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Abstract

We present a fault tolerant control strategy based on a new principle for actuator fault
diagnosis. The scheme employs a standard bank of observers which match the different fault
situations that can occur in the plant. Each of these observers has an associated estimation
error with distinctive dynamics when an estimator matches the current fault situation of the
plant. Based on the information from each observer, a fault diagnosis and isolation (FDI)
module is able to reconfigure the control loop by selecting the appropriate control law from
a bank of controllers, each of them designed to stabilise and achieve reference tracking for
one of the given fault models. The main contribution of the paper is to propose a new FDI
principle which exploits the separation of sets that characterise healthy system operation
from sets that characterise transitions from healthy to faulty behaviour. The new principle
allows to provide pre-checkable conditions for guaranteed fault tolerance of the overall multi-
controller scheme.

Keywords: Fault tolerant systems, Fault diagnosis, Controller reconfiguration, Actuators,
Observers, Sets

1 Introduction

Fault tolerant control [FTC] systems combine fault detection and identification [FDI] and con-
troller reconfiguration principles in an integrated manner that automatically avoids, or minimises,
performance degradation when faults occur. Numerous methodologies for FDI have been pro-
posed in the literature since the introduction of the early techniques in the 1970s; see, for example,
the monographs and surveys Ding (2008), Isermann (2006), Patton et al. (2000), Basseville and
Nikiforov (1993), Venkatasubramanian et al. (2003), Frank et al. (2000), Leonhardt and Ayoubi
(1997) and Frank (1990), as well as the earlier reviews Willsky (1976), Isermann (1984) and Chow
and Willsky (1984). A well established technique for model-based FDI relies on analytical re-
dundancy in the form of dedicated observers. These observers generate residual variables that
act as fault indicators. Publications on control reconfiguration are relatively more recent, see
for example, Zhang and Jiang (2003), Mahmoud et al. (2003) and Steffen (2005). A thorough
compilation of a large diversity of techniques and methods for FDI and FTC can be found in
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the monograph Blanke et al. (2006). Despite this diversity, the approaches described in Blanke
et al. (2006) for FTC—integrating both FDI and controller reconfiguration—do not specifically
focus on providing guaranteed fault tolerance properties which ensure that closed-loop stability
is preserved in the presence of faulty system components.

Towards the aim of devising schemes with guaranteed fault tolerance properties, we have
recently presented in Ocampo-Mart́ınez et al. (2008) a new control scheme that tackles the
problem of actuator FTC within a new framework. The architecture of the scheme, which we
preserve in the present paper, is similar to other FTC strategies previously proposed in the
literature, see, for example, Chapter 7 in Blanke et al. (2006). It consists of:

• A bank of observers which match the different fault situations that can occur in the plant.
Each of these observers has an associated estimation error (or residuals) with a distinctive
(“matching”) behaviour when an estimator matches the current fault situation of the plant.

• An FDI algorithm which, based on the residual information from each observer, is able to
reconfigure the control loop by selecting the appropriate stabilising controller from a bank
of precomputed control laws, each of them related to one of the given fault models.

• A bank of multiple control laws, each consisting of a reference feedforward term and a
feedback gain multiplying the state estimate provided by the matching observer.

The novelty of the approach recently proposed by the authors in Ocampo-Mart́ınez et al.
(2008) lied in a new decision criterion for FDI. This new criterion was based on the computation
of attractive invariant sets towards which the estimation errors related to each fault scenario
and associated control configuration are guaranteed to converge. A key property for correct
fault diagnosis was then the separation of the sets that characterise healthy operation from the
ones that characterise faulty operation. A related “set-based” approach was proposed in Wolff
et al. (2008), where the real system behaviour given by measurements and the modelled system
behaviour are checked for consistency through the use of set-valued observers. In Ocampo-
Mart́ınez et al. (2008), both FDI and controller reconfiguration were achieved in steady state,
since, after the occurrence of an actuator fault, the algorithm was required to wait a suitable
time until the estimation errors had converged to the sets associated with the new fault situation.
Thus, although all system states were shown to remain bounded at all times, potentially large
transient behaviour could still occur and compromise performance. Also, only actuator total
outage was considered.

In the present paper, we give improved, less conservative, conditions for the FDI algorithm
and for fault tolerant closed-loop stability. These new conditions employ discrete-time models
for the plant, reference system and observers and allow for quicker fault detection and conse-
quent reconfiguration of the controller. The main reason for the quicker fault detection property
is that we compute “after fault” sets which characterise the “one step ahead” transient faulty
behaviour, thus allowing to detect the fault, and reconfigure the controller, in one sampling in-
stant. Moreover, we consider a larger class of faults by treating not only actuator outage but
also loss of effectiveness by an uncertain amount. In addition, we extend the multi-controller to
incorporate integral action. This latter feature allows us to successfully apply the method and
achieve offset-free setpoint tracking for a nonlinear simulation model consisting of two intercon-
nected tanks, often utilised in the fault tolerant control literature (see, for example, Richter and
Lunze (2009)).

