios. In the first case, 

the soil specimen is assumed to have uniform properties over the entire domain. In the 

second case, a small area in the soil specimen is assumed to have a different set of material 

parameters than the rest of the specimen, to initiate localised failure.   

The geometry of the problem, material properties and boundary conditions are shown in 

Figure 7.3. The soil is modelled using a rounded Mohr-Coulomb model proposed by Sheng 

et al. (2000): 
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where q is the deviator stress, p is the effective mean stress, and  is the Lode angle. In 

Figure 7.3, E , c ,  and    represent the drained Young’s modulus, the drained cohesion, 

the drained friction angle of the soil and the dilation angle, respectively. 
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Figure 7.3.  Biaxial test 
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 A total prescribed displacement of 0.35 cm is applied vertically at the top and the bottom 

of the specimen, in 100 equal increments. Figure 7.4 shows the initial meshes, the meshes 

at the 10th and 20th increments for the uniform soil specimen and at the 20th and 40th 

increments for the non-uniform soil specimen with a minimum element area of 0.004 m2.  

Benchmark analyses using 7763 elements and 15768 nodes were carried out for both the 

uniform specimen and non-uniform specimen. The applied pressure normalized by c  is 

plotted versus the axial strain in Figure 7.5 for both the adaptive mesh and the fixed fine 

mesh in each analysis. Obviously, the analysis using a fixed fine mesh does not lead to the 

localised failure (shear band). However as shown in Figure 7.6, the h-adaptive method can 

predict the location and formation of the shear band in this problem. To prove the effect of 

chosen minimum area on the accuracy of the solution in both problems are also analysed 

with a larger minimum area of 0.08 m2 and also a much finer minimum area of 0.008 m2. 

As shown in Figure 7.5 as the minimum element area gets smaller the accuracy of solution 

will increase. Although with the area defined less than 0.004 m2 the result remains 

unchanged. Therefore, no refinement seems necessary where the minimum area reaches 

0.004 m2. Also, by increasing the number of elements in the very fine fixed mesh, the result 

of the solution remained unchanged. Therefore, it seems that load deflection curves are 

converged as the number of degrees of freedom goes to infinity. It is interesting to note that 

the h-adaptive method leads to localised failure even for the soil specimen with uniform 

properties.  One possible reason is that the initial mesh is not symmetric (uniform). It is 

also interesting to note that the constitutive model used here does not have a length scale 

and as such the mesh will continuously be refined, which leads to an unrealistically thinner  
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Figure 7.4. Mesh results of the biaxial tests 
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 Figure 7.5. Load-displacement response of the biaxial test 
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And thinner shear band.  However, the predicted load-displacement curves shown in Figure 

7.5 seem to converge to a unique solution, suggesting that the length scale does not affect 

the numerical results here. Runesson et al. (1991) also showed that introducing some 

softening to the associated model or using a non-associated model would permit 

bifurcation. In general, a more robust method to tackle this localisation problem is perhaps 

 

a. Uniform soil properties  
         (2964 elements and 6001 

Figure 7.6.  Final deformed h-adaptive meshes for biaxial test 

b. Non-uniform soil properties  
   (3363 elements and 6802 nodes) 
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to combine the adaptive finite element method with appropriate constitutive models for the 

localising material (Mühlhaus and Vardoulakis, 1987; Tejchman and Bauer, 1996), so that 

the remeshing process will stop once the mesh size is approaching the length scale in the 

constitutive model. 

7.2.3 . Bearing capacity of soil under a strip footing 

In the third example, a strip footing on an undrained soil layer of Tresca material is 

considered. Only half of the footing is analysed due to symmetry, and the domain, its 

boundary conditions and material properties are shown in Figure 7.7. The footing is 

assumed to be either flexible or rigid. 
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To model a flexible footing, a vertical pressure 6.5su is applied on the footing in 200 equal 

time steps. The domain is analysed by two different finite element meshes: a very fine mesh 

and a relatively coarse mesh. The coarse mesh has only 299 elements and a maximum 

element area of 0.25B2, while the fine mesh has 3713 elements and a maximum element 

area of 0.02B2. Table 7.1 provides the minimum element area, number of nodes, number of 

elements and the consumed CPU time in each analysis. The topology of the domain is kept 

constant in the fine mesh, while the coarse mesh is refined continuously using the h-

adaptive technique. The numbers of nodes and the elements in the h-adaptive analysis 

provided in Table 7.1 correspond to those at the start and end of analysis. The h-adaptive 

solution was found using a total of 32 mesh refinements. The evolution of the adaptive 

mesh shown in Figure 7.8 indicates the finite element meshes at the beginning of the 

analysis and after 10, 25 and 30 mesh refinements, respectively, respectively.  This figure 

clearly shows that the h-adaptive method is able to predict the occurrence and location of 

the shear band under the footing successfully. Figure 7.9 plots the applied pressure on the 

