
On Anytime Control of Nonlinear Processes through Calculation of

Control Sequences

Vijay Gupta Daniel E. Quevedo

Abstract— We present two related algorithms to calculate the
control input when the processing resources available are time-
varying. The basic idea is to calculate the control input for
as many time steps into the future as allowed by the available
processing resources at every time step. We analyze the stability
of the resulting closed loop system using stochastic Lyapunov
functions. For the LQG case, we provide explicit analytical
performance and stability expressions. For more general cases,
we indicate through numerical simulations that the increase in
performance due to the proposed algorithm can be significant.

I. INTRODUCTION

Networked and embedded control have recently emerged

as an important research focus. One challenging issue in

such systems is that of time-varying and limited processing

power. As more and more objects are equipped with micro-

processors that are responsible for multiple functions such

as control, communication, data fusion, system maintenance

and so on, the implicit assumption traditionally made in

control about the processor being able to execute the desired

control algorithm at any time will break down. Similarly, if

a remote controller controls many devices, multiple control

tasks will compete for shared processor resources, leading

to constrained availability of processing resources for any

particular control loop. It is, thus, of interest to study control

in the presence of limited and time-varying availability of

processing power.

Owing to its importance, there are a growing number

of works in this area. The impact of finite computational

power has been looked at most closely for techniques such as

receding horizon control (RHC). McGovern and Feron [16],

[17] presented bounds on computational time for achieving

stability for specific optimization algorithms, if the processor

has constant, but limited, computational resources. Henriks-

son et al [9], [10] studied the effect of not updating the

control input in continuous time systems for the duration of

the computational delay for optimization algorithms based on

active set methods. Also related are works on event-triggered

and self-triggered control systems [24], [25], where a control

input is calculated aperiodically, but on demand, depending

on the process state. Finally, we would like to mention the

related work in scheduling of control tasks ([2], [3] and the

Vijay Gupta is with the Department of Electrical Engineering, University
of Notre Dame, Notre Dame, USA. ttvgupta2@nd.edu Research supported
in part by the National Science Foundation under the grants NSF:0834771
and NSF:0846631.

Daniel Quevedo is with the School of Electrical Engineering &
Computer Science, The University of Newcastle, NSW 2308, Australia.
dquevedo@ieee.org Research supported by Australian Research Coun-
cil’s Discovery Projects funding scheme (project number DP0988601).

references therein) that looks at the problem of processor

queue scheduling, when control calculation is merely one of

the tasks in the queue.

One approach popular in real-time systems to tolerate the

presence of time-varying processing resources is to develop

anytime algorithms that provide a solution even with limited

processing resources, and refine the solution as more re-

sources become available. In control, however, there are very

few methods available for developing anytime controllers. A

notable work is that of Bhattacharya et al [1] who focused on

linear processes and controllers, and presented a controller

that updated a different number of states depending on the

available computational time.Another important work is that

of Greco et al [5], who proposed switching among an existing

set of controllers that may require different execution times.

In Gupta [6], [7], an anytime algorithm for systems with

multiple inputs was presented, that was based on calculating

the components of the control vector sequentially, and re-

fining the process model as more processing time becomes

available.

In this paper, we develop two related anytime control

algorithms that provide better performance as more pro-

cessing time is available. The basic idea is to utilize the

extra processing time to compute tentative future control

inputs. Although reminiscent of receding horizon control (in

particular, works such as [23]), our algorithms do not solve a

sequence of optimization problems of increasing size. Rather,

we calculate the control values sequentially, reutilizing the

already computed control inputs for the next computation.

For general nonlinear processes, we analyze the stochastic

stability. For the Linear Quadratic Regulator (LQR) case,

we provide analytic stability and performance conditions.

The paper is organized as follows. We begin in Section II

by formulating the problem, and stating the assumptions. In

Section III, we present the proposed algorithms, and analyze

the stochastic stability for general nonlinear processes in Sec-

tion IV. The algorithm for the LQR case and the associated

stability and performance results are provided in Section V.

We numerically illustrate the improvement in performance

using the proposed algorithm in Section VI.

