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Abstract: In this paper, we study the stability of a networked control system involving signal
quantization with finitely many levels and a bounded number of consecutive packet-dropouts.
To compensate for the effect of packet-dropouts, the controller-encoder sends a packet which
contains possible quantized control inputs for finite future steps. At the receiving end, i.e., at the
plant actuator side, a buffer decides the actuator input based on the received data. The buffer
has memory which is overwritten whenever it receives a packet from the controller. Within
this setting, we derive a sufficient condition on quantization parameters for achieving small `∞

signal `∞ stability of the feedback system. The stability condition is characterized in terms of
the number of quantization levels of the quantizer.
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1. INTRODUCTION

In recent years, networked control systems (NCSs) over
practical communication channels have been widely stud-
ied to clarify relationships between control performance
and channel characteristics such as data rate constraints,
packet dropouts and delays (see e.g. Nair et al. (2007),
Hespanha et al. (2007) and the references therein.).

Most of the previous works focus either on data-rate
constraints (Nair et al. (2007), Tatikonda and Mitter
(2004) etc.), packet-dropouts (Hespanha et al. (2007),
Ishii (2008), Hu and Yan (2007) etc.) or delay (Hetel
et al. (2006), Pan et al. (2006) etc.), separately. However,
it is more realistic to assume that the NCS should be
affected by all of those channel characteristics.

More recently, Tsumura et al. (2009), Niu et al. (2009)
have studied the mean-square stability of NCSs which
involve packet-dropouts as well as quantization with a
infinite number of levels. These authors employ the loga-
rithmic quantizer due to Elia and Mitter (2001) to study
the trade-off between the coarseness of the quantizer and
the stability of the NCS.

In the present paper, we will take an alternative view of
NCSs affected by packet-dropouts and quantization with
finitely many levels in a deterministic setting. Note that
the NCS under consideration is nonlinear and time-varying
because of quantization and packet-dropouts. Hence, we
will study the stability of the NCS based on the notion
of small `∞ signal `∞ stability, which is recently proposed
by Ishido and Takaba (2010a). Within this framework,
we will derive a sufficient condition, stated in terms

of the number of quantization levels of the quantizer,
which guarantees stability of the closed loop system, when
affected by bounded packet-dropouts.

Notations: The ∞-norm of a vector x ∈ Rn and the `∞

norm of a signal f : Z+ → Rn are denoted by ‖x‖∞ and
‖f‖`∞ , respectively. The extended `∞ space is defined by

`∞e = {f : Z+ → Rm | fτ ∈ `∞, ∀τ ∈ Z+},
where fτ denotes the truncation of f at time τ :

fτ (t) =
{

f(t) (0 ≤ t ≤ τ),
0 (τ < t).

If a map M : `∞e → `∞e is finite gain `∞ stable, then
its `∞-gain is denoted with ‖M‖`∞-ind. The ∞-induced
norm of a constant matrix A is defined by ‖A‖∞-ind :=
supx6=0 ‖Ax‖∞/‖x‖∞.

2. SYSTEM DESCRIPTION

We consider the feedback control system depicted in
Fig. 1, which involves an unreliable channel, quantiza-
tions, and buffering mechanism. This NCS is similar to
those considered in Quevedo et al. (2007) and Quevedo
and Nešić (2010), but incorporates the quantizer in an
explicit manner. To compensate for the packet-dropouts,
the controller-encoder produces potential control inputs
for current and finite future time instants. The poten-
tial control inputs are quantized and packetized at the
controller-encoder, and then the packet µ(t) is transmitted
to the communication channel.

The precise description of each component of the NCS is
given below.
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Fig. 2. Uniform quantizer q

Plant P : The plant P is a discrete-time linear time-
invariant (LTI) system whose state-space representation
is given by

x(t + 1) = Ax(t) + Bu(t) + w(t). (1)
The signals x(t) ∈ Rn, u(t) ∈ R and w(t) ∈ Rn

are the plant state, the actuator input and the process
disturbance, respectively. The initial state x(0) is assumed
to be zero.