 

Analysis 
Minimum element 

area (B2) 
Number of 

Nodes 
Number of 
Elements 

CPU Time (sec)

Very Fine 0.02 7604 3713 8013 

h-adaptive 
Initial 0.25 648 299 

589 
Final 0.002 2132 1025 

Table 7.1. Results for analysis of flexible strip footing 
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footing, normalised with respect to su, versus the vertical displacement normalised with 

respect to the half width of the footing. The results presented in Figure 7.9 are based upon 

the large deformation formulation where the limit pressure does not necessarily converge to 

Prandtl’s plasticity solution, (2+)su. The two load-displacement plots perfectly coincide 

with each other, while the h-adaptive analysis is approximately 14 times faster than the 

analysis using the fixed fine mesh (Table 7.1).   

a. Initial mesh (299 elements) b. After 10 refinements (437 elements) 

Figure 7.8. Finite element mesh during analysis of flexible strip footing 

c. After 25 refinements (539 elements) d. After 30 refinements (888 elements) 
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In another attempt to solve this example the minimum element area of 0.01B2 was selected 

and no mesh refinement was permitted. As a result, a new fine mesh with 15168 nodes and 

7467 elements leads to almost an identical load-displacement curve as shown in Figure 7.9.  

 

  

On the other hand, a fixed mesh with less than 1000 elements would lead to significantly 

different load-displacement response.  Figure 7.10 shows the final deformed meshes at the 

end of h-adaptive analysis and the UL analysis. Again, the localised failure mechanism is 

well captured.  

For the case of a rigid footing, a vertical displacement of 0.5B is applied on the footing in 

100 equal steps. The problem is analysed as a large deformation formulation. Some of the   

Figure 7.9. Load-displacement response of flexible strip footing 
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intermediate meshes are shown in Figure 7.11.  

 

 

a. h-adaptive analysis 

b. UL analysis 

Figure 7.10. Final deformed meshes for flexible strip footing 
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The final result is achieved after 32 refinement steps.  For comparison, the problem is also 

analysed by a small deformation assumption where the configuration remains unchanged 

during the analysis. Figure 7.12 plots the applied pressure on the footing, normalised with 

respect to su, versus the vertical displacement, normalised with respect to the half width 

 of the footing. The small deformation analysis results in a final applied pressure of 5.18su, 

which is only 0.8% above the Prandtl plasticity solution, (2+) su. The final deformed mesh 

at the end of h-adaptive large deformation analysis is shown in Figure 

7.13.

 

a. Initial mesh (300 elements) b. After 10 refinements (1103 elements) 

Figure 7.11. Finite element meshes during analysis of rigid strip footing 

c. After 15 refinements (1730 elements) d. After 20 refinements (2143 elements)
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Figure 7.12. Load-displacement response of rigid strip footing 
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Figure 7.13.  Final deformed mesh for rigid strip footing 
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B

7.2.4. Undrained behaviour of a soil layer under a rigid footing 

To compare the performance of the three error estimation techniques and the accuracy of 

the h-adaptive method presented here an undrained layer of soil under a rough rigid footing 

is considered.  The footing, the soil layer, and the boundary conditions are shown in Figure 

7.14. The soil was modelled as a Tresca material, and any increase in shear strength due to 

strain rate effects was neglected to avoid further complexity.  The material properties 

describing the soil behaviour include the shear modulus, G, undrained shear strength, su, 

and the density, .  The undrained friction angle of the soil and its material damping are 

assumed to be zero.  To approximate elastic incompressibility of the soil, a Poisson's ratio 

of 0.49 was adopted in all analyses. 

 

a) Small deformation bearing capacity 

Firstly, the static bearing capacity of the soil assuming small deformations is investigated 

using the three error assessment methods. According to Prandtl's plasticity solution the  
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static undrained bearing capacity of the soil under a rigid strip footing is given by (2+)su.  

To estimate the capacity numerically, a prescribed vertical displacement of 0.04B was 

applied to the footing, and due to symmetry only one half of the problem domain was 

analysed.  In all analyses the initial topology, number of time steps, and the error tolerance 

were identical.  Table 7.2 shows the bearing capacity predicted by each method, the total 

number of the elements and the nodes at the end of each analysis, and the CPU time 

normalised by the CPU time of the fastest analysis. 