II. PROBLEM FORMULATION

Process Model: We consider discrete-time nonlinear

MIMO processes with state x(k) ∈ R
n and input u(k) ∈

R
p, evolving as

x(k + 1) = f(x(k), u(k)), k ≥ 0 (1)

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 7564

where f(0, 0) = 0 and the initial state x(0) = x0 is arbitrar-

ily distributed. The state and control input may additionally

have to satisfy constraints of the form h(x(k), u(k)) ∈ S

for some set S. For pedagogical ease, we assume full state

feedback at the controller.

We assume the existence of a Lyapunov function

V (x(k)) ≥ |x(k)| for the process (1) such that if sufficient

computational resources were available, a baseline control

law exists that yields the control input κ(x(k)) that satisfies

h(x(k), κ(x(k))) ∈ S and ensures that

V (x(k + 1)) < ǫV (x(k)),

where x(k + 1) = f(x(k), κ(x(k))) and 0 < ǫ < 1 is given.

We assume V (0) = 0. For future notational ease we define

Vk , V (x(k)).

Remark 2.1: In the absence of model inaccuracies and

disturbances, off-line state predictions would also have zero

error. Presence of such inaccuracies, however, will neces-

sitate feedback. The algorithms that we propose will use

feedback whenever permitted by the available computational

resources. As a first step, in this work, we concentrate on

the nominal model described by (1) to analyze the stability

of the closed loop system. We will analyze the impact of

disturbances in future work.

Processing Time Availability: In the classical formula-

tion, it is assumed that the processing resources available

to the controller are sufficiently large so that the controller

can generate the control input by essentially discounting

any processing resource constraint. However, as discussed

earlier, in networked and embedded systems, the computation

resources available at every time step for calculating the

control input may vary. For simplicity, and without loss of

generality, we map the availability of processing resources at

time step k to availability of execution time that is available

for the control calculation at time k. We make the following

assumptions:

• The execution time τ(k) available at any time k is

an independent and identically distributed sequence, with

a well-defined probability mass function. While stochastic

models for either the availability of the execution time, or

the time requirement for execution of a task, are less common

than deterministic models, we note that this framework also

has a long history [15], [27]. One reason to consider this

framework is that if some tasks have stochastic execution

time requirements, the availability of the processor for other

tasks can be modeled by a probabilistic function. In any case,

similar ideas as developed in this paper can be applied to

deterministic models as well.

• The controller does not have a priori knowledge of

the value of τ(k). This is a realistic assumption in shared

systems where the controller task can be preempted by other

computational tasks.

Problem Description: The first concern for a control sys-

tem design is stability. Since the execution time availability

is time-varying in a stochastic manner, the control input

is random, and thus the system (1) evolves stochastically.

Various stability notions for stochastic systems have been

studied in the literature (e.g., [12], [13]). We are interested in

the following definitions. About the equilibrium point x = 0,

the system (1) is

• stochastically stable if

E

[

∞
∑

k=0

xT (k)x(k)|x(0)

]

< ∞,

where the expectation is taken with respect to the

stochastic sequence {τ(k)}.
• mean square stable if

lim
k→∞

E
[

xT (k)x(k)|x(0)
]

< ∞,

where the expectation is taken with respect to the

stochastic sequence {τ(k)}.

In this paper, we propose and analyze two anytime control

algorithms that utilize any extra execution time to enhance

stability and performance of the closed loop system.

III. ALGORITHM DESCRIPTIONS

The algorithms are based on the following basic idea.

The execution time required to calculate the control input

is an increasing function of the number of control inputs

that are calculated. Thus, as the processor is provided with

more execution time, the controller can calculate a longer

sequence of future control inputs that guarantee a decrease

in Lyapunov function. These future control inputs can then

be stored and used even if the execution time availability

precludes any calculation at the future time steps.

More formally, we define at every time k, a buffer

bk(i), i = {1, 2, · · · } as a stack whose elements are valid

control inputs. The algorithm proceeds as follows:

Algorithm A1:

1) Initialization: Set b0(1) = 0, k = 0.

2) Control update: Do

a) Set j = 0.

b) If processor time available, calculate control input

u(k + j), such that it ensures V (k + j + 1) <

ǫV (k + j) if elements bk(i + 1) = u(k + i) for

i = 0, · · · , j − 1 are used. If sufficient time not

available, break.

c) If j = 0, set all elements of buffer bk(.) = 0.

d) Set bk(j + 1) = u(k + j) calculated above.

e) Set j = j + 1 and repeat Step 2b.