Controller-Encoder En: The controller-encoder sends
to the communication channel at time t a control packet
µ(t) ∈ RN which is composed of potential quantized
control inputs for the current and (N−1)-step future time
instants, namely

µ(t) =


q(û(t; t))

q(û(t + 1; t))
...

q(û(t + N − 1; t))

 , (2)

û(t + i; t) = Kx̂(t + i; t) (i = 0, · · · , N − 1) (3)
where û(t+ i; t) ∈ R and x̂(t+ i; t) ∈ Rn are the i-step pre-
dictions of the (unquantized) control inputs and the plant
states, both of which are produced based on the current
plant state x(t). Moreover, K ∈ R1×N is a constant state-
feedback gain and q: R → V := {0,±d,±2d, · · · ,±md}
is a static uniform quantizer, where the parameter d rep-
resents the step size or fineness of the quantization, and
M := 2m + 1 is the number of the quantization levels.

The quantizer q outputs one of discrete symbols from V,
which is the nearest to the real-valued signal u(t+i; t) (see
Fig. 2).
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The predicted states x̂(t + i; t) (i = 1, 2, · · · , N − 1), are
calculated recursively based on the information of x(t),

µ(t) and the plant dynamics by{
x̂(t; t) = x(t),

x̂(t + i; t) = Ax̂(t + i− 1; t)+Bq(û(t + i−1; t))
(i = 1, · · · , N − 1).

(5)

Note that, because of the quantizer q, the packet µ(t) can
take only one of MN different values at each time instant.

Channel: The effect of packet-dropouts over the channel
is expressed as the discrete process {s(t)} defined by

s(t) =
{

1 if packet-dropout does not occur at time t,
0 if packet-dropout occurs at time t.

When a packet-dropout does not occur, the channel trans-
mits one of the MN symbols to the buffer without errors.

We denote the time instants when a packet-dropout does
not occur, i.e. the transmission is successfully completed,
with {t0, t1, · · · , ti, · · · }. That is,

s(t) = 1 ⇔ ( t = ti for some i ∈ Z+ ). (6)
We also denote with hi the interval between successful
transmissions, namely

hi := ti+1 − ti, i ∈ Z+. (7)

Buffer Buff: The buffer Buff decides the actuator input
based on the received channel symbols. The state b(t) of
the buffer is updated whenever the buffer receives the
packet.

b(t) = s(t)pu(t) + (1− s(t))Sb(t− 1), b(0) = 0, (8)

S :=


0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0
0 · · · · · · 0 1
0 · · · · · · · · · 0

 ∈ RN×N . (9)

Then, the buffer decides the actuator input u(t) by
u(t) = [1 0 · · · 0] b(t). (10)

For this feedback control system, we make the following
assumptions.
Assumption 1.

1 ≤ hi ≤ N ∀i ∈ Z+. (11)
This means that the number of consecutive packet-
dropouts is bounded by the packet length N .
Assumption 2. The matrix AK := A+BK is Schur stable.

The idea of employing the buffer to compensate for the ef-
fect of packet-dropouts is based on the settings in Quevedo
et al. (2007) and Quevedo and Nešić (2010). They
studied in those papers the Input-to-State Stability (Son-
tag (1989)) of the feedback system where the plant is
controlled over an unreliable channel affected by packet-
dropouts. In this paper, we assume the quantization with
finitely many levels as well as packet-dropouts at the
channel. In this case, it is impossible that the feedback
system achieves the finite gain `p stability because of
the quantization (Martins (2006)). To circumvent this
difficulty, in the present work, we will study the stability
of the NCS based on the notion of small `∞ signal `∞

stability, which will be described in the following section.
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Fig. 3. Feedback system for stability analysis

3. PRELIMINARIES

We briefly revise some basic results on small `∞ signal
`∞ stability which were introduced in Ishido and Takaba
(2010a) and Ishido and Takaba (2010b).
Definition 3. (small `∞ signal `∞ stability) A map H:
`∞e → `∞e is said to be small `∞ signal `∞ stable with level
γ and input bound ε if

[[ ‖uτ‖`∞ ≤ ε ⇒ ‖(Hu)τ‖`∞ ≤ γε ]] ∀u ∈ `∞e , ∀τ ∈ Z+

(12)
holds for given positive constants ε and γ.

H is simply called small `∞ signal `∞ stable if there exist
some positive constants ε and γ satisfying (12).

The feedback system in Fig. 3 is called small `∞ signal `∞

stable if there exist positive constants ε and γ such that[[ ∥∥∥∥[
r1

r2

]
τ

∥∥∥∥
`∞

≤ ε ⇒
∥∥∥∥[

z1

z2

]
τ

∥∥∥∥
`∞

≤ γε

]]
∀r1, r2 ∈ `∞e , ∀τ ∈ Z+.