 

Table 7.2 shows that the error assessment based on plastic dissipation requires the 

minimum number of elements and nodes as well as the minimum CPU time to estimate the 

undrained bearing capacity of the soil, assuming small deformations only.  The values of 

bearing capacity predicted by the energy norm, the Green-Lagrange strain, and the plastic 

dissipation error assessment methods are, respectively, 0.39%, 2.9% and 0.78% different 

from Prandtl's exact plasticity solution. Compared to the Green-Lagrange strain error 

estimator, the plastic dissipation is about 16 times faster and requires a significantly smaller 

number of nodes and elements, but yet provides a more accurate result.  The error assessor 

Error assessment 
method 

Predicted 
bearing capacity

Total number 
 of elements 

Total number  
of nodes 

Normalised 
CPU time 

Energy norm 5.16su 3962 8059 20.0 

Green-Lagrange 
strain 

4.99su 2521 5146 15.7 

Plastic dissipation 5.10su 1122 2331 1.0 

Table 7.2. Performance of the error assessment methods, static bearing capacity of the soil 

under a rigid footing assuming small deformations 
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b. Error assessment based on the energy norm 

d. Error assessment based on plastic dissipation 

c. Error assessment based on the Green-Lagrange strain 

Figure 7.15. Small deformation bearing capacity, final meshes at the end of each 
analysis
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based on the energy norm predicted the bearing capacity of the soil most accurately but was 

computationally the slowest method.  Figure 7.15 depicts the failure mechanism of the soil 

under a rigid strip as well as the finite element meshes at the end of each analysis.  

Although only half of the geometry was considered in all analyses the entire problem 

domains are shown in Figure 7.15, presenting a more meaningful visualisation.  According 

to Figures 7.15(b-d), the h-adaptive method can successfully predict the location and the 

orientation of the slip surfaces generated due to the shear failure of the soil. 

b) Dynamic small deformation analysis 

Next we investigate the behaviour of the same soil and footing under a dynamic pressure 

loading of total magnitude 10su, applied at a uniform rate over a period of 1 second.  Small 

deformation conditions were also assumed in this example.  The magnitude of the pressure 

loading, being applied rapidly, can exceed the static bearing capacity of the soil since it 

contributes to the development of inertia forces in the elastoplastic continuum. 

 

Error assessment 
method 

Final 
settlement/B 

Total number 
of elements 

Total number  
of nodes 

Normalised 
CPU time 

Energy norm 0.665 9005 18196 3.6 

Green-Lagrange 
strain 

0.652 5154 10467 1.0 

Plastic dissipation 0.648 7390 14941 2.8 

 
Table 7.3. Performance of the error assessment methods for an undrained layer of soil 

under a dynamically applied pressure assuming small deformation 
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 In all analyses, it was assumed that G/su = 33 and the soil has mass density of 1 t/m3 

(Nazem et al., 2009).  In order to avoid reflection of the outgoing stress waves, viscous 

energy absorbing boundaries were used in all dynamic analyses.  Predictions of the applied 

pressure normalised by the static shear strength of the soil are plotted versus the vertical 

displacement of the footing normalised by the footing width in Figure 7.16a.  Almost 

identical predictions were obtained in all analyses performed using the three error 

assessment methods.  However, the final vertical settlements of the footing predicted by the 

three methods are slightly different, as shown in Table 7.3.  This table also presents the 

performance of each error assessment technique by comparing the final densities of the 

various finite element meshes and the normalised CPU times.  According to Table 7.3 the 

error assessor based on the Green-Lagrange strain tensor represents the best performance.  

Alternatively, the performance of the h-adaptive strategies considered in this study can be 

compared by plotting the growth of the total number of degrees of freedom versus the 

analysis time, as in Figure 7.16b.  According to Figure 7.16b, the error estimator based on 

the Green-Lagrange strain requires the minimum number of the elements and nodal points 

to finalise the dynamic analysis, suggesting that for dynamic analysis of the footings this 

method is probably the most efficient strategy among those methods studied here.  The 

final element meshes obtained at the end of each analysis are shown in Figure 7.17, which 

represent consistent plastic zones predicted by each method.  However, for the rate of 

loading considered in this problem no clear shear failure mechanism can be observed. 