3) Time update: Do

a) Set bk+1(j) = bk(j + 1) for all j ≥ 1.

b) Apply control u(k) = bk(1), update state x(k+1)
and the Lyapunov function V (k + 1).

c) Set k = k + 1 and go to Step 2.

The buffer provides the control input at the present time steps

and suggested inputs at future time steps. At the time steps

when more processor time is available, a longer trajectory

of the control inputs is calculated and stored. Algorithm A1

assumes that as soon as the processor calculates a control

input at time k, it throws away the remaining elements in

7565

the buffer (see Step 2c). In the second algorithm, namely

A2, Step 2c is eliminated. Thus, buffer elements may stem

from calculations carried out at different time instants.

Remark 3.1: In the presentation above, there is no bound

assumed on the buffer size. If present, such bounds can be

readily imposed. The analysis presented in Section IV can

also be extended to this case in a straight-forward manner.

Remark 3.2: Although the algorithm does not refine the

control input u(k) if more processing time is available at

time step k, it is nonetheless anytime in the sense that

it utilizes any extra processing time to provide a buffer

against performance loss at future instances where sufficient

processing time may not be available.

Remark 3.3: The algorithm is based on calculating a

control input trajectory that guarantees a decrease in the

Lyapunov function at future time steps. Alternatively, one

could also conceive an algorithm wherein a reduction of the

Lyapunov function as compared to past time steps is sought.

Remark 3.4: The algorithm does not require knowledge of

the probability distribution of the processor time availability.

Such descriptions may even be time varying for the algorithm

to be implemented. However, in the analysis of the algorithm,

we will require the execution time τ(k) to be independent

and identically distributed with a given probability mass

function.

Remark 3.5: The basic idea of the algorithm, i.e., calcula-

tion of future control inputs, is reminiscent of the philosophy

behind receding horizon control. However, there are some

differences between the two methods. For one, neither of

the algorithms A1 or A2 calculate a control input to op-

timize a given cost function. Rather, the control input is

calculated to guarantee a decrease in a specified Lyapunov

function. Moreover, the number of time steps for which the

control input is calculated (corresponding to the horizon of

the receding horizon control method) is time-varying and

externally imposed by the available processor time. As has

been recognized, the effect of increasing the horizon in RHC

may be counter-intuitive, e.g., performance and stability may

be adversely affected as the horizon is increased [20], [18].

However, the proposed algorithms do not display such effects

even though the ‘horizon’ is dynamically altered.

IV. STABILITY ANALYSIS

We begin by identifying conditions under which the

baseline algorithm and the proposed algorithm stabilize the

system. We begin with the baseline algorithm. Under the

baseline algorithm, the control u(k) = κ(x(k)) is calculated

if sufficient processor time is available at step k; otherwise

no control is calculated. If no control is calculated, then a

zero control input (u(k) = 0) is applied, c.f. [22]. Thus, if

we denote the probability that the controller is unable to

calculate any control input with a probability p0, then the

process evolution is similar to a networked control system

in which the controller is able to communicate with the

actuator with a probability 1− p0 at any time step. Stability

conditions for such a system have been derived both for

linear systems [8], [11] and nonlinear systems [21]. Our

analysis for the baseline control law follows these works

closely.

We will make the following assumption throughout the

sequel.

Assumption 4.1: There exists 1 ≤ α < 1
p0

such that

V (f(x, 0)) ≤ αV (x), ∀ valid state values x. (2)

Remark 4.1: This assumption bounds the rate of increase

of the Lyapunov function when no control input is calculated

and applied. As an instance, for a scalar linear process with

parameter a, the assumption implies pa2 < 1, which has

been shown to be necessary and sufficient for stabilizability

in [8].

Theorem 4.1: Consider the problem formulation above

when the baseline algorithm is used and Assumption 4.1

holds. The process is stable (in both stochastic and mean

square sense) if

p0α + (1 − p0)ǫ < 1. (3)

Proof: Omitted for space constraints.

For the proposed algorithms A1 and A2, the stability analysis

is more subtle and is similar to the study of randomly

sampled systems [14], [26]. We begin with the stability

analysis of algorithm A1.

