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Abstract—Emotions are generated and modulated by many
factors in the ever-changing surrounding environment. A new
and challenging task is to emulate emotional responses on a
robot that are caused by visual stimuli, such that the robot’s
responses mirror that of the human user. This paper presents
the initial stage of an affective system that has been trained
on-line using reinforcement learning to generate and modulate
emotions. The inputs of the system comprise a subset of
emotionally relevant visual features extracted from the environ-
ment: colours, fractal dimension, and facial pareidolia. These
inputs are mapped onto an output that expresses the associated
emotion in terms of language. Pilot experiments demonstrate
how a humanoid robot tries to learn through interaction with a
human companion to express emotions associated with different
environmental scenes in a (near) human-like manner.

I. INTRODUCTION

Companion robots are popular in the world of science fic-
tion; however, in the real world no robot has been sufficiently
programmed to act as a useful companion robot. There are
still many issues to be resolved before this can be achieved,
including the basic skills of walking, localisation and object
recognition, and more difficult functions such as language,
memory and human-robot interaction.

Another issue to overcome if companion robots are to be
successfully integrated into society is known as the uncanny
valley hypothesis [1], which describes the discomfort felt
by a person in the presence of an entity that seems almost
but not completely human. The perception of aesthetics and
associated expression of empathy plays an important role
in natural communication and will have to become part of
human-robot interaction on a sufficiently sophisticated level
in order to ease any negative effects predicted by the uncanny
valley hypothesis.

The manner in which a robot interacts with humans can
persuade a person to like or dislike the robot. A robot that
is demanding and abrupt may cause the user to dislike being
commanded by an inanimate entity. However, an overly kind
and pleasant manner may lead the user to not consider
information delivered by the robot seriously. From these
examples, it is important to understand that the circumstances
surrounding the situation influence how the user will react.

Human emotions are shaped by cultural, genetic, envi-
ronmental and internal factors [2]. Taking a broad approach
to the context of the situation with respect to human-robot
interactions, the surrounding environment has an effect on the
way we humans emotionally interact with each other. This
effect causes subtle differences in emotions, which amount
to important features for a robot to exploit, especially when
positive interactions with people are desired. The robot must
first understand the surrounding environment in order to
exploit these environmental features.

Extracting environmental features for use in human-robot
interaction is a relatively new and challenging task. Research
preceding the work presented in this paper consists mainly of
studies focused on the direct extraction of emotion from the
user. Most papers focus on the extraction of facial features
as emotions for the communication of affective processing
[3], while others concentrate on the extraction of sound or
tone of voice as emotions to infer the affect of the user [4].
Some perform multi-modal extraction, where they examine
a combination of these classes of features [5, 6]. Only
recently, a clear and narrow definition of emotion and affec-
tive processing has been proposed, which facilitates emotion
research in general [2] and also helps to develop meaningful
affective communication via emotions between humans and
robots. Not surprisingly, there is minimal research on the
use of environmental features for affective communication
in human-robot interactions.

The impact of environmental sensory stimuli, such as
sight, sound, smell [2, 7], and touch, are known to have
an effect on the emotions and behaviour of people [8]. In
order for a robot to relate to humans, it must first be able
to visualise and feel through the same modes of perception.
Devising techniques suitable for processing visual input is
an important aspect, as are those for obtaining features
heard in environmental sound. Once these features have been
obtained, it is important to organise them in a rational format,
such that information of importance can be extracted and
used appropriately in the correct context.

Having the ability to sense the environment can assist
robots to become friendlier in the eyes of a user, as they can
better relate to how humans feel, based on the surrounding



environment. Once the environmental features have been
extracted, we use them to implement and train an affective
system for a humanoid robot. In this paper we present
the commencement of an experimental system that aims
towards the development of a complete affective system
generating emotions derived from features extracted from the
surrounding environment.

The paper is organised as follows: In the next section
an emotion model is introduced and some environmental
features that trigger affective processing and generate human
emotions are examined, followed by an outline of the related
feature extraction algorithms. The proposed affective system
is then described, with regard to the stages of input, training,
and language module in the output. Pilot experiments using
the system are then presented, followed by a description of
the results obtained from each experiment. Finally, conclu-
sions and plans for future work are discussed.