Other approaches have focused on providing guaranteed fault tolerance properties which en-
sure that closed-loop stability is preserved in the presence of faulty system components, see for
example, the papers Tang et al. (2007); Mhaskar et al. (2006); Zhang et al. (2004); Boskovic
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and Mehra (1999) and references therein. In particular, the papers Tang et al. (2007); Mhaskar
et al. (2006); Zhang et al. (2004) present fault tolerant control methodologies based on the use of
nonlinear models. These methodologies are very powerful but, naturally, require fairly involved
design procedures and specialised tools, such as nonlinear transformations (Tang et al., 2007),
control Lyapunov functions and invariant sets for constrained nonlinear dynamics (Mhaskar
et al., 2006), or sophisticated fault detection filters based on learning algorithms and neural net-
works. In addition, Tang et al. (2007) and Zhang et al. (2004) assume full state measurements,
and Mhaskar et al. (2006) only considers single-input configurations, thus fault isolation is not
treated in general (although it is discussed in an example). In contrast, our approach is simple,
yet treats multiple input linear systems under output feedback (i.e., full state measurement is
not required) in the presence of process and measurement disturbances, and it is based on an
adequate orchestration of standard linear observer and tracking controller designs with appropri-
ate switching rules based on set-separation fault detection and isolation. A related approach for
linear systems, but assuming full state measurement and minimum phase dynamics was proposed
in Boskovic and Mehra (1999) using a multiple model adaptive reconfigurable control approach.

The remainder of the paper proceeds as follows. Section 2 describes the plant and actuator
fault models, the bank of state observers and the tracking multi-controller. In Section 3, we
analyse the closed-loop system properties and compute invariant and “after-fault” sets for the
relevant system variables. Section 4 presents the proposed set-based FDI approach and estab-
lishes fault tolerant closed-loop stability and setpoint tracking. Section 5 shows the results of the
application of the proposed FTC scheme to a simulation model of the two interconnected tank
system of Richter and Lunze (2009). Finally, Section 6 concludes the paper.

A preliminary conference version of this paper was presented in Seron et al. (2009).

2 Plant, Observers and Multi-controller

2.1 Plant and Actuator Fault Models

The plant is given by the linear discrete-time model

x+ = Ax + BFu + Ew, (1a)

y = Cx + η, (1b)

v = Hy , Cvx + ηv, (1c)

where x ∈ R
n and x+ ∈ R

n are, respectively, the current and successor system states, u ∈ R
m

is the control input, w ∈ R
r is a bounded process disturbance, y ∈ R

p is the plant measured
output, η ∈ R

p is a bounded measurement disturbance and v ∈ R
q is a measured performance

output (typically, one or more components of the measured output y). Matrix F ∈ R
m×m in

(1a) is used to model actuator faults. To this end, we consider that F can take N = m + 1
different families of values

F ∈ {F ∗
1 , F ∗

2 , . . . , F ∗
N}, (2)

where F ∗
i is associated with faults in the ith actuator, that is, each F ∗

i has the form

F ∗
i = diag(1, . . . ,

i
↓

fi, . . . , 1), fi ∈ [0, 1), for i = 1, . . . , m, F ∗
N = Im. (3)

The parameter fi in (3) represents the unknown “fault intensity”. For example, fi = 0 models
the loss of the ith actuator. More generally, fi ∈ (0, 1) corresponds to loss of effectiveness of the
ith actuator. Also, note that F ∗

N = Im (the m × m identity matrix) represents the “nominal”
case, that is, no actuator fault.
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In Section 4 we will develop an FDI approach that will detect actuator faults having intensity
parameters fi in (3) ranging over a certain interval. Once a fault has been detected, we will force
the control signal corresponding to the faulty actuator to zero in order to have a correct model
matching for the subsequent controller reconfiguration step. To this end, we define the following
actuator “nullifying” matrices:

Fi = diag(1, . . . ,

i
↓

0, . . . , 1), for i = 1, . . . , m, FN = F ∗
N = Im, (4)

which are used after a fault in the ith actuator has been detected so that the control input u

in (1) can be effectively assumed to have the form Fiu (this follows from the property F ∗
i Fi = Fi

for i = 1, . . . , N that results from (3)–(4)).
We will say that an (abrupt) change in the actuator fault situation occurs if F changes from

F = F ∗
i to F = F ∗

j , i, j ∈ {1, . . . , N}, j 6= i, at some discrete-time instant kF ≥ 0.
We assume the following properties of system (1), (4).

Assumption 2.1 (Detectability). The pair (A, C) is detectable. ◦

Assumption 2.2 (Stabilisability). The pairs
([

A 0
Cv Iq

]

,
[

BFi

0

])

are stabilisable, for i = 1, . . . , N .
◦

Assumption 2.2 ensures the possibility to achieve constant setpoint tracking, as shown in
Section 2.3 below. Note that this assumption is stated in terms of the matrices Fi defined in (4)
since the ith actuator signal will be forced to zero after a fault in this actuator is detected.
While this signal remains zero the “after-fault” value of the matrix F in (1) can be effectively
considered to be F = F ∗

i Fi = Fi.

Assumption 2.3 (Disturbance Bounds). Bounding sets1 W , {w ∈ R
r : |w| ≤ w} and N ,

{η ∈ R
p : |η| ≤ η} for some constant nonnegative vectors w ∈ R

r and η ∈ R
p are known such that

the process and measurement disturbances satisfy w(k) ∈ W and η(k) ∈ N for all discrete-time
instants k ≥ 0. ◦

Remark 2.4. The boundedness requirement of Assumption 2.3 is key to the current invariant-
set approach. It has the advantage, with respect to probabilistic approaches, that no stochastic
model of the noises is needed; that is, noises and disturbances can obey any arbitrary probabilistic
distribution, provided they remain bounded. The assumption that they remain bounded, on the
other hand, is realistic in many applications. ◦

2.2 Bank of State Observers

The scheme employs a bank of N state observers given by

x̂+
i = Ax̂i + BFiu + Li(y − Cx̂i), i = 1, . . . , N, (5)

where x̂i ∈ R
n is the state estimate associated with the ith fault situation, u and y are the plant

input and output and Fi has the form (4). Notice that each observer for i = 1, . . . , N − 1 (where
N − 1 = m) “matches” the case of outage in one actuator whereas the Nth observer “matches”
the fault free case.