CChhaapptteerr  77––  AApppplliiccaattiioonnss                                                                                                                                                                                                            113355  

                                                                                                  

 

 

Displacement / B 

P
re

ss
ur

e 
un

de
r 

fo
ot

in
g 

/ s
u 

a. Settlement of the footing versus the normalised dynamic pressure 

b. Growth in degrees of freedom versus time 

Time (s) 

N
um

be
r 

of
 d

eg
re

es
-o

f-
fr

ee
do

m
 

Figure 7.16. Dynamic analysis of soil under a footing 
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a. Error assessment based on energy norm 

c. Error assessment based on plastic dissipation 

b. Error assessment based on Green-Lagrange strain 

Figure 7.17. Dynamic small deformation analysis, final meshes at the end of each analysis
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c) Dynamic large deformation analysis 

Finally, the footing problem solved in Section 7.2.4.b was reanalysed by considering 

identical conditions but assuming large deformations.  Nazem et al. (2009) studied the 

behaviour of this soil layer for pressure loading applied at rates of 2su and 20su per second, 

using the Arbitrary Lagrangian-Eulerian (ALE) method.  In this work the behaviour of the 

same ideal soil and footing for a loading rate of 10su/s is studied, i.e., a total pressure 10su 

applied at a uniform rate over 1 s.  The problem was analysed using the three different error 

assessment techniques described in chapter 4 of this Thesis.  By using a very fine mesh and 

employing the ALE method, Nazem et al. (2011) found that the final settlement of the 

footing under the applied dynamic pressure load was 0.322B.  This value was also 

approximated by the three h-adaptive methods, as presented in Table 7.4.  In addition, 

Table 7.4 provides the normalised CPU times as well as the topology information at the end 

of each analysis.  These data show that in terms of efficiency, the Green-Lagrange strain 

error estimator outperforms the other two methods. 

 

Error assessment 
method 

Final 
settlement/B 

Total number 
of elements 

Total number  
of nodes 

Normalised 
CPU time 

Energy norm 0.318 4509 9178 5.2 

Green-Lagrange 
strain 

0.332 1600 3303 1.0 

Plastic dissipation 0.312 2289 4700 1.6 

Table 7.4. Performance of the error assessment methods for an undrained layer of soil 

under a dynamically applied pressure assuming large deformation 
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a. Error assessment based on energy norm 

c. Error assessment based on plastic dissipation 

b. Error assessment based on Green-Lagrange strain 

Figure 7.18. Dynamic large deformation analysis, deformed meshes at the end of each 
analysis
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A typical plot of the applied pressure normalised by the shear strength of the soil versus the 

settlement of the footing normalised by its width is shown in Figure 7.16a.  According to 

Figure 7.16a, the predicted resistance of the soil at any given displacement in a large 

deformation analysis is higher than the resistance predicted assuming small deformations.  

For all analyses, the growth of the total number of degrees of freedom versus the analysis 

time is plotted in Figure 7.16b, which shows that the Green-Lagrange error estimator 

generates the minimum number of nodes as the analysis proceeds, and thus is the most 

efficient method of those considered.  The deformed meshes at the end of each analysis are 

shown in Figure 7.18. 

7.2.5. Cone penetration into a drained soil layer 

In the fifth example, the performance of the error assessment methods is studied by 

analysing a relatively complicated problem in geomechanics, the penetration of an object 

into a soil layer, which requires contact mechanics to deal with the interface between the 

object and the soil.  Figure 7.19 represents a rigid cone penetrating into a layer of sand.  

The soil is modelled by a Mohr-Coulomb material with a non-associated flow rule.  The 

Young’s modulus, Poisson ratio, unit weight, cohesion, friction angle and dilation angle of 

the soil are assumed to be 500 kPa, 0.3, 19.6 kN/m3, 2.0 kPa, 30o and 20o, respectively. The 

diameter of the penetrometer, d, is 0.05 m and its length is assumed to be 10d. For 

simplicity, the friction forces between the cone and the soil are considered negligible.  Due 

to symmetry, only half of the problem domain is modelled in the axi-symmetric analysis. 
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As the purpose of these analyses was to compare the efficiency and effectiveness of the 

methods of error estimation, for simplicity the initial stress state throughout the sand was 

assumed to be zero, i.e., the effect of self weight on the initial stress state were ignored.   
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However, the finite mass density of the sand was used in the dynamic analysis.  This may 

mean that the magnitude of the predicted cone penetration resistance may be somewhat 

unrealistic, although it is noted that maximum penetration is only 0.5 m, so that the 

magnitude of the initial stress field, prior to penetration, is expected to be relatively small. 

a) Static analysis 

In field tests the penetrometer is usually pushed into the ground at a relatively slow velocity 

of 0.02 m/s in which case it is reasonable to ignore inertia effects.  To simulate static 

penetration numerically, a total prescribed vertical displacement of 10d was applied to the 

penetrometer.  The three error estimation techniques were used separately to analyse the 

problem and to predict the soil resistance.  In each analysis the maximum value of an 

element area in the initial mesh was 1.2d2, representing a relatively coarse mesh.  During 

the adaptive analysis the minimum area of new elements was limited to 0.02d2. 