II. A DEFINITION OF EMOTION AND FEATURES THAT
MODULATE HUMAN EMOTIONS

Every stimulus from the environment engages both cogni-
tive and affective processing. Affective processing codes for
pleasantness on a graded scale from unpleasant to pleasant.
All externally triggered affective processing is also combined
with affective information reflecting internal processes and
together they can but not necessarily do generate emotions,
which are the bodily consequences [2]. Exactly how and what
kind of emotions are generated depends on factors that are
genetic, cultural, and environmental in origin. One stimulus
can generate different emotions in different people. Thus,
personality shapes emotions. Visual features such as those
listed in this paper readily stimulate users’ affective pro-
cessing and the generation of emotions [9]. Computer vision
techniques allow for the extraction of low-level features from
images, such as colour, texture, shape and spatial location of
image elements. However, it is difficult to extract high level
features automatically, such as the names of objects, scenes,
behaviours and affective aspects (emotions) [9].

The following subsections will examine three visual fea-
tures that are used in this paper: fractal dimension, colour,
and the impact of facial expression patterns. However, it is
important to note that 1.) more features exist, some of which
are shown in other literature [9, 10], and 2.) personality,
character and memory also have influence on emotions.

A. Fractal Dimension of Edge Patterns

Fractals are “rough or fragmented geometric shapes that
can be subdivided into parts, each of which is (at least
approximately) a reduced-size copy of the whole” [11].
Fractal dimension can be defined as a measure of complexity,
of how the detail in the pattern changes with the scale.
This value is similar to the generally understood terms, ‘two
dimensions’ or ‘three dimensions’ (2D or 3D). However, the
fractal dimension is not limited to these integer dimensions,
and may exist in the spaces between them.

One way to think of the fractal dimension is to consider a
shape such as a coastline on a map. This may have a fractal

dimension greater than one, but less than two, suggesting
that the shape is more complex than a simple line, but too
sparse to be considered two-dimensional. This occurs by
the shape of the coastline exhibiting some two-dimensional
space-filling characteristics, while being created from a one-
dimensional line [12].

Recently, applications of the fractal dimension have ap-
peared in art to evaluate beauty. The fractal dimension value
accounts for more than just the visual complexity, allowing it
to better account for the variance in judgements of perceived
beauty than that of visual complexity alone [13, 14].

Through the use of psychological experiments, the fractal
dimensions (FDs) of images are related to the images’
affective properties, and a higher FD makes people feel more
messy [15]. The FD of a monotonous image is lowest, at
around 1.37, while the FD of a messy image will be higher,
for example around 1.91, and the FD of harmonious images
will be medial at around 1.68.

In the field of the built environment and nature, experi-
ments have been conducted [16] to ascertain the correlation
between participants’ interests, and scenes of various fractal
dimension. The results obtained from experiments involving
220 participants [16, 17], indicate that there are three cate-
gories with respect to aesthetic preference for fractal dimen-
sion: 1.1-1.2 low preference (less), 1.3-1.5 high preference,
and 1.6-1.9 low preference (too complex and challenging to
comprehend). Although these values change from person to
person, creative people tend to prefer greater complexity in
scenes consisting of higher fractal dimensions [15].

B. Dominant Colours of the Environment

In the 1960s, Johannes Itten [18] summarised the theory
of the effects of colour on emotions. In his theories, he
postulated that “colour effects are in the eye of the beholder,
and that the deepest truest secrets of colour effect are
invisible to the eye, and are held by the heart alone”. This
implies that the emotional responses that result from visual
perception of colour eludes the set rules or logic that could be
placed in any conceptional formulation between individuals,
making this problem a challenging task for any machine.

Itten stated that there are seven features of colour that
have an effect on the way we feel: the contrast between
hues, the contrast between light and dark, cold and warm,
complementary colours, simultaneous colours, saturation of
colours and extension of colours. All these features can be
obtained by comparing different values of the hue, saturation
and intensity (HSI) model of colour.

Recent psychological studies have been conducted that
employ a number of Itten’s features to determine a rela-
tionship between the colour and emotion space. In Mao et
al. [19], histograms of hues were obtained from colours
of an image and were categorised by the perception of
monotonous, harmonious or ‘mussy’ (confused). In Wang et
al. [20], an extended study was conducted to examine other
emotions with regard to their valence and arousal. This work
led to the generation of seven rules that relate to valence, and
17 rules that relate to arousal. These rules were then used to



predict the feelings of a person based on the features obtained
from the HSI model.

The field of emotion semantic image retrieval [21]
examines the converse of our problem. It is important to note
that this field also studies the features of an image in relation
to the emotion space. It can also be seen from [3, 20, 21]
that colours and their related sub-categories are frequently
used as features that affect emotions.