In Ishido and Takaba (2010a), the authors recently
established the following results for the small `∞ signal
`∞ stability of the feedback system in Fig. 3.
Proposition 4. For the feedback system in Fig. 3, assume
that the following three conditions hold true.

(i) For the sub-system H1 : e1 7→ z1, there exists a positive
constant γ1 such that
‖z1τ‖`∞ ≤ γ1‖e1(τ−1)‖`∞ ∀e1 ∈ `∞e , ∀τ ∈ Z+. (13)

(ii) For the sub-system H2 : e2 7→ z2, there exist positive
constants ε2 and γ2 such that

[[‖e2τ‖`∞ ≤ ε2 ⇒ ‖z2τ‖`∞ ≤ γ2ε2]] ∀e2 ∈ `∞e ,∀τ ∈ Z+.
(14)

(iii) γ1γ2 < 1

Then, the feedback system is small `∞ signal `∞ stable.
In particular,

[[ ‖rτ‖`∞ ≤ ε ⇒ (‖z1τ‖`∞ ≤ δ1 and ‖z2τ‖`∞ ≤ δ2) ]]
∀r ∈ `∞e , ∀τ ∈ Z+

holds for

ε =
(1− γ1γ2)ε1

1 + γ1
, δ1 =

(1 + γ2)γ1ε2
1 + γ1

, δ2 = γ2ε2.

Proposition 5. Assume that a map H : `∞e 7→ `∞e is strictly
causal. Then, H satisfies
‖uτ‖`∞ ≤ γ‖(Hu)τ−1‖`∞ ∀u ∈ `∞e , ∀τ ∈ Z+

for a given γ > 0 if and only if it is finite gain `∞ stable
with gain γ, namely

‖uτ‖`∞ ≤ γ‖(Hu)τ‖`∞ ∀u ∈ `∞e , ∀τ ∈ Z+.

4. STABILITY ANALYSIS

The main purpose of this paper is to study the small `∞

signal `∞ stability of the closed-loop map from w to x in
the NCS of Fig. 1. More specifically, we are interested in:

Under Assumptions 1 and 2, find a condition on the
parameters M , d and N for the existence of positive
constants ε and γ such that
[[ ‖wτ‖`∞≤ε ⇒ ‖xτ‖`∞≤γε ]] ∀w ∈ `∞e , ∀τ ∈ Z+

(15)
holds for any packet dropout sequence (equiva-
lently, {hi : i ∈ Z+}).

Due to packet-dropouts and quantization at the commu-
nication channel, the feedback system in Fig. 1 is time-
varying (switching due to packet dropouts) and nonlinear.

To tackle this stability problem for the nonlinear switching
system, we will derive an alternative feedback representa-
tion of the NCS with a new time axis by performing the
discrete-time lifting of underlying signals (e.g. Chen and
Francis (1995) and the references therein), and by extract-
ing a nonlinearity associated with the quantization. The
resulting representation is the feedback interconnection of
a strictly causal linear switching system and a nonlinear
map which has a bounded level of small `∞ signal `∞

stability (Fig. 5). Then, by applying Proposition 4 to
this feedback interconnection, we will derive a sufficient
condition on M , d and N for achieving (15) for any possible
packet-dropout sequence.

4.1 Discrete-time lifting and extraction of quantization
nonlinearity

From (2), (6), (8), (9) and (10), the actuator inputs over
the interval [ti, ti+1) can be simply written as

u(ti + j) = q(û(ti + j; ti))
(i ∈ Z+, j = 0, 1, · · · , hi − 1). (16)

Furthermore, we denote the quantization error with
v(ti + j) := q(û(ti + j; ti))− û(ti + j; ti) (17)

for i ∈ Z+ and j = 1, 2, · · · , hi − 1 (≤ N − 1). Then, it
follows from (5) and (3) that

x̂(ti + j; ti) = Aj
Kx(ti) +

j−1∑
l=0

Aj−l−1
K Bv(ti + l) (18)

for i ∈ Z+ and j = 1, 2, · · · , hi − 1 (≤ N − 1).

Similarly, it can be shown from (1), (3), (16) and (18) that

x(ti + j) = x̂(ti + j) +
j−1∑
l=0

Aj−l−1w(ti + l) (19)

for i ∈ Z+ and j = 1, 2, · · · , hi − 1(≤ N − 1).