Define the time steps at which a control input is calculated

by the sequence {ki} for i ∈ {0, 1, 2, · · · }, or equivalently

the set K. Also denote the time between two successive

instances of calculation of the control input by ∆i, thus

∆i = ki+1 − ki. For ease of exposition, we will assume

k0 = 01. Denote the probability that the controller calculates

j control inputs by pj for j ≥ 0. Since the processor time

availability is i.i.d., the probabilities pj are independent of

the specific time at which the inputs are calculated. Thus,

as before, p0 denotes the probability of no control being

calculated. We begin with the following lemma.

Lemma 4.1: Consider the above problem formulation with

the algorithm A1 being used. Then

E[Vki+1
|x(ki)] ≤

N
∑

m=1

pmΩmVki
,

where

Ωm = (1 − p0)

(

ǫ
1 − (p0ǫ)

m

1 − p0ǫ
+ α

(p0ǫ)
m

1 − p0α

)

≥ 0.

Proof: The main idea of the proof is to condition Vki+1

on both ∆i and the number of control packets calculated at

time ki. The details are omitted for space restrictions.

Using this result, we can analyze the stability conditions

when algorithm A1 is used.

Theorem 4.2: Consider the above problem formulation

with the algorithm A1 being used. If

Ω ,

∞
∑

m=1

pmΩm < 1,

1The more general case when k0 > 0 can be treated similarly and without
much technical difficulty.

7566

where the terms Ωm have been defined in Lemma 4.1, then

the closed loop system is stochastically stable and mean

square stable.

Proof: The basic idea of the proof is to note that

if Ω < 1, then Vki
is a stochastic Lyapunov function for

the closed loop function at the time instants {ki}. For the

intermediate times between ki and ki+1, we bound E[Vk]
by conditioning on the number of packet calculated at time

ki. Since V (x(k)) ≥ |x(k)| by assumption, this implies

stochastic stability (and thus mean square stability) at all

time instants.

The analysis of algorithm A2 is more involved. The

primary reason for this is the fact that the number of control

inputs in the buffer at time k, NB(k), may be more than the

number of control inputs calculated at time k, denoted by

Nu(k). In fact, the evolution of the buffer length is given by

NB(k) = max{NB(k − 1) − 1, Nu(k)} (4)

with the initial condition NB(−1) = 0. Thus, the buffer

length NB(k) is not an i.i.d. process and the analysis done

for algorithm A1 does not extend directly.

The crucial observation for this case is that if Nu(k) ≥
NB(k − 1) − 1, then the buffer is overwritten by the newly

calculated control inputs, and NB(k) at those instants is

indeed an i.i.d. process. Using this fact, we can state the

following result analogous to Lemma 4.1.

Lemma 4.2: Consider the above problem formulation with

the algorithm A2 being used. Then

E[Vk′

i+1
|x(k′

i)] ≤

N
∑

m=1

pmΩ′

mVk′

i
,

where

Ω′

m =
(

m
∑

j=1

qj,mǫj +

∞
∑

j=m+1

qj,mαj−mǫm
)

,

and

qj,Nu(k′

i
)

=











































1 −
∑Nu(k′

i
)−1

l=0 pl

j = 1

(1 − p0)
∏0

k=Nu(k′

i
)−2

∑k

l=0 pl

1 < j ≤ Nu(k′

i)

(1 − p0)p
i−Nu(k′

i
)

0

∏0
k=Nu(k′

i
)−2

∑k

l=0 pl

j > Nu(k′

i).

(5)

Given this lemma, the stability analysis follows along the

lines of Theorem 4.2. We state the result without proof.

Theorem 4.3: Consider the above problem formulation

with the algorithm A2 being used. If

Ω′ ,

∞
∑

m=1

pmΩ′

m < 1,

where the terms Ω′

m have been defined in Lemma 4.2, then

the closed loop system is stochastically stable and mean

square stable.

V. APPLICATION TO LQR CONTROL

If we restrict our attention to unconstrained linear pro-

cesses, the algorithm can be analyzed in more detail. Thus,

consider the special case of the process evolving as

x(k + 1) = Ax(k) + Bu(k),

with no constraint of the form h(x(k), u(k)) ∈ S. We

assume that the pair (A,B) is controllable. It is known

that for linear systems, one possible Lyapunov function

candidate is Vk = xT (k)Px(k) for a positive definite matrix

P . However, we discuss an alternate formulation of the

algorithm for this special case that is based on the same

idea as earlier; however, the algorithm in this case explicitly

utilizes knowledge about the probability mass function of

the execution time τ(k). This will allow us to analytically

characterize the performance of the closed loop system.