The soil resistance normalised by its cohesion versus the vertical displacement of the 

penetrometer normalised by its diameter is plotted in Figure 7.20a.  The three error 

assessment methods predict similar curves, but the h-adaptive method based on the energy 

norm failed to complete the analysis due to mesh distortion occurring at a penetration of 

8.97d.  Figure 7.20b displays the growth in the number of degrees of freedom versus the 

analysis time obtained by each method.  As shown in Figure 7.20b, the adaptive method 

based on the Green-Lagrange strain, compared to the other two error estimation techniques, 

required significantly fewer nodal points to estimate the soil resistance.  This is also evident 

in the finite element meshes at the termination of each analysis, as represented in Figure 



CChhaapptteerr  77––  AApppplliiccaattiioonnss                                                                                                                                                                                                            114422  

                                                                                                  

 

 

Penetration / d 

S
oi

l r
es

is
ta

nc
e 

/ d
ra

in
ed

 c
oh

es
io

n 

0

20

40

60

80

100

120

0 2 4 6 8 10 12

Energy norm

Green-Lagrange strain

Plastic dissipation

a. Normalised penetration versus normalised soil resistance 

0

2000

4000

6000

8000

10000

12000

0 0.2 0.4 0.6 0.8 1

Energy norm

Green-Lagrange strain

Plastic dissipation

b. Growth of degrees of freedom versus time 

Time (s) 

N
um

be
r 

of
 d

eg
re

es
 o

f 
fr

ee
do

m
 

Figure 7.20. Static penetration of an object into a drained layer of soil 
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a. Error assessment based on energy norm, 
analysis terminated due to mesh distortion 

at 8.97d penetration 

c. Error assessment based on plastic 
dissipation, mesh at the end of analysis

b. Error assessment based on Green-Lagrange strain, 
mesh at the end of analysis

Figure 7.21. Static cone penetration 



CChhaapptteerr  77––  AApppplliiccaattiioonnss                                                                                                                                                                                                            114444  

                                                                                                  

 

7.21. For the static cone penetration analysis presented here, it was observed that the 

Green-Lagrange strain error assessor is approximately five times faster than the plastic 

dissipation error estimator. 

b) Dynamic analysis  

To compare the performance of the three h-adaptive methods for a dynamic contact 

problem, a prescribed vertical displacement of 10d was applied to the same penetrometer 

over a period of 1 s, and inertia forces were considered in the analysis.  The mass density of 

the soil was assumed to be 2 t/m3.  For this case in which d = 0.05m, the cone penetrates 

into the soil layer at a velocity of 0.5 m/s, which is 25 times faster than the standard 

penetration rate of a static test, 0.02 m/s.  As depicted in Figure 7.19, energy absorbent 

boundaries were used in all dynamic analyses and the material damping was assumed to be 

zero.  Similar to the static analyses presented in the previous section, the initial mesh is 

relatively coarse, including 285 elements and 468 nodal points.  This configuration was 

obtained by initially limiting the maximum value of an element area to 1.2 d2, while the 

elements were permitted to attain a minimum area of 0.02 d2 during the adaptive analysis. 

The predicted load-displacement curves for the dynamic analyses are shown in Figure 

7.22a.  Only the analysis in which the error estimator was based on the Green-Lagrange 

strain was able to complete the analysis, i.e., to an overall penetration of 10d.  The analyses 

assuming the energy norm and the plastic dissipation error estimators failed to provide a 

complete solution for the problem due to mesh distortion occurring at penetrations of 4.64d 

and 1.49d, respectively.  The increase in degrees of freedom versus the analysis time is  
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Figure 7.22. Dynamic penetration of an object into a drained layer of soil 
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a. Error assessment based on energy 
norm, analysis terminated due to 

mesh distortion at 4.64d penetration

Figure 7.23. Dynamic cone penetration analysis 

b. Error assessment based on 
plastic dissipation, mesh distortion 

occurred at 1.52d penetration 

c. Error assessment based on Green-Lagrange strain, mesh at the 
end of analysis 
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plotted in Figure 7.22b.  In each analysis, when a penetration of 1.49d (t = 0.149 s) was 

attained, i.e., the point at which the plastic dissipation error assessor failed to proceed, the 

total number of degrees of freedom in the adaptive finite element meshes predicted by the 

energy norm, Green-Lagrange strain, and plastic dissipation error assessments were 7474, 