C. Facial Pareidolia Effects

The proposal by Chalup et al. [22, 23] suggests that
pareidolia of abstract faces and facial expressions that appear
in house designs can produce an emotional response from an
observer. Facial pareidolia is the ability to “see” faces in ran-
dom or vague stimuli. The use of faces and facial expressions
as a stimulant for an emotional response is supported by a
number of studies. These studies have identified regions of
the brain that are dedicated to processing faces (the fusiform
gyrus) [24] and processing of emotional expressions (the
amygdala) [25].

These findings imply that we are ‘switched on’ to looking
for faces whether we like it or not. Most importantly, they
can be perceived beyond our awareness [26]. For a robot
to behave like a human, it should be able to manifest this
phenomenon and use this information as an added dimen-
sion to derive its emotional perception of its surrounding
environment. Since a neural basis exists for processing faces
and facial expressions, we hypothesise that the emotional
response produced from abstract face-like patterns could
generate emotive cues, similar to those generated by fractal
dimensions and colour.

III. IMPLEMENTATION ON A HUMANOID ROBOT

The robotic platform used for this study is a humanoid
robot, the Dynamic Anthropomorphic Robot with Intelli-
gence - Open Platform (DARwIn-OP) [27] by ROBOTIS as
seen in Figure 1. The robot stands 45 cm tall, weighs approx-
imately 5 kg and is equipped with 20 degrees of freedom.
The robot uses an Intel atom processor to enable autonomous
operation using the NUPlatform software architecture [28].
The on-board processor performs all object recognition and
cognitive functions required to evaluate the environment. The
robot has a forward facing high definition camera, a set of
stereo microphones in the head, and speakers in its chest so
that it is able to communicate and interact with people. The
camera produces images at 30Hz with a resolution of 640
by 480 pixels, in the image format of YUV422.

A. Colour

The hue, saturation, and intensity (HSI) colour space was
used in previous papers [19, 20]. HSI is a more intuitive
model when compared with the convoluted chromatic values
of the YUV422 colour space. Additionally, the HSI colour
space corresponds to Ittens’ theory of effects of colour on
emotion. For these reasons, HSI was the colour space of
choice in our emotion system.

Fig. 1. The DARwIn-OP robot used in experiments. The robot’s speaker
was used to communicate the robot’s feelings to the user.

Since the robot collects images in the original format of
YUV422, a transformation was required to convert from the
original colour space to HSI colour space [29–32].

Once the input colours have been converted to HSI, they
can be used as a feature to better distinguish associated
emotions, similarly to that used in [3, 20, 21]. As there
are 640 by 480 pixels to process, only a random selection
of 10,000 sample pixels are transformed for each image
frame processed. The average of these transformed HSI
samples is then found for each individual component: hue,
saturation and intensity. These raw components are then
used as part of the environmental emotion feature vector for
further processing.

B. Box Counting Method for Fractal Dimension

In order to approximate the fractal dimension of a
particular image, a number of box grid sizes are generated.
These grids consist of squares with sides of length δ. The
grids are used to divide the image into boxes. Each of these
boxes is then evaluated to determine if they are filled or
unfilled. A filled box contains some part of the image, while
an unfilled box does not. The number of filled boxes for this
particular box size is determined Nδ (F ). Key steps in this
process:

1) Grid set generation: Initial sizing is determined by
the size of the original image. The size is chosen so that
a minimum of 3 boxes can fit along the largest dimension of
the image, while a minimum of 2 boxes fit along the shorter
dimension.

From the largest grid size the remaining sizes in the set
are generated iteratively by dividing the current grid size by
a constant divisor. In our case, we used

√
2. Once the box

size reaches the limit of detail in the image i.e. reduces to
less than the size of a single pixel, the set is complete.

2) Result calculation: The box-counting fractal dimension
is found by approximating the limit in Equation 1 [33–36].

To approximate this value the log of the number of filled
boxes Nδ (F ) is plotted against the negative log of the
box sizes δ as shown in Equation 2. Linear regression is



performed using a least squares method to determine the
linear fit to the data points. The box counting dimension
estimate is then taken from the slope of this fitted line.

dimBF = lim
δ→∞

logNδ (F )

− log δ
(1)

[
xi
yi

]
=

[
− log (δ)
log (Nδ (F ))

]
(2)

C. Machine Pareidolia System

To replicate the pareidolia effect of faces and produce an
emotional response from facial expressions, several ν and
SVDD one-class face detectors from a study of pareidolia
of faces and expressions [37] were used. In addition, we
have chosen several facial expression analysers from the
same study, which uses pairwise adaptive C and ν-SVM
classification [38]. In both scenarios [37, 38], they have
evaluated their models with a training dataset consisting of
human faces and facial expressions where a number of image
preprocessing techniques and a number of resolutions were
assessed.