Assumption 2.5 (Observer Gains). The gains Li, for i = 1, . . . , N , are such that A− LiC are
Schur matrices.2 ◦

1Inequalities and absolute-value/magnitude of vectors and matrices are taken elementwise.
2A Schur matrix has all its eigenvalues strictly inside the unit circle.
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Note that the above assumption can always be satisfied by detectability of the pair (A, C)
(see Assumption 2.1).

To each observer we associate the state estimation error

x̃i , x − x̂i, (6)

and the output estimation error

ei , y − Cx̂i = Cx̃i + η, (7)

for i = 1, . . . , N . From (1a), (1b) and (5), the estimation errors satisfy

x̃+
i = (A − LiC)x̃i + B(F − Fi)u + Ew − Liη. (8)

2.3 Reference Tracking Multi-controller

The FDI algorithm (described below in Section 4) decides the index ℓ, ℓ ∈ {1, . . . , N}, that
corresponds to the “evaluated” fault situation and passes the corresponding state estimate x̂ℓ to
implement the following multi-controller:

u = Fℓ[−Kℓ,1(x̂ℓ − xref) − Kℓ,2σ + uref,ℓ], (9)

x+
ref = Axref + BFℓ uref , uref = uref,ℓ, (10)

σ+ = σ + κ(v − Cvxref), (11)

where xref ∈ R
n and uref ∈ R

m are state and input reference signals, respectively, A, B are the
system matrices in (1a), Fℓ is as defined in (4), v is the performance output defined in (1c),
σ ∈ R

q is the state of the discrete-time integrator (11) and κ 6= 0 is a scalar gain.3

The tracking multi-controller (9)–(11) satisfies, by design, the following properties:

1. The multiple state-feedback gains Ki,1, Ki,2, for i = 1, . . . , N , used in (9) are computed
off-line for each possible fault situation so that the following condition is satisfied.

Assumption 2.6 (Controller Gains). The gains Ki , [Ki,1 Ki,2], for i = 1, . . . , N ,
are such that the closed-loop matrices AFi,Ki

; that is, when F = Fi and K = Ki in the
definition

AF,K ,

[

A 0
κCv Iq

]

−

[

BF

0

]

K, (12)

are Schur matrices. ◦

Note that the above can always be satisfied by the stabilisability requirement of Assump-
tion 2.2.

2. The input reference uref,i and the resulting state reference xref in (10) are bounded signals
by design. In particular, the following assumption holds.

Assumption 2.7 (Reference Bounds). Constant vectors u0
ref,i ∈ R

m and 0 ≤ uref,i ∈ R
m,

for i = 1, . . . , N , are known such that uref,i(k) ∈ Uref,i = {u ∈ R
m : |u− u0

ref,i| ≤ uref,i} for
all k ≥ 0. ◦

3The integrator gain κ is typically taken equal to the sampling period when (1) represents the discretisation
of a continuous-time system.
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3. The reference system (10) is designed such that the output Cvxref , where Cv is the plant’s
performance output matrix in (1c), asymptotically tracks an external bounded signal v∗,
that is, limk→∞[ Cvxref(k) − v∗(k) ] = 0. The signal v∗ is a reference trajectory that we
ultimately want the plant’s performance output v in (1c) to track under all possible fault
situations.

Remark 2.8 (Actuator redundancy). In applications where the input matrix B in (1) has a
non trivial right null space, which is typical whenever there is actuator redundancy, then extra
offset terms dref,i, where dref,i are such that BFidref,i = 0, can be added to the offsets u0

ref,i of the
input reference signal (see Assumption 2.7), without affecting the reference tracking properties of
the controller. These additional offsets provide extra degrees of freedom that can be exploited to
achieve the desired set separation in the proposed FTC scheme. ◦

We will show in Section 3 that when the FDI algorithm makes the “correct” decision (this
will be ensured by the conditions imposed in later sections), that is, when it correctly identifies
the index ℓ associated with the current actuator fault situation, then Assumptions 2.3 and 2.5
together with the above properties of the tracking multi-controller (9)–(11) guarantee that the
closed-loop system evolves with bounded dynamics. Moreover, if the changes in the actuator
fault situation are “sufficiently slow”, the plant’s performance output v in (1c) asymptotically
tracks the desired signal v∗.

3 Closed-loop System, Attractive Invariant Sets and After-

fault Sets

For a particular value of F in (2) and while the selection ℓ of the FDI algorithm does not change,
the closed-loop system consisting of the “integrator-augmented” plant tracking error

ξ =

[

z

σ

]

,

[

x − xref

σ

]

, (13)

and the estimation errors, x̃i, i = 1, . . . , N , evolves as (see (1a), (7), (8) and (9)–(12))

X+ = AF,ℓX + BF,ℓ vℓ, (14)

where

AF,ℓ ,



















AF,FℓKℓ
0 ···

h

BFFℓKℓ,1

0

i

··· 0

B(F1−F )FℓKℓ A−L1C ··· B(F−F1)FℓKℓ,1 ··· 0

...
...

.. .
...

. . .
...

B(Fℓ−F )FℓKℓ 0 ··· A−LℓC+B(F−Fℓ)FℓKℓ,1 ... 0

...
...

.. .
...

. . .
...

B(FN−F )FℓKℓ 0 ··· B(F−FN )FℓKℓ,1 ··· A−LNC



















(15)

X ,























ξ

x̃1

...
x̃ℓ

...
x̃N























, BF,ℓ ,



















h

B(FFℓ−Fℓ) E 0
0 0 κH

i

B(F−F1)Fℓ E −L1

...
B(F−Fℓ)Fℓ E −Lℓ

...
B(F−FN )Fℓ E −LN



















, vℓ ,

[ uref,ℓ
w
η

]

, (16)
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where we have used ηv = Hη, which follows from (1c).
We can make the following remark and definitions regarding the closed-loop system behaviour.