By lifting the underlying signals, we obtain
ξ[i] := x(ti) ∈ Rn, (20)

w̃[i] :=


w(ti)

w(ti + 1)
.
..

w(ti + hi − 1)

 ∈ Rnhi , ṽ[i] :=


v(ti)

v(ti + 1)
.
..

v(ti + hi − 1)

 ∈ Rhi ,

(21)
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ũ[i] :=


û(ti; ti)

û(ti + 1; ti)
.
.
.

û(ti + hi − 1; ti)

 ∈ Rhi . (22)

It is then easily verified from (16)–(22) that the NCS in
Fig. 1 is expressed as the linear fractional transformation
(LFT) of the linear system G and the nonlinear map Q
(see Fig. 5(a)). The linear system G is defined by the state-
space equation

G :
{

ξ[i + 1] = Ahi
ξ[i] + Bv,hi

ṽ[i] + Bw,hi
w̃[i], ξ[0] = 0,

ũ[i] = Cu,hiξ[i] + Dv,hi ṽ[i],
where i denotes the new time index, and

Ah := Ah
K ∈ Rn×n, Cu,h :=


K

KAK

...
KAh−1

K

 ∈ Rh×n,

Bv,h :=
[
Ah−1

K B · · · AKB B
]
∈ Rn×h,

Bw,h :=
[
Ah−1 · · · A I

]
∈ Rn×nh,

Dv,h :=


0 0 · · · · · · 0

KB 0 · · · · · · 0

KAKB KB
. . .

...
...

. . . 0 0
KAh−2

K B · · · KAKB KB 0

 ∈ Rh×h,

(h = 1, 2, . . . , N)
On the other hand, Q is the memoryless diagonal map
defined by

Q : Rhi→ Rhi ; Q(u) =

 q̃(u1)...
q̃(uhi)

 for u =

 u1...
uhi

 , (23)

where
q̃(u) := q(u)− u (24)

is the static map associated with the quantization error
(see Fig. 4).

It should be noted that both of G and Q are switching
systems because the dimensions of the signals and the
coefficient matrices change on the occurrence of packet-
dropouts which cannot be predicted in advance.

By defining η := ũ−Dv,hi
ṽ and

Q̂ := (I −Q ◦Dv,hi
)−1 ◦Q, (25)

we further obtain the LFT representation of Fig. 5(b),
where Gsc is the linear switching system Gsc defined by

Gsc :
{

ξ[i + 1] = Ahi
ξ[i] + Bv,hi

ṽ[i] + Bw,hi
w̃[i], ξ[0] = 0,

η[i] = Cu,hiξ[i].
(26)
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Fig. 5. LFT representations of the NCS via lifting

For ease of later discussion, we define

γD := max
h∈[1,N ]

‖Dv,h‖∞-ind =
N−2∑
j=0

|KAj
KB|. (27)

Lemma 6. If
M > γD, (28)

then Q̂ : η 7→ ṽ satisfies
[[‖ητ‖`∞ ≤ εQ ⇒ ‖ṽτ‖`∞ ≤ γQεQ]] ∀η ∈ `∞e ,∀τ ∈ Z+

for

εQ = (M − γD)
d

2
, γQ =

1
M − γD

, (29)

and for any sequence {hi : i ∈ Z+}.

Since the lifting operation is `∞-norm preserving (e.g.
‖w‖`∞ = ‖w̃‖`∞ , etc), the next lemma shows that the
small `∞ signal `∞ stabilities of the NCS in in Fig. 1 and
of the lifted system in Fig. 5(b) are equivalent.
Lemma 7. The following two statements are equivalent.

(i) The closed-loop map from w to x in Fig. 1 is small `∞

signal `∞ stable, namely there exist positive constants ε
and γ such that (15) is satisfied for any sequence {hi : i ∈
Z+}.
(ii) For the feedback system in Fig. 5(b), there exist
positive constants ε′ and γ′ such that

[[ ‖w̃τ‖`∞ ≤ ε′ ⇒ ‖ξτ‖`∞ ≤ γ′ε′ ]] ∀w̃ ∈ `∞e , ∀τ ∈ Z+

holds for any sequence {hi : i ∈ N}.