To begin finding faces for our robot, a detection window
of n×n pixels is scanned across an image at multiple scales
and locations. The size of the detection window corresponds
to the optimal resolution derived from cross validation. We
gather a number of image scales by resizing the original
image until it is no smaller than the size of the detection
window. The resize down scale factor we use is 0.8 – this
effectively performs a top down search where we start with
the whole image and then examine it closer upon further iter-
ations. At each scale we move our detection window of n×n
pixels from top left to bottom right. Rather than examining
every pixel location we define a step size to be roughly 10%
of the width or height of the current image scale, whichever is
smaller. For each face detected we classify its expression into
one of seven universal facial expressions of emotion – happy,
sad, surprised, fearful, angry, disgusted and contemptuous
[39, 40]. The overall emotional response can then be defined
by the expression that dominates among the faces detected.

IV. MACHINE LEARNING FOR A ROBOT WITH
ENVIRONMENTALLY AFFECTED EMOTIONS

The task is finding a mapping from feature space, the
extracted visual features that affect human emotions, to
the emotion space of the user(s). To form this mapping,
we employ an artificial neural net that is trained using
reinforcement learning in interaction with the user(s).

A. Reinforcement Learning

Reinforcement Learning [41], coupled with an artificial
feed forward neural network, was used to learn on-line a
mapping of observed visual features or current state s, to the
output emotion a that reflects that of the current user.

In this study, the artificial neural network consists only
of one layer of weights, i.e. with no hidden layer of units.
Inputs to this network are the environmental features, which
consist of colours, fractal dimension, and facial pareidolia,

that are extracted and encapsulated in a vector, the current
state s. The number of the input neurons is equivalent
to the dimension of the input vector. The output of the
neural network consists of eight neurons, where each neuron
represents an emotion class. The weights of the neurons were
adjusted using reinforcement learning.

The reinforcement learning strategy employed for this task
was on-policy temporal difference (TD) learning [42], more
commonly known as the TD(λ) algorithm with eligibility
traces et(s). In the following experiments, the trace decay
parameter λ was 0, and the discount rate γ was set to 0.9.

The robot learns based on user interaction by reward input
r ∈ [+1,−1], where the weights of the neural network are
updated using a function that consists of the current state s,
observed reward r, next state s′, and the step size α. V (s)
is the value obtained from the neural network using s. This
function is updated as follows,

V (s)← V (s) + αet(s) [r + γV (s′)− V (s)] (3)

For λ = 0, the eligibility trace et(s) is simple:

et(s) =

{
γλet−1(s) + 1 = 1 if st = st−1

γλet−1(s) = 0 otherwise (4)

The learning process described by equations 3 and 4
adjusts the weights based upon the on-line reward input
received from the user.

B. Language Output and Spoken Interface

The robot communicates to the user through spoken words.
Once an emotion vector has been obtained using the on-
policy affective system through visual features of the envi-
ronment, the words are then read out aloud to the user as part
of a sentence. These spoken words consist of a combination
of the following emotional words:

SAD ANGRY
SURPRISED FEAR
DISGUSTED CONTEMPT

HAPPY NEUTRAL

The words selected are dependent on the values of the
output emotion vector, containing the likelihood of each of
the eight possible emotions as predicted by the system. By
having eight outputs, this allows the robot to expand on the
interaction and words spoken to the user. An example of the
spoken output is as follows.

I feel very . . . . . . and a little . . . . . .

The user can then choose to respond to the spoken
words signifying the particular emotions. If these emotional
words do not represent the current feeling that the user is
experiencing, he or she can select “no”. Otherwise the user
can select “yes”, if he or she agrees with the robot’s emotion.
These responses correlate to the reward of the system and
will trigger an update of V (s). These responses are currently
programmed as button inputs at the back of the robot but
could as well be communicated to the robot via language.