We assume that the performance criterion is given by the

quadratic cost

J = E

[

∞
∑

k=0

(

xT (k)Qx(k) + uT (k)Ru(k)
)

]

,

with positive definite matrices Q and R and where the

expectation is taken with respect to the stochastic execution

time availability. If there were no processor limitations, the

optimal control is the LQR control law u(k) = Kx(k),
where K = (BT PB + R)−1BT PA, and P is the positive

definite solution of the Riccati equation

P = AT PA + Q − AT PB(BT PB + R)−1BT PA.

If there are processor constraints, then the controller is able

to calculate the control input only at certain time steps.

The baseline algorithm for this case is to calculate u(k)
at any time with probability 1 − p0 and to apply control 0

with a probability p0. We consider a smarter version of the

baseline algorithm where the probability of the calculation

of a control input at any time step is taken into account

explicitly. In that case, the system is a Markovian jump linear

system and the optimal control is given by u(k) = Kbx(k),
where Kb = (BT PbB+R)−1BT PbA, and Pb is the positive

definite solution of the Riccati-like equation

Pb = AT PbA+Q−(1−p0)A
T PbB(BT PbB+R)−1BT PbA.

Further, the achieved cost is given by xT (0)Pbx(0).
The anytime algorithm A1 can be modified for this special

case as follows. Suppose, for simplicity, that there is a max-

imum number Nmax of control inputs that can be calculated

at any time step even if the processor were fully available. As

before, denote by pm the probability that m control inputs

were calculated at any time, m = 1, · · · , Nmax. Then the

system can be described by a Markov chain that has Nmax+1
states. The i-th state corresponds to the case when the buffer

has i − 1 control inputs available. Denote the fact that the

Markov state at time k is i by rk = i. Note that this may

be the case if either at time k, enough time was available

to calculate i inputs, or if rk−1 = i + 1 and no control was

calculated at time k.

7567

Going forward in time, the Markov chain transition matrix

Φfor can be easily calculated in terms of pi. Further, we

can define another Markov chain that corresponds to moving

backward in time, i.e., the elements of the transition matrix

Φback are given by

Φback(i, j) = Prob(rk−1 = j|rk = i).

The matrix Φback can be calculated from Φfor.

Thus the system evolves as a Markovian jump linear

system with the Markov chain transition matrix Φback. The

optimal control is thus obtained as follows (see, e.g., [4]).

Denote the steady state probability of being in the state i

of the Markov chain by πi. Consider the coupled Riccati

equations

πjPj =

Nmax+1
∑

i=1

πiΦback(i, j)fi(Pi), (6)

where

fi(X) =



















AT XA + Q

i = 1

AT XA + Q − AT XB(BT XB + R)−1BT XA

otherwise

Let {Pi} be the positive definite solutions of the above

equations (6). Then, at any time k, if m control inputs are

calculated, then the control input corresponding to time k+l,

l = 0, · · · ,m − 1 is calculated as uk+l(k) = Kl+1x(k),
where Kl+1 = (BT Pl+1B + R)−1BT Pl+1A. Further, the

cost function evaluates to
∑Nmax+1

i=1 pi−1x
T (0)Pix(0). Some

numerical examples of the performance improvement with

the proposed algorithm are provided later.

VI. NUMERICAL EXAMPLES

In this section, we illustrate that even for simple systems,

the performance improvement by using the algorithm can

be significant. We first consider a process from [19] in the

form (1) with the update equation

x(k + 1) = x(k) + 0.01(x3(k) + u(k)),

with the associated baseline control law u(k) = −x3(k) −
x(k). It can be verified that the baseline control law sta-

bilizes the system with the function V (k) = x2(k) as

one possible Lyapunov function with associated param-

eter ǫ = 10−4. We consider the quadratic cost J =
E

[
∑

∞

k=0

(

x2(k) + u2(k)
)]

, where the expectation is with

respect to the availability of execution time as described

below.

