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Abstract. The q-binomial coefficients
[

n
m

]
=

∏m
i=1(1 − qn−m+i)/(1 − qi), for

integers 0 ≤ m ≤ n, are known to be polynomials with non-negative integer
coefficients. This readily follows from the q-binomial theorem, or the many com-
binatorial interpretations of

[
n
m

]
. In this note we conjecture an arithmetically

motivated generalisation of the non-negativity property for products of ratios of
q-factorials that happen to be polynomials.

The fact that the binomial coefficients

(1)

(
n

m

)
=

n!

(n−m)! m!

are integers easily follows from the following arithmetic argument. The order in
which a prime p enters n! is given by

(2) ordp n! =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · · ,

where b · c is the integer-part function. Setting x = (n − m)/pk and y = m/pk in
the inequality

bx + yc − bxc − byc ≥ 0,

and summing k over the positive integers, we see that

ordp

(
n

m

)
≥ 0 for any prime p.

This obviously implies that
(

n
m

)
∈ Z.

A standard way to establish integrality purely combinatorially amounts to inter-
preting the factorial ratio in (1) as coefficients in the expansion

(1 + t)n =
n∑

m=0

(
n

m

)
tm,

that is, as the number of m-element subsets of an n-set.
The arithmetic argument can be extended to more general factorial ratios. For

example, the inequality [12, Division 8, Problems 8 and 136]

b2xc+ b2yc − bxc − bx + yc − byc ≥ 0
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implies that

(3) An,m :=
(2n)! (2m)!

n! (n + m)! m!
∈ Z.

E. Catalan noted this integrality as early as 1874 [5]. In a much more recent study [8,
§ 6], I. Gessel named the An,m the super Catalan numbers. He stated several formulae
for these numbers including

(4) An,m =
∞∑

k=−∞

(−1)k

(
2n

n + k

)(
2m

m + k

)
.

This identity, attributed to K. von Szily (1894) [14], clearly implies the integrality
claimed in (3) but, of course, obscures that An,m ≥ 0.

Let a = (a1, . . . , ar) and b = (b1, . . . , bs) be tuples of positive integers subject to
the condition

(5)
r∑

i=1

baixc −
s∑

j=1

bbjxc ≥ 0 for x ≥ 0.

In his work on the distribution of primes (cf. [3]) P. Chebyshev considered the ratios

(6) Dn(a, b) :=
(a1n)! · · · (arn)!

(b1n)! · · · (bsn)!
.

In view of (2), condition (5) is necessary and sufficient for Dn(a, b) ∈ Z for all
positive n—a fact known in the literature as Landau’s criterion [10]. Unlike the
special cases of binomial coefficients and super Catalan numbers, there seems to
be no non-arithmetical approach available in the literature to demonstrate that
Dn(a, b) ∈ Z more generally.

It is worth mentioning that the Chebyshev–Landau factorial ratios appear quite
naturally in several deep mathematical problems including, for example, the Rie-
mann hypothesis [3] and arithmetic properties of mirror maps [6]. We refer the
interested reader to [3] which, among other things, contains a full classification of
pairs of tuples (a, b) satisfying (5) for s ≤ r + 1 and

∑r
i=1 ai =

∑s
j=1 bj. (The latter

“balancing” condition in fact follows from (5) if x ≥ 0 is replaced by x ∈ R; cf. [3,
Lemma 3.4].)

The above integrality has an interesting q-counterpart [11]. It follows immediately
from the definition of the q-factorial,

[n]! = [n]q! =
n∏

i=1

1− qi

1− q
,

that [n]! is a polynomial whose irreducible factors over Q are cyclotomic polynomials
Φ`(q) ∈ Z[q] (cf. [18, § 1]). Moreover,

ordΦ`(q)[n]! =

⌊
n

`

⌋
for all ` = 2, 3, 4, . . . .
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We may thus conclude that[
n

m

]
:=

[n]!

[n−m]! [m]!
, An,m(q) :=

[2n]! [2m]!

[n]! [n + m]! [m]!
,

and

(7) Dn(a, b; q) :=
[a1n]! · · · [arn]!

[b1n]! · · · [bsn]!

subject to (5) are all polynomials in Z[q]. For this reason the q-binomial coefficients
are often referred to by their alternative name of Gaussian polynomials.

Another well-known fact about the Gaussian polynomials is the non-negativity of
their coefficients. In fact, since each of the coefficients ci in

[
n
m

]
= c0+· · ·+cnmqnm is

strictly positive1, it is customary to refer to them as positive polynomials. Following
tradition, we relax the term positivity to simply refer to any polynomial with non-
negative coefficients. Hence we say that 1 + q2 is a positive polynomial even though
the linear term has vanishing coefficient.

The only known proofs of the positivity of the q-binomial coefficients are essen-
tially all combinatorial. For example, the q-binomial theorem [7, Eq. (II.4)]

n−1∏
i=0

(1 + tqi) =
n∑

m=0

q(
m
2 )

[
n

m

]
tm,

implies positivity and, more specifically, the combinatorial interpretation

q(
m
2 )

[
n

m

]
=

∑
I⊆{0,...,n−1}

|I|=m

q
P

i∈I i.

In view of the preceding discussion the following conjecture arises naturally.

Conjecture 1. Let a = (a1, . . . , ar) and b = (b1, . . . , bs) satisfy (5). Then the
polynomial

(8) D(a, b; q) :=
[a1]! · · · [ar]!

[b1]! · · · [bs]!

is positive.

Replacing all a and b by an and bn for a positive integer n, we see that the
conjecture is equivalent to the claim that the polynomials Dn(a, b; q) defined in (7)
are positive for all positive integers n.