Next, by introducing auxiliary inputs r11, r12, r22, z22 as
in Fig. 6(a), the stability analysis of the NCS in Fig. 5(b)
is reduced to that of the feedback interconnection of Gsc

and ∆. To be more specific, we define

r1[i] =
[
r11[i]
w̃[i]

]
∈ Rhi+nhi , r2[i] =

[
r12[i]
r22[i]

]
∈ Rhi+n,

z1[i] =
[
η[i]
ξ[i]

]
∈ Rhi+n, z2[i] =

[
ṽ[i]

z22[i]

]
∈ Rhi+nhi ,

e1[i] = r1[i] + z2[i], e2[i] = r2[i] + z1[i].
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Fig. 6. Feedback representations with auxiliary inputs

Fig. 6(a) is further rewritten as in Fig. 6(b), where

Gsc :
{

ξ[i + 1] = Ahξ[i] + Bhe1[i]
z1[i] = Chξ[i]

(30)

Bh := [Bv,h Bw,h] ∈ Rn×(n+nh),

Ch :=
[
Cu,h

I

]
∈ R(h+n)×n,

and ∆ is the nonlinear diagonal map defined by

∆ : Rhi+nhi →Rhi+nhi ; ∆(e2)=
[
Q̂(e12)

0

]
for e2 =

[
e12

e22

]
.

(31)
Then, the stability of the NCS in Fig. 5(b) is related to
that of the feedback system in Fig. 6(b) by the following
lemma.
Lemma 8. Assume that the feedback system in Fig. 6(b)
is small `∞ signal `∞ stable. Then, the closed-loop map
from w̃ to ξ in Fig. 5(b) is also small `∞ signal `∞ stable,
namely, there exist positive constants ε and γ such that

[[ ‖w̃τ‖`∞ ≤ ε ⇒ ‖ξτ‖`∞ ≤ γε ]] ∀w̃ ∈ `∞e , ∀τ ∈ Z+

(32)
holds for any sequence of {hi : i ∈ Z+}.

Proof. By assumption, there exist positive constant ε and
γ such that, for the feedback system of Fig. 6(b),[[ ∥∥∥∥[

r1

r2

]
τ

∥∥∥∥
`∞

≤ ε ⇒
∥∥∥∥[

z1

z2

]
τ

∥∥∥∥
`∞

≤ γε

]]
∀r1, r2 ∈ `∞e , ∀τ ∈ Z+

holds for any sequence of {hi : i ∈ Z+}. It is easily seen
from the definitions of r1, r2, z1, z2 and ∆ that taking
r11 = 0, r21 = 0 and r12 = 0 in the above equation yields
(32) for the closed-loop map of Fig. 5(b). This completes
the proof. �

We now derive a sufficient condition of M and d for the
small `∞ signal `∞ stability of the system in Fig. 6(b).
Lemma 9. Assume that the linear switching system Gsc :
z1 7→ e1 is finite gain `∞ stable with gain γG, namely,

‖z1τ‖`∞ ≤ γG‖e1τ‖`∞ ∀e1 ∈ `∞e , ∀τ ∈ Z+ (33)
holds for any sequence of {hi : i ∈ Z+}. Then, the feedback
system in Fig. 6(b) is small `∞ signal `∞ stable if

M > γG + γD. (34)

In particular,[[ ∥∥∥∥[
r1

r2

]
τ

∥∥∥∥
`∞
≤ ε ⇒ (‖z1τ‖`∞ ≤ δ1 and ‖z2τ‖`∞ ≤ δ2)

]]
∀r1, r2 ∈ `∞e , ∀τ ∈ Z+ (35)

holds for

ε =
M − γG − γD

(1 + γGsc)(M − γD)
, (36)

δ1 =
dγG(M − γD + 1)

2(1 + γG)
, δ2 =

d

2
. (37)

Proof. Since Gsc : e1 7→ z1 is strictly causal and has finite
gain γG, we see from Proposition 5 that

‖z1τ‖`∞ ≤ γG‖e1(τ−1)‖`∞ ∀e1 ∈ `∞e ∀τ ∈ Z+. (38)

Since γG and γD are positive, (34) implies M − γD > 0.
It thus follows from (31) and Lemma 6 that ∆ : e2 7→ z2

satisfies
[[ ‖e2τ‖`∞ ≤ εQ ⇒ ‖z2τ‖`∞ ≤ γQεQ ]]

