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Abstract 

Chronic obstructive pulmonary disease (COPD) is a growing global health 

problem, and this disorder is projected to rank fifth by 2020 as a worldwide 

burden of disease (Murray and Lopez., 1996). Remarkably, little is known about 

the pathogenesis of COPD and current pharmacologic agents fail to halt disease 

progression. Emphysema is a major inflammatory disorder that falls under the 

clinical description of COPD. Emphysema can be induced by smoking but can also 

occur in non-smokers. Emerging data suggests that the loss of alveolar tissue 

which characterises emphysema may result from increased cell death (apoptosis) 

of alveolar epithelial cells mediated by the sphingolipid mediator ceramide 

(Petrache et al., 2005). The cause of COPD exacerbations are commonly bacterial 

or viral respiratory infections. Under certain conditions, immunity from infection 

is mediated through the initiation of apoptotic pathways by infected cells to 

prevent the pathogen from replicating within the host. Toll-like receptors (TLRs) 

recognise molecular patterns expressed by pathogens such as bacteria and 

viruses to initiate innate immune responses. Notably, significant amounts of the 

bacterial wall component lipopolysaccharide (LPS) are found in cigarette smoke. 

LPS is a TLR4 ligand that increases the level of the apoptotic mediator ceramide 

and production of proinflammatory cytokines (such as tumour necrosis factor 

(TNF)–α, interleukin (IL)-1β, and IL-6) implicated in the pathogenesis of 

emphysema. We hypothesise that chronic inhalation of LPS leads to the 

dysregulation of TLR4 signalling pathways that increases susceptibility to 
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respiratory infection, and uncontrolled inflammation that promotes alveolar cell 

apoptosis and emphysematous-like lesions. We developed mouse models of LPS- 

and bacterial-induced emphysema to determine if attenuating inflammation can 

prevent the development of emphysema. 

 Our results demonstrate that exposure to LPS or infection with Non-

typeable Haemophilus influenzae (NTHi) (often found in patients with 

emphysema) can induce hallmark features of emphysema, such as alveolar 

enlargement (determined by mean linear intercept and percentage alveolar 

airspace measurements) and inflammation dominated by neutrophils and 

macrophages. We demonstrated that alveolar enlargement was due to the loss 

of alveolar parenchyma (from apoptosis), is dependent on TLR4 and myeloid 

differentiation factor-88 (MyD88), increased proinflammatory cytokines, 

chemokines, and inflammatory cells (neutrophils and macrophages) in the lung. 

Prophylactic administration of synthesised chemerin-derived peptide (C15) 

attenuated LPS- or NTHi-induced inflammation, which resulted in inhibition of 

the development of emphysematous-like lesions. Notably, specific depletion of 

alveolar macrophages protects mice from LPS- or NTHi-induced emphysema. 

 Collectively, we demonstrate that blocking inflammation during the 

development of emphysema is critical for preventing or attenuating the 

progression of the disease. 
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