Remark 3.1 (Boundedness). For each fixed value of the index ℓ, ℓ ∈ {1, . . . , N}, selected by
the FDI algorithm, Assumptions 2.3 to 2.7 ensure that the closed-loop system (14) has bounded
states whenever either of the following two actuator fault situations hold:

• F = F ∗
ℓ (that is, the index ℓ selected by the FDI algorithm matches the correct actuator

fault situation),

• F = F ∗
N = Im (that is, the actuator fault situation corresponds to the nominal case where

all m actuators are healthy).

To see the above property, we first note that the controller closed-loop matrix defined in (12)
satisfies AF,FℓKℓ

= AFℓ,Kℓ
in any of the above two cases of F , and further use the equalities

F ∗
ℓ Fℓ = Fℓ, F ∗

NFℓ = Fℓ and FℓFℓ = Fℓ in (14)–(16) to obtain the following sets of equations for
the estimation error of the selected estimate, x̃ℓ, the (integrator augmented) plant tracking error,
ξ, and the (“non-selected”) estimation errors, x̃i, for i = 1, . . . , N , i 6= ℓ:

x̃+
ℓ = (A − LℓC)x̃ℓ +

[

E −Lℓ

]

[

w

η

]

, (17)

ξ+ = AFℓ,Kℓ
ξ +

[

BFℓKℓ,1 E 0
0 0 κH

]





x̃ℓ

w

η



 , (18)

x̃+
i = (A − LiC)x̃i + B(Fℓ − FiFℓ)[−Kℓξ + Kℓ,1x̃ℓ] +

[

B(Fℓ − FiFℓ) E −Li

]

vℓ, (19)

where vℓ is defined in (16). We then note that Assumptions 2.3 and 2.5 guarantee that the state
x̃ℓ of (17) is bounded. From the latter fact and Assumptions 2.3 and 2.6, we have that the state ξ

of (18) is bounded. Finally, Assumptions 2.3, 2.5 and 2.7, and the fact that x̃ℓ and ξ are bounded
guarantee that the state x̃i of (19) is also bounded.

Notice that, as shown above (and due to the use of the matrix Fℓ in the controller (9)),
the closed-loop system (17)–(19) is insensitive to changes in the actuator fault situation between
F = F ∗

ℓ and F = F ∗
N = Im. Thus, a structural characteristic of the presented approach is

the inability to automatically detect the recovery of the nominal situation and reconfigure the
controller accordingly. Note, however, that the closed-loop boundedness property is still preserved
since the controller remains reconfigured to match the previous fault situation, forced to be correct
by effect of the matrix Fℓ. On the other hand, the nominal situation can be recovered manually
by re-initialisation. ◦

Definition 3.2 (Attractive Invariant Sets). Using the results of Appendix A, we can construct
attractive invariant sets X̃ℓ,ℓ, Zℓ, for ℓ = 1, . . . , N , and X̃i,ℓ, for i, ℓ ∈ {1, . . . , N}, i 6= ℓ, asso-

ciated with systems (17), (18) and (19), respectively. Note that X̃ℓ,ℓ and Zℓ, for ℓ = 1, . . . , N ,
are “centred” around 0, since the disturbance sets W and N are centred around 0 (see Assump-
tion 2.3). On the other hand, the sets X̃i,ℓ, for i, ℓ = 1, . . . , N , i 6= ℓ, are centred around

x̃0
i,ℓ , (In − A + LiC)−1B(Fℓ − FiFℓ)u

0
ref,ℓ (20)

(see (28) in Appendix A), where u0
ref,ℓ is defined in Assumption 2.7. We also define the sets

Sℓ , Zℓ × X̃1,ℓ × · · · × X̃ℓ,ℓ × · · · × X̃N,ℓ, ℓ = 1, . . . , N, (21)
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(× denotes Cartesian product), which are attractive and invariant for system (14) for F = F ∗
ℓ

or F = F ∗
N . ◦

Definition 3.3 (Output Sets). We define the output sets

Ei,ℓ , CX̃i,ℓ ⊕N , for i, ℓ = 1, . . . , N, (22)

(the symbol ⊕ denotes Minkowski sum of sets) which are sets where the output estimation er-
rors ei, defined in (7), live whenever the corresponding estimation error x̃i lives in X̃i,ℓ. Note

that Ei,i is centred around 0, whereas Ei,ℓ, ℓ 6= i, is centred around e0
i,ℓ , Cx̃0

i,ℓ, where x̃0
i,ℓ is

given by (20). ◦

The output sets are illustrated for N = 3 in Fig. 1 (the bigger green sets) in the R
2 output

estimation error space corresponding to the observer with index 3 (the other two observers are
indexed as 1 and 2).

Suppose next that the states of system (14) for some ℓ ∈ {1, . . . , N} and F = F ∗
ℓ or F =

F ∗
N = Im (see Remark 3.1) are in the set Sℓ defined in (21). Let a change in the actuator fault

situation occur so that F in the plant equation (1a) changes at some time kF to F = F ∗
j =

diag(1, . . . , fj, . . . , 1), for some j ∈ {1, . . . , m}, j 6= ℓ [see (3)]. Using the dynamic equation (14)
and Assumptions 2.3 and 2.7 we have that the “after-fault” state X+ of (14)–(16) (that is, the
state at time kF + 1) satisfies

X+ ∈ S+
ℓ (fj) where S+

ℓ (fj) , AF∗

j
,ℓSℓ ⊕ BF∗

j
,ℓ Vℓ, (23)

and where Vℓ , Uref,ℓ ×W ×N . (Note, in particular, that the subindex ℓ in AF∗

j
,ℓ and BF∗

j
,ℓ

is not changed since the controller (9)–(11) has not yet been reconfigured to correspond to the
new fault situation.)