V. RESULTS

A. Fractal Dimension

Under laboratory conditions with consistent lighting and
static scenes, parameters of the fractal dimension algorithm
were adjusted to examine the type of input the robot could
use for learning emotion. Here we were searching for pa-
rameters in the fractal dimension algorithm that had high
variance to different scenes. In this situation we compared
grey-scale images and Canny edge images. A selection of
these images can be seen in Figure 2.

It was found that within the set scene, using a grey-scale
image the robot obtained on average a fractal dimension
of 1.70 with ±0.10 variance. While using an edge image,
the robot obtained on average 1.32 with ±0.15 variance. It
can also be seen that grey-scale images were affected by
noise, resulting in a higher fractal dimension. Even though
the results show similar variance, it is worthwhile to note
that the laboratory is a relatively calm environment, and
the average fractal dimension should correspond to a lower
number [16, 17]. In stating this, the edge image was used
for external experiments outside the laboratory.

Fractal dimensions were processed in different environ-
ments using the robot. The fractal dimension of a scene
can vary with the motion state i.e. walking or stationary.
As a robot manoeuvres through an environment, its motion
of walking and panning to view the scene can impair and
modify the result of fractal dimension output. This reduces
the number of edges, due to the blurring of the image leaving
only the dominant edges. This is similar to increasing the
threshold on the edge detection algorithm, or blurring the
image in its pre-processing stages before calculating the
fractal dimension. The results leave an impression of the
dominant edges such as the skyline [43].

B. Machine Pareidolia

To determine the appropriate face detectors and facial
expressions from [37], we had several options in the pre-
processing stage that required consideration. Included image
pre-processing techniques considered were grey-scale, his-
togram equalised grey-scale; and their respective Sobel and
Canny edges. Our initial chosen face detector was trained
on images of size 30 by 30 pixel resolution. However,
when tested on the robot, false positives were produced. Our
reasoning was that this outcome was due to inconsistencies
in the robot’s camera settings and environmental lighting
conditions when compared to that of the training data.

However, we have gathered the set of what we considered
as true and false positive samples from our initial 30 by 30
pixel resolution grey-scale face detector and ran them against
all possible one-class face detectors (i.e. the number of image
pre-processing techniques and the number of resolutions
evaluated in [37]) to isolate the face detector which best fit
our purpose. Effectively, our face detector for the robot was
determined using a two stage process. The first stage was
a chosen 30 by 30 pixel resolution grey-scale face detector
to obtain our set of true and false positives and use these

Fig. 2. Grey-scale Versus Canny Edge: Grey-scale images were affected
by noise, resulting in a higher fractal dimension number. Even though the
results show similar variance, it is worthwhile to note that the laboratory
environment is a relatively calm environment, and the average fractal
dimension should correspond to a lower number [16, 17].

samples to determine a favourable face detector. To further
compensate for what we considered as false positives, we
made use of the Canny edge operator where we defined
a threshold of a minimum number of edges to become a
positive face. If this threshold was reached the image was
considered as a possible true positive.

While testing on the robot, it was noted that the grey-
scale performed significantly faster, when compared to the
Sobel classifier. Additionally, the speed of obtaining facial
pareidolia results was hampered by the resolution of each
possible face searched, and the number of faces it was re-
quired to search through. To increase the speed of processing
the image resolution was reduced to 320 by 240 pixels, with
the scaling set to a factor of 0.8, and pareidolia scan step
size was set at 10% of the image size.

The current facial pareidolia sub-component consists of
input regions of interest of 30 by 30 pixels. The format
of these inputs is grey-scale ∈ [0, 255], without histogram
equalisation. The face detector module consists of a singular
value decomposition (SVDD) SVM, which employed a radial
basis function (rbf) kernel, whose ν and γ parameters were
set to 0.05 and 1.22e−4 respectively.

In Figures 3 and 4 shows faces that are extracted from
the surrounding environment as seen by the robot; the angry
face is a vague face, while the detected surprised face is one
that has been created from shadows. In Figure 4, for visual
comparison, images of average faces used for the testing
phase of the machine pareidolia system are shown against
the detected faces. In our set-up, the machine pareidolia
system had a strong bias to angry faces (approximately 50%



Fig. 3. Facial Pareidolia: Left image shows the image collected from the
system, boxes show regions of interest detected as faces. Top Right, enlarged
detected angry face. Bottom Right, an enlarged surprised face is detected.

Fig. 4. Visual Comparison of Faces: The left box contains an example of the
average surprise face used in the testing data [37] and an extracted image
output from the facial pareidolia sub-component of the affective system.
Similarly, in the right box, an example of the happy expression.

of faces processed on the robot), as they consist of straight
contours located near the mouth area, which correlates to
straight shading in the lower region of interest.