We assume that the execution time available is uniformly

distributed in the interval [0, 1]. The execution time can also

be viewed as the fraction of the maximum possible processor

time that is available at any time step. Figure 1 shows the

percentage improvement in cost achieved as a function of the

time taken to calculate one control input for both algorithms

A1 and A2, as compared to the baseline algorithm through

a Monte Carlo simulation of the system. A total of 1000

simulations, each of them lasting 1000 time steps, were

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

Execution time required for one control input

P
e

rc
e

n
t

im
p

ro
v
e

m
e

n
t

in
 c

o
s
t

o
v
e

r
b

a
s
e

lin
e

 a
lg

o
ri
th

m

Algorith A

1

Algorithm A
2

Algorithm A
1
 with Noise

Algorithm A
2
 with Noise

Fig. 1. Cost achieved as a function of execution time required to calculate
one control input

used to generate the data. Notice that the buffer length is

automatically upper bounded by the maximum execution

time available. The figure shows that a significant improve-

ment in performance can be achieved by using the proposed

algorithms. The improvement in performance persists even

if the controller does not have perfect knowledge of process

dynamics. For the same controller as above, we consider that

the true update equation is

x(k + 1) = x(k) + 0.01(x3(k) + u(k)) + w(k),

where w(k) is white noise uniformly distributed in the

interval [0, 0.01]. The cost now considered is

J = E

[

lim
K→∞

1

K

K
∑

k=0

(

x2(k) + u2(k)
)

]

.

As shown in Figure 1, the proposed algorithms are reason-

ably robust to such perturbations.

As the system becomes more unstable, the proposed

algorithms can be expected to achieve better performance

compared to the baseline algorithm. Figure 2 illustrates this

intuitive effect for the linear process

x(k + 1) = αx(k) + u(k),

with the cost

J = E

[

∞
∑

k=0

(

2x2(k) + 2u2(k)
)

]

,

as the scalar α is varied. The execution time availability

is same as above, and the time required for calculation of

one control input is assumed to be 0.3. The percentage

improvement is plotted for algorithm A1, as compared to

the ‘smart’ baseline algorithm considered in Section V. The

plots are for the analytical expressions that were obtained

for this case.

7568

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20

25

30

35

40

45

50

55

Spectral radius of matrix A

P
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t

in
 c

o
s
t

a
c
h

ie
v
e

d

Fig. 2. Performance improvement using the proposed algorithm as a
function of the spectral radius of the process

VII. CONCLUSIONS

We proposed two related anytime control algorithms. The

algorithms were based on computing a series of control

inputs as more time becomes available, that guarantee a

decrease in the Lyapunov function value at future time steps.

Thus, even if processor does not provide sufficient resources

at some time steps, the controller provides a control input.

For non-linear systems, we provided analytic conditions for

stochastic stability. For unconstrained linear systems, we pro-

vided analytic expressions for stability and performance gain

with the algorithm. Simple numerical examples illustrated the

performance gain with the proposed algorithm.

REFERENCES

[1] R. Bhattacharya and G. J. Balas, “Anytime Control Algorithms:
Model Reduction Approach,” AIAA Journal of Guidance, Control and
Dynamics, 27(5), September-October 2004.

[2] M. Caccamo, G. Buttazzo and L. Sha, “Handling Execution Overruns
in Hard Real-time Control Systems,” IEEE Transactions on Comput-
ers, 51(7), July 2002.

[3] A. Cervin, J. Eker, B. Bernhardsson and K-E. Arzen, “FeedbackFeed-
forward Scheduling of Control Tasks”, Real-Time Systems, 23(1-2),
25-53, 2002.

[4] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, “Discrete-Time
Markov Jump Linear Systems,” Springer, Series: Probability and its
Applications, 2005.

[5] L. Greco, D. Fontanelli and A. Bicchi, “Almost Sure Stability of
Anytime Controllers via Stochastic Scheduling”, IEEE Int. Conf. on
Decision and Control, 5640-5645, December 2007.

[6] V. Gupta, “On an Anytime Algorithm for Control,” IEEE Int. Conf.
on Decision and Control, December 2009.

[7] V. Gupta, “On a Control Algorithm for Time-varying Processor
Availability,” Hybrid Systems, Control and Computation Conference
(HSCC), April 2010.