Definition 3.4 (“After-fault” Sets). Associated with the previously selected ℓth observer, when
a change from F = F ∗

ℓ or F = F ∗
N = Im to F = F ∗

j = diag(1, . . . , fj , . . . , 1), for some j ∈
{1, . . . , m}, j 6= ℓ occurs, we define the “after-fault” set

E+
ℓ,ℓ(fj) ,

[

0p×(n+q)

1
↓

0p×n . . .

ℓ
↓

C . . .

N
↓

0p×n

]

S+
ℓ (fj) ⊕N ,

where 0p×n denotes a p × n matrix with zero entries. Using (21), (23), and the structure of the
matrices in (15)–(16), yields

E+
ℓ,ℓ(fj) = CB(Fℓ − F ∗

j Fℓ)KℓZℓ ⊕ C[A − LℓC + B(F ∗
j Fℓ − Fℓ)Kℓ,1]X̃ℓ,ℓ

⊕ CB(F ∗
j Fℓ − Fℓ)Uref,ℓ ⊕ CEW ⊕ (Ip − CLℓ)N . (24)

Note that the set E+
ℓ,ℓ(fj) will contain the “after-fault” output estimation error associated with the

previously selected ℓth observer, denoted by e+
ℓ , if before the fault the estimation error x̃ℓ belonged

to the set X̃ℓ,ℓ and the tracking error ξ belonged to the set Zℓ. The first of those conditions, in
turn, implies that the output estimation error eℓ belonged to the set Eℓ,ℓ defined in (22). Hence,
the “after-fault” sets (24) represent the collection of all possible “after-fault” values of the output
estimation error eℓ at time kF + 1 starting from the set Eℓ,ℓ at time kF . ◦

Fig. 1 illustrates the “after-fault” sets (24) (the smaller red sets) for N = 3 in the R
2 output

estimation error space corresponding to the observer with index 3 (the other two observers are
indexed as 1 and 2).
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0

e0
3,1

e0
3,2

E3,1

E3,3

E3,2

E+
3,3(f1)

E+
3,3(f2)

Figure 1: Sets associated to the observer with index 3. The illustration corresponds to N = 3;
the other two observers are indexed as 1 and 2. Note that the observer with index 3 corresponds
to the nominal case according to the notation introduced in (3).

4 Fault Detection and Isolation Approach

4.1 Basic Principle

We will motivate our FDI approach via an informal discussion based on the illustration of Fig. 1,
corresponding to a scheme having three observers with indices 1, 2 and 3. We will assume that,
as illustrated in the figure, the sets E3,3 and E+

3,3(fj) for j = 1, 2 are separated from each other.4

Suppose that the closed-loop system has been operating for sufficiently long time under a
particular fault situation, F = F ∗

3 , say, accompanied by the right selection ℓ = 3 of the FDI.
We assume that the elapsed time is long enough so that the closed-loop system states belong to
the (attractive and invariant) set S3 given in (21) and the output estimation errors of all three
observers belong to the respective sets in (22). In particular, the output estimation error e3 of
the selected observer 3 belongs to the set E3,3, which is centred around 0 in the corresponding
output estimation space associated to observer 3, as shown in Fig. 1.

Suppose next that the plant fault situation changes at time kF from F = F ∗
3 to F = F ∗

1 =
diag(f1, 1, 1) or to F = F ∗

2 = diag(1, f2, 1), with f1, f2 ∈ [0, 1). Hence, the output estimation
error e3 corresponding to the previous selected observer 3 will either move into the set E+

3,3(f1),

or to the set E+
3,3(f2). Thus, by monitoring the output estimation error of the currently selected

observer (in this example, monitoring e3 at times k ≤ kF + 1) to determine which set it belongs
to, we can correctly detect and isolate the fault one sampling instant after its occurrence (that
is, at k = kF + 1), and reconfigure the controller accordingly. Once a reconfiguration has been
made (in our example, the FDI algorithm selects the index ℓ = j), in order to avoid false alarms,
the algorithm does not make another output estimation error check or decision until enough time
has elapsed so that all estimation errors have converged to the sets (21) corresponding to the
new decision ℓ = j. We will call this convergence time the “set-transition time”, and we point
out that this time can be estimated using, for example, standard set-theoretic techniques as
explained in Appendix B. After that time, the algorithm proceeds to monitor the sets associated
to the newly selected observer j. In our allowed fault scenario we will assume that no other fault
can occur within such set-transition time.

4Since the fault intensity parameter fj is unknown, this separation requirement will be later asssumed to hold
of all fj in some interval Ij ⊂ [0, 1).
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4.2 FDI Algorithm and Controller Reconfiguration

We next describe the proposed FDI approach and controller reconfiguration more formally. We
begin with an assumption on the separation of the sets presented in Section 3.

Assumption 4.1 (Set Separation). For each i = 1, . . . , N , the set Ei,i and the m− 1 collections
of sets ∪fj∈Ij

E+
i,i(fj), for j = 1, . . . , m, j 6= i, and some nonempty invervals Ij ⊂ [0, 1), are all

disjoint. ◦

There are two main mechanisms to achieve the set separation of Assumption 4.1. One is to
adjust the offset of the reference signal v∗ (see Property 3 in Section 2.3), which changes the
offsets u0

ref,ℓ; and the other is to exploit the degree-of-freedom signals dref,ℓ (see Remark 2.8)
afforded by the system’s actuator redundancy. Both mechanisms change the “centres” of the
after-fault sets (24). More specifically, since F ∗

j 6= Im the third summand in (24), associated

with the reference set Uref,ℓ, will cause a “shift” of the after-fault set E+
ℓ,ℓ(fj) away from the

origin (the remaining summands in (24), associated with the sets Zℓ, X̃ℓ,ℓ, W and N , do not
contribute to this shift since they are all centred at zero).