1732, and 5152, respectively.  The rapid increase in degrees of freedom predicted by the 

energy norm and the plastic dissipation error assessment methods was unexpected, and 

shows that these two techniques are neither applicable nor efficient for this dynamic contact 

problem.  This is also shown graphically by plotting the finite element meshes at the end of 

each analysis in Figure 7.23. Use of the energy norm and plastic dissipation error estimators 

resulted in an increase in the density of the mesh in regions distant from the penetrometer.  

This phenomenon could be due to the propagation of stress waves in the continuum 

resulting from the initial impact of the penetrometer with the soil, but it does not 

necessarily improve the predicted results, and as observed, eventually it causes 

unacceptable mesh distortion. 

7.2.6. Vertical cut 

In this example, the combined rh-adaptive method explained in Chapter 6 is used to analyse 

the vertical slope problem. Figure 7.24 shows the hypothetical problem of a vertical slope 

including its dimensions, boundary conditions and material properties. The bottom and 

right boundaries are restrained from vertical and horizontal displacement, respectively, 

while the left boundary is free to move in all directions.  Except for the portion with 

prescribed vertical displacement, the top boundary is also free to move in all directions.    
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Note that this example does not address the stability analysis of a slope under its self-

weight, but it aims to investigate the pure resistance of a weightless soil in a vertical slope 

when a rigid area adjacent to the slope is loaded in the vertical direction.  The width of this 

area is B and vertical pressure is mobilised by specifying a prescribed downward 

displacement of 0.25B uniformly across the width B.  Plane strain conditions are assumed 

and the soil is modeled as an elastoplastic Tresca material.   

 

 

The problem was solved using three different approaches, including the UL method, the h-

adaptive method, and the rh-adaptive method.  The UL mesh consists of 7909 elements and 

15692 nodal points, while the initial mesh at the beginning of the adaptive analyses 

includes 72 elements and 167 nodes.  The error estimation method in the adaptive analyses 
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was based on plastic dissipation.  According to the plasticity solution of this problem, the 

average value of the ultimate vertical pressure by the soil should be 2su. 

Predictions of the applied pressure normalised by the shear strength of the soil versus the 

vertical displacement normalised by the width of the loaded area are plotted in Figure 7.25.  

 

 Note that the h-adaptive method fails to complete the analysis due to excessive mesh 

distortion occurring in a few small elements, while the combined rh-adaptive method is 

able to finish the analysis.  The UL method overpredicts the soil resistance since the 

Figure 7.25. Load-displacement response of a vertical cut 
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process of continuously updating the nodal coordinates tends to decrease the quality of the 

mesh and to distort the shape of triangular elements.  This poor performance of the UL 

method in analysing problems involved with relatively large deformations has been 

previously reported (see Nazem et al., 2006).  

 

 

 The finite element meshes at the end of the UL and the rh-adaptive analyses are depicted 

in Figure 7.26. The finite element mesh at the end of the rh-adaptive analysis includes 2418 

elements and 4969 nodes.  By comparing the CPU time of the analyses, it was observed 

that the rh-adaptive method is almost 12 times faster than the UL method. 

a. The deformed mesh at the end of 
the UL analysis 

Figure 7.26. Finite element meshes at the end of analyses 

b. The final mesh at the end of rh-
adaptive analysis, 2418 elements 

and 4969 nodes  
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7.2.7. Indentation of a cylinder into a soil layer 

In this example, the indentation of a long rigid cylinder with diameter D into an undrained 

layer of soil is analysed. The soil is modelled using an associated Tresca material. Only half 

of the problem is considered due to symmetry. Figure 7.27 shows the topology of the 

problem and as well as the material properties. 

 

To study the soil behaviour under the indentation of the cylinder a vertical prescribed 

displacement of 0.8D is applied on the cylinder, and a static analysis is performed ignoring 

the friction between the cylinder and the soil to avoid further complexity. This example 
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involves both large deformation and changing boundary conditions. The h-adaptive method 

failed to finish the analysis due to severe mesh distortion occurring at ~0.1D of indentation. 