[8] V. Gupta and N. C. Martins, “On Stability in the Presence of
Analog Erasure Channels between Controller and Actuator,” IEEE
Transactions on Automatic Control, 55(1):175-179, Jan 2010.

[9] D. Henriksson and J. Akesson, “Flexible Implementation of Model
Predictive Control using Sub-optimal Solutions,” Internal Report No.
TFRT-7610-SE, Department of Automatic Control, Lund University,
April 2004.

[10] D. Henriksson, A. Cervin, J. Akesson and K. E. Arzen, “On Dynamic
Real-Time Scheduling of Model Predictive Controllers,” In Proceed-
ings of the 41st IEEE Conference on Decision and Control, Las Vegas,
NV, December 2002.

[11] H. Ishii, “Limitations in remote stabilization over unreliable channels
without acknowledgements,” Automatica, 45: 2278-2285, 2009.

[12] Y. Ji, H. J. Chizeck, X. Feng, and K. A. Loparo, “Stability and control
of discrete-time jump linear systems,” Control Theory Advanced
Technology, 7(2): 247-270, 1991.

[13] H. J. Kushner, “Introduction to Stochastic Control,” Holt, Rinehart and
Winston Inc., New York N.Y.

[14] H. J. Kushner and L. Tobias, “On the stability of randomly sampled
systems, IEEE Trans. Automat. Contr., AC-14(4):319324, Aug. 1969.

[15] D. Liu, X. Hu, M.D. Lemmon, and Q. Ling, “Scheduling Tasks with
Markov-Chain Constraints,” 17th Euromicro Conference on Real-time
Systems, July 2005.

[16] L. K. McGovern and E. Feron, “Requirements and Hard Computa-
tional Bounds for Real-time Optimization in Safety Critical Control
Systems,” IEEE Conference on Decision and Control (CDC 98), 1998.

[17] L. K. McGovern and E. Feron, “Closed-loop Stability of Systems
Driven by Real-Time Dynamic Optimization Algorithms,” IEEE Con-
ference on Decision and Control (CDC 99), 1999.

[18] R. M. Murray, J. Hauser, A. Jadbabaie, M. B. Milam, N. Petit, W. B.
Dunbar and R. Franz, “Online control customization via optimization-
based control,” chapter in ”Software-Enabled Control, Information
technology for dynamical systems” (eds) T. Samad , G. Balas, 149-
174, Wiley-Interscience, 2003.

[19] D. Nesic, A. R. Teel and P. V. Kokotovic, “Sufficient conditions
for stabilization of sampled-data nonlinear systems via discrete-time
approximations,” Sys. Contr. Lett., 38(4-5):259-270, 1999.

[20] V. Nevistic and J. A. Primbs, “Finite Receding Horizon Linear
Quadratic Control: A Unifying Theory for Stability and Performance
Analysis,” California Institute of Technology, Pasadena, CDS Techni-
cal Memo CIT-CDS 97-001, January 1997.

[21] D. E. Quevedo and D. Nesic, “On Stochastic Stability of Packetized
Predictive Control of Non-linear Systems over Erasure Channels,”
IFAC Symposium on Non-Linear Control (NOLCOS), 2010, Ac-
cepted.

[22] L.Schenato, “To hold or to zero control inputs with lossy links?”, IEEE
Transactions on Automatic Control, 54(5):1093-, 2009.

[23] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal
Model Predictive Control (Feasibility Implies Stability),” IEEE Trans-
actions on Automatic Control, 44(3):648-654, 1999.

[24] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, 52(9), 1680-1685,
September 2007.

[25] X. Wang and M. D. Lemmon, “Self-triggered Feedback Control Sys-
tems with Finite-Gain L2 Stability,” IEEE Transactions on Automatic
Control, 45(3):452-,2009.

[26] L. Xie and L. Xie, “Stability analysis of networked sampled-data linear
systems with Markovian packet losses, IEEE Trans. Automat. Contr.,
54(6):13751381, June 2009.

[27] T. Zhou, X. Hu and E.H-M. Sha, “A probabilistic performance metric
for real-time system design,” 7th International Workshop on Hardware-
Software Codesign (CODES) (ACM/IEEE), pp. 90-94, May 1999.

7569