Notice also that the observer gains Lℓ influence the size of the sets in Assumption 4.1. In
particular, choosing Lℓ so as to minimise some measure of the size of the set X̃ℓ,ℓ [associated
with the selected estimation error dynamics (17)], subject to the constraint that A − LℓC is a
Schur matrix (see Assumption 2.5), has the potential to reduce the size of the sets Eℓ,ℓ [see (22)]
and E+

ℓ,ℓ(fj) [see (24)], thus facilitating the required separation.

We also require the following definition.5

Definition 4.2 (Set-transition Time). Let T be an upper bound on the number of time steps
it takes for the trajectories of system (14) for all ℓ = 1, . . . , m and F = Fℓ to converge to the
attractive invariant set Sℓ [see (21)], from initial conditions in the collection of “after-fault”
sets ∪fℓ∈Iℓ

S+
i (fℓ) [see (23)], for i = 1, . . . , N , i 6= ℓ. ◦

Based on the above assumption and definition, the FDI criterion and controller reconfigura-
tion implemented by the proposed FTC scheme can be outlined as follows:

Algorithm 4.3 (FDI and Controller Reconfiguration).
Initialisation: At time k = k0 the index of the initial fault situation, F = Fi, for some
i ∈ {1, . . . , N}, is known, the controller is using the index ℓ = i in (9)–(11) and the states of
system (14) belong to the attractive invariant set Si [see (21)]. We initialise the “decision” and
“checking” variables d(k0) = i, ℓ = d(k0) and Check(k0) = yes.
Subsequent steps: For k > k0, while Check(k − 1) = yes:

1. (Decision:) Get the current value ei(k) of the output estimation error associated to the
observer that matches the previous decision d(k − 1) = i.

(a) if ei(k) ∈ Ei,i then set d(k) = i and Check(k) = yes;

(b) if ei(k) ∈ ∪fj∈Ij
E+

i,i(fj), for some j ∈ {1, . . . , m}, j 6= i, then set d(τ) = j for
τ = k, . . . , k + T and Check(τ) = no for τ = k, . . . , k + T − 1, Check(k + T ) = yes

(waiting timer).

2. (Reconfiguration:) Set ℓ = d(k) in the multi-controller equations (9)–(11). ◦

5The time T of Definition 4.2 can be estimated, for example, using set-theoretic tools as explained in Ap-
pendix B.
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4.3 Closed-loop Stability and Setpoint Tracking

In this section we establish the stability properties of the proposed FTC scheme. We impose the
following assumption on the allowed fault scenario.

Assumption 4.4 (Fault Scenario). Between the occurrence of any two consecutive changes in
the fault matrix F , the system has been operating under a particular condition (fixed F and ℓ)
for at least T + 1 time instants, where T is as in Definition 4.2. ◦

We then have the following results.

Theorem 4.5 (Closed-loop Stability). Under Assumptions 2.1 to 4.4, the states of the closed-
loop system (14)—encompassing the plant (1), the observers (5) and the tracking controller (9)–
(11) reconfigured by Algorithm 4.3—are bounded. Moreover, they converge to the attractive in-
variant set Sj of the form (21) after the occurrence of any fault characterised by the matrix
F = F ∗

j = diag(1, . . . , fj , . . . , 1), for some j ∈ {1, . . . , m} and fj ∈ Ij (see Assumption 4.1). In
particular, the tracking error (13) converges to the set Zj constructed as in Definition 3.2, and
to zero in the absence of disturbances.

Proof. Consider without loss of generality the occurrence of a change in the actuator fault situ-
ation characterised by the matrix F = F ∗

j = diag(1, . . . , fj, . . . , 1), for some j ∈ {1, . . . , m} and
fj ∈ Ij . By Assumption 4.4 and Definition 4.2, before the change the states of the closed-loop
system (14) belong to a set Si of the form (21), for some i ∈ {1, . . . , N}, i 6= j, and hence are
bounded. Also, the output estimation error (7) of the selected ith observer belongs to the set
Ei,i defined in (22) (see Definition 3.3). The first time instant after the change in the actuator
fault situation, the states of system (14) move to the set S+

i (fj) of the form (23) and the output
estimation error ei of the, now, “previously selected” ith observer moves to the set (24), that is,
e+

i ∈ E+
i,i(fj) (see Definition 3.4). Since the sets Ei,i and E+

i,i(fj) are disjoint (Assumption 4.1),
then step 1b of Algorithm 4.3 makes the right decision, and, hence the controller (9)–(11) is
correctly reconfigured by setting ℓ = j (step 2 of Algorithm 4.3). Note also from step 1b of
Algorithm 4.3 that no other check, decision or reconfiguration takes place for the following T +1
time steps and, in addition, no other change in the actuator fault situation occurs within that
lapse (Assumption 4.4). Using the results of Appendix A (see also Definition 3.2), we conclude
that the states of the closed-loop system (14) converge to the set Sj of the form (21) and the
tracking error (13) converges to the set Zj constructed as in Definition 3.2. Moreover, it is
evident from (17) and (18) that the latter set collapses to zero in the absence of disturbances.
The result then follows.

Corollary 4.6 (Setpoint Tracking). Under the conditions of Theorem 4.5, for a constant refer-
ence signal v∗ (see Property 3 in Section 2.3), the performance output v in (1c) converges to the
setpoint v∗ even in the presence of (nonzero) constant disturbances.