As the mesh is continuously refined in the h-adaptive procedure, some finest elements may 

become vulnerable of losing positive Jacobian within one single time step and hence lead to 

numerical breakdown. By contrast, the combined rh-adaptive method developed in Chapter 

6 of this Thesis was able to successfully finish the analysis for the prescribed indentation. 

Figure 7.28 plots the indentation, normalised by the diameter of the cylinder, versus the 

vertical force under the cylinder, normalised by Dsu obtained by the rh-adaptive method 

under static loading. Figure 7.29 shows the final mesh at the end of rh-adaptive analysis 

with 620 elements and 1312 nodes. 

 

Figure 7.28. Load-displacement response of indentation of a cylinder into a soil layer 
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Figure 7.29. Finite element mesh at the end of analysis 
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7.2.8. Large deformation analysis of a footing on a two-layered 

undrained soil 

In this example, the behaviour of a two-layered weightless soil under a strip rigid footing is 

studied, considering large deformations only.  Figure 7.30 depicts the right half of the 

problem, its geometry, its boundary conditions and the material properties of the soil layers.    

 

The width of the footing as well as the thickness of the top layer is assumed to be B. The 

rigidity indexes (G1/su) of the two layers are identical, but the top layer is 10 times stronger 

than the bottom layer.  Both layers are modelled as a Tresca material.  Previously, Wang 

and Carter (2002) comprehensively studied the behaviour of layered clays supporting the 

strip and the circular footings and undergoing large deformations.  To address the 

advantages of the rh-adaptive technique developed here, this numerical example only 

considers a special case of a two layered soil where the upper layer is relatively stronger 

Smooth rigid 

Figure 7.30. A rigid strip footing resting on a two-layered soil 
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than the lower layer. To compare the performance of the rh-adaptive method with the h-

adaptive method a vertical prescribed displacement of B is applied on the footing in 1000 

equal time steps. The problem is analysed by the rh- and h-adaptive methods based on the 

Green-Lagrange strain as well as the plastic dissipation error estimators. The initial finite 

element mesh in all adaptive analyses includes 184 nodal points and 79 6-node triangular 

elements, and the minimum element area is 0.01B2. The h-adaptive analyses using the 

Green-Lagrange strain and the plastic dissipation error estimators fail to finish the analysis 

at 0.75B and 0.47B, respectively, due to excessive mesh distortion causing a negative 

Jacobian of a few elements. This mesh distortion usually occurs in elements with a very 

small size during integration constitutive equations and results in spontaneous termination 

of the analysis. The combined rh-adaptive methods, on the other hand, are able to finish the 
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analysis. The vertical displacement of the footing, normalised by B, versus the pressure 

under the footing, normalised by su2, predicted by the rh-adaptive methods is plotted in 

Figure 7.31. Although this example presents the advantage and the robustness of the rh-

adaptive finite element strategy developed here, the performance of the two rh-adaptive 

finite element techniques based on the Green-Lagrange strain and the plastic dissipation 

error estimators is also studied by plotting the growth of the total number of degrees of 

freedom versus the analysis progress as in Figure 7.32.  In terms of CPU time, the rh-

adaptive analysis based on plastic dissipation is ~25% faster than the other method 

considered in this study. The final deformed finite element meshes at the end of the rh-

adaptive analyses are depicted in Figure 7.33.  Note that the entire problem domains are 

 

shown in Figure 7.33 to present a more meaningful visualisation.  The total number of 

elements and nodal points at the end of analysis based on Green-Lagrange strain error 
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Figure 7.32. Two-layered soil under a strip footing 
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estimator are 7260 and 3555, respectively, whereas the rh-adaptive analysis based on the 

plastic dissipation generated 6317 nodes and 3104 elements at the end. 
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8.1. SUMMERY 

In this Thesis, adaptive techniques for solving large deformation problems of geomechanics 

have been studied and improved. The main areas covered in this study are summarised in 

the following. 

       Alternative adaptive techniques have been investigated by considering their 

advantages and disadvantages and focusing mainly on large deformation problems 

of geomechanics. 

       The main components of an adaptive finite element method including error 

estimation, mesh generation and remapping have been studied and their application 

in geotechnical problems have been addressed in this Thesis. 

       A new h-adaptive technique has been presented with the ability to estimate the error 

in the analysis using one of three error estimators based on the energy norm, the 

Green-Lagrange strain or the plastic dissipation, to refine the mesh where a finer 

mesh is required and to transfer all the state variables from previous mesh to the 

new mesh. 

       The efficiency and the accuracy of the h-adaptive method presented in this study 

have been tested by analysing some well known static geomechanics problems with 

either small or large deformation. 