∀e2 ∈ `∞e , ∀τ ∈ Z+ (39)
for any sequence {hi : i ∈ Z+}, where εQ and γQ are
defined in (29). Moreover,

γGγQ < 1 (40)
immediately follows from (29) and (34). By Proposition 4,
(38),(39) and (40) prove the small `∞ signal `∞ stability
of the feedback system in Fig. 6(b). �

Consequently, we obtain the main result of this paper by
combining Lemmas 7, 8 and 9.
Theorem 10. Under Assumptions 1 and 2, assume that

M > γG + γD (41)
is satisfied. Then, there exist positive constants ε and γ
such that the closed-loop map from w to x in the NCS of
Fig. 1 satisfies (15) for any packet dropout sequence.

4.2 Computation of the upper bound on ‖Gsc‖`∞-ind

We here present a method for estimating γG satisfying
(33) based on the reachable set analysis. Although Gsc is
a switching system, its linearity enables us to compute an
upper bound on γG by using a reachable set for inputs
with a fixed bound. See Shingin and Ohta (2004) for the
details of the algorithm for computing reachable sets for
LTI systems.
Theorem 11. Suppose that there exist positive constants
βh (h = 1, 2, · · · , N), γ, nonnegative constants σh,j (h =
1, 2, · · · , N, j = 1, · · · , (n + 1)h) and a positive definite
matrix X satisfying[

AT
h XAh − (1− βh)X AT

h XBh

BT
h XAh BT

h XBh − βhΣh

]
≤ 0

(h = 1, 2, · · · , N), (42)

0 < βh < 1 (h = 1, 2, · · · , N), (43)

Σh :=

σh,1 0
. . .

0 σh,(n+1)h

 ,

(n+1)h∑
j=1

σh,j = 1

(h = 1, 2, · · · , N), (44)



X ≥ γ−2(Ah−1
K )T KT KAh−1

K

(h = 1, 2, · · · , N), (45)
X ≥ −γ−2fkfT

k (k = 1, 2, · · · , n) (46)
where fk denotes the k-th standard basis in Rn. Then, the
linear switching system Gsc is finite gain `∞ stable, and

γG ≤ γ.

Proof. Omitted for the space limitation.

We here give a remark on the meaning of the matrix
inequality condition in Theorem 11. The inequalities (42)–
(44) ensure that the ellipsoid

E(X, ε) := {ξ ∈ Rn : ξT Xξ ≤ ε2}
is an outer approximation of the reachable set of Gsc :
e1 7→ z1 for the input e1 whose magnitude is bounded
by ε, i.e. ‖e1[i]‖∞ ≤ ε ∀i ∈ Z+. Moreover, (45) and (46)
imply that ξ[i] ∈ E(X, ε) ⇒ ‖z1[i]‖∞ ≤ γε (h = 1, . . . , N).
Hence, we see that (42)–(46) give an upper bound γ on
the `∞-gain γG = ‖Gsc‖`∞-ind.

Notice that (42)-(46) become Linear Matrix Inequalities
(LMIs) in X, γ−2 and Σ1, . . . ,ΣN if we fix β1, . . . , βN to
some constants. Thus, we can efficiently find a good upper
bound on γG by solving the convex programming problem:

γ̂G := inf
X,γ−2,Σ1,...,ΣN

−γ−2 subject to (42)–(46),

where β1, . . . , βN are determined by grid search.

Given an upper bound of ‖Gsc‖`∞-ind, we can obtain a
sufficient number of quantization levels for achieving the
small `∞ signal `∞ stability of the NCS, since the stability
condition (34) is characterized in terms of the number
of quantization levels M . Though the step size d of the
quantizer is not involved in (34), it does affect the level
and the input bound of small `∞ signal `∞ stability of the
NCS (see (35)-(37)).

From (27),(28) and Theorem 10, the right hand side of (34)
becomes in general large for a large N , which represents a
tradeoff between the number of quantization level, or the
data rate of the communication channel, and the packet-
dropouts for the small `∞ signal `∞ stability for the NCS.

5. CONCLUDING REMARKS

We have studied the small `∞ signal `∞ stability of the
NCS where the plant is controlled over the communication
channel affected by packet-dropouts and finite level quan-
tization. A sufficient stability condition has been derived
in terms the parameters of the quantizer and the packet
length. An LMI-based method to numerically check the
stability condition has also been developed.
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