Proof. Theorem 4.5 has shown that the states of the closed-loop system are bounded. Then,
if the reference signal v∗ and all disturbances are constant, the integrator state σ in (11) must
converge to a constant value, that is σ+ = σ. Hence, equation (11) and the exosystem property,
limk→∞[ Cvxref(k) − v∗ ] = 0, ensure the satisfaction of the claimed setpoint tracking objective.
The result then follows.

Remark 4.7. Note, in particular, from the proof of Theorem 4.5 that, under the assumptions
of the theorem, correct fault detection and controller reconfiguration are achieved in one sam-
pling time after the occurrence of a fault. Thus, the characterisation of the “under fault” sets
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(Definition 3.4) allows for a less conservative approach than that previously presented in Ocampo-
Mart́ınez et al. (2008) where fault detection and controller reconfiguration were achieved after
the transient behaviour had elapsed. ◦

5 Example

We consider the model of interconnected tanks presented in Richter and Lunze (2009), where
two tanks with levels h1 and h2 are interconnected through lower and upper valves, whose effect
is described by the variables uL and uU, and the first tank is filled via a pump, described by
the variable uP. Taking as state vector x = [h1 h2]

′, input vector u = [uP uL uU]′ and the
operating point xo = [0.4 0.06]′, uo = [0.48 0.75 0.2]′, the linearised incremental model of the
system around the operating point, discretised with sampling period ts = 1s, can be described
by the model (1a) with matrices

A =

[

0.9931 0.0035
0.0068 0.9823

]

, B =

[

0.0081 −0.0032 −0.0034
0.0000 0.0032 0.0034

]

, E = −

[

0.9966
0.0034

]

· 10−3,

and where w represents a leak in the first tank, assumed bounded as |w| ≤ 10−3.
We consider the fault matrix F ∈ {F ∗

2 , F ∗
3 , F ∗

4 } with

F ∗
2 = diag(1, f2, 1), F ∗

3 = diag(1, 1, f3), F ∗
4 = I3, (25)

and f2 ∈ I2 = [0, 0.6], f3 ∈ I3 = [0, 0.6].
The output matrix in (1b) is C = I and the measurement noise satisfies |η| ≤ [1 1]′ · 10−5.

The performance variable matrix in (1c) is Cv = [0 1], that is, the level of the second tank.
The scheme employs three observers of the form (5), each one associated with a fault matrix

in (25), whose gains L2 = L3 = L4 = L are computed by pole placement [to place the eigenvalues
of A − LC at (0.1, 0.05)] as

L =

[

0.8931 0.0035
0.0068 0.9323

]

.

The tracking controller (9)–(11) employs the feedback gains Ki , [Ki,1 Ki,2], where

K2 =





74.0487 144.0117 41.4957
0 0 0

1.3575 350.8722 103.8830



 , K3 =





49.4359 102.8133 20.8364
1.8759 246.6231 47.2899

0 0 0





K4 =





74.0487 144.0117 41.4957
0.6775 175.1142 51.8462
0.7199 186.0589 55.0866



 .

The reference signal (10) is computed for v∗ equal to a step of 0.02m for the level h2 (see
Property 3 in Section 2.3), that is, from 0.06m to 0.08m, and satisfies Assumption 2.7 with

u0
ref,2 =





0.0356
0

0.1053



 , u0
ref,3 =





0.0356
0.1119

0



 , u0
ref,4 =





0.0356
0.0526
0.0558



 ,

and uref,2 = uref,3 = uref,4 = [0 0 0]′. The value κ = 1 is used for the integrator constant
in equation (11). The degree-of-freedom signal dref,4 (see Remark 2.8) is taken as dref,4 =
[

0 −0.2185 0.2056
]′

and satisfies Bdref = 0.
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Figure 2: “Matching” set E2,2 and collection of “after-fault” sets ∪f3∈[0,0.6]E
+
2,2(f3) associated to

observer 2.

−1 0 1 2 3 4 5 6

x 10
−4

−5

−4

−3

−2

−1

0

1

2
x 10

−4

E3,3

∪f2∈[0,0.6]E
+
3,3(f2)

Figure 3: “Matching” set E3,3 and collection of “after-fault” sets ∪f2∈[0,0.6]E
+
3,3(f2) associated to

observer 3.
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+
4,4(f2) and

∪f3∈[0,0.6]E
+
4,4(f3) associated to observer 4.

Figures 2–4 show the “matching” sets (22) (with ℓ = i) and the “after-fault” sets (24), for
observers 2, 3 and 4, respectively. We can see from these figures that Assumption 4.1 holds.

We simulated the FTC scheme described above applied to the nonlinear model of the system6

under the following fault scenario. The plant starts with the nominal condition F = F ∗
4 at time

t = 0s. Then the following changes in the plant fault matrix F occur: F ∗
4 → F ∗

2 at t = 230s;
F ∗

2 → F ∗
4 at t = 446s; F ∗

4 to F ∗
3 at t = 714s; F ∗

3 → F ∗
2 at t = 980; F ∗

2 → F ∗
3 at t = 1245;

F ∗
3 → F ∗

4 at t = 1480; F ∗
4 → F ∗

3 at t = 1750. In all cases, F ∗
2 , F ∗

3 and F ∗
4 are as in (25) with

f2 = 0.5 and f3 = 0.3.
The value T = 100 was used in the timers of Algorithm 4.3. Also, the set membership tests

used in the algorithm were simplified to checking the location of the tested points with respect
to lines separating the sets of Figures 2–4.