       The h-adaptive method in this study has been generalised for geotechnical problems 

involving dynamic analysis and contact mechanics. 
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      The efficiency and applicability of three main error assessor techniques including the 

energy norm, the Green-Lagrange strain, and the plastic dissipation in solving 

geotechnical problems involved with dynamic forces and changing boundary 

conditions have been address in this Thesis.  

      A new combined rh-adaptive finite element strategy to solve geotechnical problems 

involved with material nonlinearity, large deformations, changing boundary 

conditions, and dynamic forces has been developed in this Thesis.  This new method 

combines the h-adaptive method introduced in this study with an r-adaptive 

technique (ALE) to benefit from both methods simultaneously, and overcome the 

drawbacks of each individual adaptive technique. Then, the efficiency of this 

combined rh-adaptive method has shown by analysing some large deformation 

problems of geomechanics. 

8.2. EFFICIENCY OF h-ADAPTIVE METHOD 

The h-adaptive finite element method presented here is able to solve a wide range of 

nonlinear geotechnical problems efficiently and accurately. It is particularly effective in 

capturing localised failure and shear bands, which are difficult to predict using fixed grids. 

This h-adaptive technique also seems to be quite efficient in dealing with problems 

involving large deformation, where mesh distortion can affect the accuracy of the solution.  

In terms of efficiency, the h-adaptive technique is able to produce accurate results with 

considerably less numbers of elements and nodes and significantly less computational time. 



CChhaapptteerr88  ––  CCoonncclluussiioonn  aanndd  ffuuttuurree  wwoorrkk                                                                                                                                                          116622  

                                                                                                  

 

8.3. ALTERNATIVE ERROR ESTIMATORS  

The performance of three alternative error assessment techniques was investigated within 

the framework of an h-adaptive finite element method. This was achieved by studying the 

static and dynamic behaviour of soil under a strip footing as well as the response of soil to a 

penetrating object in the examples 7.2.4 and 7.2.5. For the static problems studied here it 

was observed that, in terms of accuracy, the three error assessment techniques provide 

similar results.  For the footing problem, the plastic dissipation error estimator 

outperformed the other two techniques.  However, for the case of static cone penetration 

involving an analysis of contact behaviour, it was demonstrated that the error assessor 

based on the Green-Lagrange was the most efficient technique. 

For the dynamic problems considered in this study it was found that the Green-Lagrange 

strain error estimator can provide a solution with a minimum number of required degrees of 

freedom.  In the case of dynamic penetration, the Green-Lagrange strain error estimator is 

the only one which was able to complete the analysis without any difficulty, while the other 

two techniques failed to provide a complete solution due to excessive mesh distortion 

caused by relatively large deformations occurring at the interface between the soil and the 

penetrometer.  In addition, the plastic dissipation and energy norm error estimators tended 

to increase the density of the mesh unnecessarily, which increased the computational time 

significantly. 
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Numerical results indicate that the choice of a suitable error estimator depends on the 

problem and its complexity.  In general, for the geomechanics problems presented here, the 

energy norm error estimator demonstrated the lowest performance while the Green-

Lagrange strain error assessor was found to be most optimal.  The results show that no 

unique error estimator may be generally prescribed for geotechnical problems.  However, 

for dynamic contact problems, the choice of an error estimator based on the Green-

Lagrange strain tensor is recommended. 

8.4. COMBINED RH-ADAPTIVE METHOD 

A combined rh-adaptive finite element method for analysing large deformation problems of 

geomechanics was presented in this study.  The proposed method takes advantage of the h-

adaptive finite element technique as well as the Arbitrary Lagrangian-Eulerian method, and 

eliminates the individual drawbacks of each method. For the numerical examples 

considered in this Thesis, it was shown that the proposed rh-adaptive method outperforms 

the h-adaptive finite element technique as well as the Updated-Lagrangian method. 

8.5. FUTURE WORK 

Based on the conclusions obtained in this Thesis, the following research topics are 

recommended by the author for future research works. 

     The h- and rh-adaptive finite element techniques developed in this study can be 

generalised to solve geotechnical problems in which the pore water pressure is 

coupled with displacements under static or dynamic loads.  
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      The performance and applicability of alternative error estimator techniques in solving 

coupled problems of geomechanics is not addressed in the literature, and is yet to be 

understood. 

       For all adaptive methods considered in this study, a robust strategy for transferring 

the state variables between the old mesh and the new mesh, which guarantees 

satisfaction of the equilibrium as well as the plasticity consistency, is still in 

demand. 
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