The conjecture is trivially true whenever the right-hand side in (8) can be repre-
sented as a product of q-binomial coefficients. To provide some further evidence, we
show the validity of the conjecture for the q-super Catalan numbers

An,m(q) = D((2n, 2m), (n, n + m, m); q)

1One may in fact show that c0 = 1 and that the ci are symmetric and unimodal; ci = cnm−i

and ci ≤ ci+1 for 0 ≤ i ≤ bnm/2− 1c. See [13] and [17] for nice surveys on the unimodality.
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as well as for

(9) Bn,m(q) := D((2n, m), (n, 2m, n−m); q) =
[2n]![m]!

[n]! [2m]! [n−m]!
∈ Z[q], n ≥ m.

We note that, as shown in [3], the q-binomial coefficients
[

n
m

]
together with An,m(q)

and Bn,m(q) exhaust the space of 2-parameter solutions to (5) with s = r + 1.

Proposition 2. The q-super Catalan numbers An,m(q) are positive polynomials for
all n, m ≥ 0.

Proof. Our proof rests on a q-analogue of Gessel’s formula [8, Eq. (32)]

An,n+p =

bp/2c∑
k=0

2p−2k

(
p

2k

)
An,k (p ≥ 0),

given in (11) below.
Let n and p be non-negative integers. Twice applying the q-Chu–Vandermonde

sum [7, Eq. (II.7)] in the form[
a + b

c

]
=

∞∑
k=0

qk(b−c+k)

[
a

k

][
b

c− k

]
yields [

2n + 2p

p

]
=

∞∑
j=0

qj(n+j)

[
n + p

j

][
n + p

p− j

]
(10)

=
∞∑

j=0

qj(n+j)

[
n + p

j

] ∞∑
k=0

qk(n+k)

[
j

k

][
n + p− j

p− j − k

]
.

Multiplying this by [2n]! [p]!/([n]! [n + p]!) implies the recurrence

(11) An,n+p(q) =

bp/2c∑
k=0

An,k(q)

p−k∑
j=k

qk(n+k)+j(n+j)

[
p

2k

][
p− 2k

j − k

]
for p ≥ 0. Together with the initial conditions An,n(q) = An,0(q) =

[
2n
n

]
, the sym-

metry An,m(q) = Am,n(q) and the positivity of q-binomial coefficients, formula (11)
implies the desired positivity of An,m(q). �

Another positivity result related to An,m(q) may be found in [9]. Before stating
this result we remark that by taking (a, b, c) 7→ (1,∞, q−m) in the very-well poised

6φ5 summation [7, Eq. (II.21)] a q-analogue of von Szily’s identity (4) arises. Namely,

An,m(q) =
∞∑

k=−∞

(−1)kq(
k
2)+k2

[
2n

n + k

][
2m

m + k

]
.

After the substitution q 7→ 1/q this may also be written as

(12) An,m(q) = q−nm

∞∑
k=−∞

(−1)kq(
k
2)

[
2n

n + k

][
2m

m + k

]
.
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Now a special case of [9, Theorem 4.7] amounts to the following claim. For r, s
positive integers and n, m non-negative integers, the functions Rn,m;r,s(q) defined by

∞∑
k=−∞

(−1)kq(
k
2)

[
2n

n + k

]r[
2m

m + k

]s

= An,m(q)Rn,m;r,s(q)

are positive polynomials. Of course, from (12) it follows that Rn,m;1,1(q) = qnm. In
view of the positivity of Am,n(q) the positivity of the right-hand side should come
as no surprise, since, intuitively, raising the value of r and/or s should result in a
“more positive (or less-negative) polynomial”. The fact that the right-side factors,
with Am,n(q) as one of its factors, is much more remarkable. We also note that in
general it is hard to prove the positivity of alternating sum expressions of the form
given above. For example, showing that

∞∑
k=−∞

(−1)kq(
k
2)+4k2

[
2n

n + 3k

]
is positive is key to proving the longstanding Borwein conjecture, see [1, 2, 4, 15, 16].

Proposition 3. The Bn,m(q) defined in (9) are positive polynomials for all n ≥
m ≥ 0.

Proof. This time we simply multiply (10) by [n]! [2n + p]!/([2n]! [n + p]!) to get

(13) Bn+p,n(q) =

bp/2c∑
k=0

Bn+k,n(q)

p−k∑
j=k

qk(n+k)+j(n+j)

[
2n + p

2n + 2k

][
p− 2k

j − k

]
.

Since Bn,n(q) = 1, the result follows from (13) by induction on p. �

Note that [m]! = 1 + (m− 1)q + O(q2) for m ≥ 1 implying that

Dn(a, b; q) = 1 + (s− r)q + O(q2) for n ≥ 1,

where s− r > 0. With a little work one can also check that the coefficient of q2 in
the q-expansion of Dn(a, b; q) is positive, assuming (5); verifying the non-negativity
of coefficients of terms beyond q2 quickly becomes unfeasible. To provide additional
support for Conjecture 1 we have computed the polynomials Dn(a, b; q) for all n up
to 20 for the 52 choices for a and b listed in [3, Table 2]. Since s > r for each of
these, and since the large n limit of Dn(a, b) is given by the positive power series∏

i≥1(1− qi)r−s, one would expect potential counter examples to occur for “small”
values of n. However, our computation resulted in polynomials with non-negative
coefficients only.
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[11] P.A. Picon, Sur un théorème de Landau, Sém. Lotharingien Combin. (1984), #B08k, 4 pp.;

formely: Publ. IRMA Strasbourg (1984), no. 229/S-08, pp. 75–78.
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