The top subplot of Figure 5 shows the fault index (that is, the subindex j of the actual value
of the matrix F = F ∗

j ) and the index ℓ selected by the FDI algorithm, which makes the right

decision for all tested faults.7 Note that the FDI does not detect the recovery of the nominal
situation F = F ∗

4 , as discussed in Remark 3.1, but this does not impact on performance as seen
from the second and third plots of Figure 5, which show the resulting levels of each tank. Notice
that the faults have only little impact on these levels, especially on the level of the second tank
(the performance output), which satisfactorily tracks the desired reference of 0.08m.

Figure 6 shows the effective incremental plant input Fu in (1a) (solid blue curves) with
respect to the input operating point uo = [0.48 0.75 0.2]′, together with the incremental value of
the reference control signal uref in (10) (dash-dot green curves). The differences between the two
signals Fu and uref in the initial period when all 3 actuators are healthy (corresponding to the

6A realistic nonlinear simulation model of the two-tank system used in Richter and Lunze (2009) was kindly
provided by Jan Richter.

7To avoid wrong controller reconfigurations during the initial transient, the FDI was not fed the initial values
of the output estimation errors; instead, the FDI’s decision was fixed to be equal to 4 for the first 50 time instants.
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Figure 5: Top plot: fault index (that is, the subindex j of the actual value of the matrix F = F ∗
j )

and index ℓ selected by the FDI algorithm. Second and third plots: tank levels (blue solid), and
reference model state, xref in (10) (green dash-dot).

actuator situation F ∗
4 = I3), is due to the effect of the degree-of freedom signal dref,4, which is a

key element to achieve correct fault detection and identification based on set separation. Note
that, this component of the input does not affect the system when Fu is applied to (1a).

6 Conclusions

We have presented a fault tolerant control strategy based on a new principle for actuator fault
diagnosis. The scheme employs a standard bank of observers which match the different fault
situations that can occur in the plant. Each of these observers has an associated estimation error
with distinctive dynamics when an estimator matches the current fault situation of the plant.
Based on the information from each observer, a fault diagnosis and isolation module is able to
reconfigure the control loop by selecting the appropriate control law from a bank of controllers,
each of them designed to stabilise and achieve reference tracking for one of the given fault
models. We have proposed a new detection and diagnosis principle which exploits the separation
of sets that characterise healthy system operation from sets that characterise transitions from
healthy to faulty behaviour. The new principle allows to provide pre-checkable conditions for
guaranteed fault tolerance of the overall multi-controller scheme. The results were illustrated on
a nonlinear simulation model consisting of two interconnected tanks, which is frequently utilised
in the fault tolerant control literature. Future work includes the investigation of fault tolerance
under a continuous range of faults by combining concepts of controller reconfiguration and robust
control.

A Attractive Invariant Sets

Consider a discrete-time dynamical system

ζ+ = Āζ + B̄v, (26)
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Figure 6: Components of the actual plant input, Fu in (1a) (blue solid), and reference control
signal uref in (10) (green dash-dot). All plotted values are incremental with respect to the input
operating point uo = [0.48 0.75 0.2]′.

where ζ ∈ R
q and ζ+ ∈ R

q are, respectively, the current and successor system states and where
v ∈ R

t satisfies
v ∈ V where V , {v ∈ R

t : |v − v0| ≤ v}, (27)

for some constant vectors v0 and v ≥ 0 in R
t. Suppose that Ā is a Schur matrix and let

Ā = V̄ Λ̄V̄ −1 be its Jordan decomposition. Define the vector

ζ0 , (Iq − Ā)−1B̄ v0, (28)

where Iq denotes the q × q identity matrix and let ǫ ∈ R
q be a vector with positive components.

Then the set
Φ0 , {ζ ∈ R

q : |V̄ −1ζ| ≤ (Iq − |Λ̄|)−1|V̄ −1B̄|v + ǫ} ⊕ {ζ0}

(⊕ denotes Minkowski sum of sets) has the properties that the trajectories of (26)–(27) remain
in Φ0 if started inside and converge to Φ0 (in finite time) if started outside (Kofman et al.,
2007). Moreover, starting from Φ0, the set recursion Φk+1 = ĀΦk ⊕ B̄V , has the property that
Φk+1 ⊂ Φk and Φk is convex, compact, and a positively invariant set for system (26)–(27) (Olaru
et al., 2008), that is, ζ+ ∈ Φk for all ζ ∈ Φk and all v ∈ V . Note that all sets Φk, k ≥ 0, are
“centred” around ζ0.

B Computation of the Set-transition Time

For each ℓ = 1, . . . , m and i = 1, . . . , N , i 6= ℓ, let the set P∗
iℓ be a polytopic set that contains

the collection of “after-fault” sets ∪fℓ∈Iℓ
S+

i (fℓ) [see (23)], that is, P∗
iℓ ⊇ ∪fℓ∈Iℓ

S+
i (fℓ). Next,
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compute the set recursion [see (14) and (23) and notice that AF∗

ℓ
,ℓ = AFℓ,ℓ and BF∗

ℓ
,ℓ = BFℓ,ℓ]

Piℓ(t + 1) = AFℓ,ℓ Piℓ(t) ⊕ BFℓ,ℓ Vℓ, Piℓ(0) = P∗
iℓ.

Let τiℓ be the minimun iteration index such that the inclusion Piℓ(τiℓ) ⊆ Sℓ holds (this index
is finite since P∗

iℓ is bounded and convergence from a bounded initial state to the attractive
invariant set Sℓ in finite time is guaranteed for system (14) with F = Fℓ, see Definition 3.2 and
Appendix A). Then the set-transition time of Definition 4.2 can be computed as

T = max
i,ℓ

{τi,ℓ : i ∈ {1, . . . , N}, ℓ ∈ {1, . . . , m}, i 6= ℓ}.
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