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ABSTRACT 
 

 The environmental impact of trace elements, in particular selenium in the 

selenite form, from discharge of ash dam water from Vales Point Power Station 

into Wyee Bay on Lake Macquarie New South Wales Australia is of concern, 

and has been the subject of a number of scientific investigations.  These include 

both control of discharge and studies of effects on aquatic flora and fauna 

including the biomagnification or bioaccumulation and biotransference of 

selenium in fish and benthic organisms.  Cost-effective and efficient chemical 

control of trace elements discharged to the environment is at the core of this 

study.   

 Measures to control the quantity and quality of ash water discharges from 

Vales Point Power Station has been proactively managed by the electricity 

generation industry over the past decade in the form of plant modifications and 

reduction in catchment inflows.  Studies have been undertaken looking at a range 

of treatment options inclusive of precipitation (coagulation/flocculation), 

bioreactors and oxidised metallic iron.  The latter treatment and sole focus of this 

thesis has been found to be potentially the most viable treatment option owing to 

its high efficiency of removal of selenium and other trace elements including 

arsenic, vanadium, antimony, chromium and to a lesser extent aluminium and 

molybdenum.  Metallic iron was found to be the most viable treatment option 

owing to its availability, low cost and minium operating and maintenance 

requirements.   

 Pilot plant investigations undertaken at Vales Point Power Station from 

2002 to 2008 exploring the use of a number of iron products including iron bars, 

steel plates and steel wool revealed that the iron oxides and oxyhydroxides 

formed on the surface of metallic iron and responsible for the core processes of 

adsorption and coprecipitation of selenium and targeted trace elements were 

goethite, lepidocrocite, hematite and magnetite.  Characterisation of these iron 

oxides and oxyhydroxides formed by the pilot plant employed X-Ray Diffraction 

and Scanning Electron Microscope Imagery, involving comparisons with 

synthetic samples. 
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 The efficiency of selenium and trace element removal was found to be 

influenced by a number of parameters inclusive of surface area of metallic iron, 

crystal structure and surface area of iron oxides and oxyhydroxides formed on 

the iron surface, pH, solution matrix and concentration of targeted trace elements 

in ash water.  Pilot plant test results with loosely packed steel wool over a six 

month period yielded the highest efficiency of removal owing to its high surface 

area with selenium reduced by 85% (on average), arsenic by 87%, antimony by 

87%, chromium by 80%, vanadium by 97%, aluminium by 21% and 

molybdenum by 48%. 

    Adsorbed ions are generally not leached under natural environmental 

conditions over extended periods of time.  Leachate studies of oxidised material 

from pilot plant operations were performed during 2003-2004.  Samples stored 

with ash water over extended periods exhibited very little redissolution in the 

case of selenium, arsenic, antimony and aluminium with some test results 

indicating only 1% redissolution back into solution.  Molybdenum was the only 

trace element that did display limited leaching with final levels being two to 

three times that in the initial ash water.  Further studies in 2007 and 2008 by the 

USEPA Method 1311 leaching procedure provided no detectable levels of 

selenium, arsenic, antimony, chromium, vanadium and molybdenum.  The only 

element which had modest levels above the detection limit was aluminium. 

 The surface area measured for synthetic/commercial samples of iron 

oxides and oxyhydroxides of goethite, hematite, lepidocrocite and magnetite 

differed, and influenced removal efficiency.  Test results of laboratory trials with 

solution matrices of demineralised water, sodium sulphate solution, sodium 

chloride solution and ash water yielded overall efficiency of removal of selenite 

with each oxide in the following order: lepidocrocite > goethite > hematite > 

magnetite.   

 During laboratory trials at pH 8 and above, all systems displayed the 

following efficiency of removal of selenite in terms of the matrix of the solution: 

ash water > sodium chloride solution > sodium sulphate solution > demineralised 

water.  This is an important aspect as the pH of Vales Point Power Station ash 

water fluctuated between 7.5 and 8.5 in the pilot plant trials, whereby high 

efficiency of trace element removal was achievable. 
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 The rate profiles during laboratory trials for selenium, arsenic, chromium, 

vanadium, antimony, aluminium and molybdenum revealed that, overall, these 

trace elements were very rapidly adsorbed with the observed half-life of the 

initial process being in the order of one to two minutes.  This rapid uptake 

highlights the benefits of this process, which can successfully deal with large 

flowing volumes for extended periods without reaching uptake capacity. 

 Overall, this research has exposed mechanistic aspects of the chemistry 

involved in iron-based trace element removal, and highlighted the beneficial 

nature of the process as being a highly efficient low-cost option for the treatment 

of process water (ash water) in high salinity or estuarine waters for the removal 

of trace elements of concern to the receiving environment such as selenium and 

arsenic.   
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