C. Learning for an affective system using visual features of
the environment

The robot was first tested under laboratory conditions.
For every reinforcement learning problem, it is essential that
parameters are tuned such that they match the problem. In
this case, for an on-policy affective system trained on a real
robot using visual features of the environment, we required
a system with a fast convergence rate. In several pilot tests
we determined a suitable step-size parameter α in Equation
3 in order to obtain acceptable results in a short time.

During experimentation under laboratory conditions, it
was found that large values of α never recovered into a
positive reward. This became unstable and eventually led to
outputs of random emotions being expressed by the robot.
Additionally, α values that were too small correlated to
a slow rate of learning, and would eventually converge
to the desired emotion after an extended period of time.
This scenario was undesirable, since the user would feel
distracted and disheartened with the robot. This would cause
a comparatively greater effect on the emotional state of the
user, as the user would be frustrated with the robot, loosing
concentration on the effect of the surrounding environment.

The results, as seen in Figure 5, show an increase in
the maximum reward parameter over a period of 100 - 200
iterations (approximately two seconds between each itera-
tion). The curve shows the characteristics of a converging
learning algorithm, where the graph plateaus into a region of
stability. Here, we define stability to be the state where no
further training was required (no positive or negative reward)

Fig. 5. Training the affective system in a laboratory environment. System
training was terminated when the rate of learning had stagnated or a time
limit of 5 minutes was reached.

and simultaneously have the ability to replicate the user’s
affective status.

The spikes visible on the plot represent instances of
random value generation, in an attempt to escape local
maxima. On completion of training, the robot had success-
fully mimicked the emotion of the user for the different
scenes provided within the laboratory, as seen from the
convergence of reward in Figure 5.

As the affective system on the robot was trained, the
weights from the input features (colour coded in Figure 6)
to the eight output units/emotions (displayed on the vertical
axis in Figure 6) were adjusted over time. Small random
values were used for the weights of the neural network
on initialisation. These weights quickly evolved through the
reinforcement learning process.

The fractal dimension has dominance in the neural net-
work, because it can be calculated for every sample im-
age and only consists of one parameter unlike colour or
pareidolia. Features originating from pareidolia were not as
dominant in the weights of the neural network. The features
of pareidolia do not appear as often due to restrictions
and complex pre-processing. Weights relating to colour lie
between fractal dimension and features from pareidolia, with
hue weights dominantly appearing within the features of
colour.

Once the robot had been initially trained, it was taken to a
number of different venues situated around the University of
Newcastle. At these venues the robot was able to collect dif-
ferent images of the different scenes, which were processed
on-line. For every image processed, the robot would vocalise
its emotions to the user, and the user would respond with
a yes or no. During this time, the robot would use these
inputs to further update its affective system, in an attempt
to gain a closer match to the user’s emotional state. Some
examples of the environments, and data extracted from the
robot perspective can be seen in Figure 7.



Fig. 6. Cumulative weights of the neural network evolving over time. Initialisation of the neural network weights are random (left), they are then updated
during the learning process over time. The vertical axis represents the eight output units. The colour coded boxes represent the weights from the ten inputs.
In the horizontal direction four snapshots are displayed (start, after 60 iterations, after 120 iterations, and at the end after 180 iterations). Fractal dimension
has a large weighting value in most raw affective responses. Pareidolia features have a weak weighting in the network, as it does not appear as often during
training compared to the features of fractal dimension or colour.

Fig. 7. DARwIn-OP with the partially trained affective system, taken outside to Callaghan Campus at the University of Newcastle for further training.
Left: we see the DARwIn-OP and the surrounding environment, from the perspective of the user, Right: an image collected from the DARwIn-OP affective
system, which contain grey-scale detected face images as output from the environmental pareidolia module, with their extracted labelled dominant facial
expressions. The edge image is the image used to determine the fractal dimension, (Here we obtained a FD of 1.67).

VI. DISCUSSION AND CONCLUSION

This paper presents the commencement of a system that
aims towards the development of a complete robot affective
system using visual features from the environment in a
step to bridge the discomfort gap before integrating robots
into everyday society. The environmental emotion detection
system implemented on a humanoid robot attempts to adapt
to the user through on-line reinforcement learning. The on-
line learning process allows the robot to adapt closely to
the user’s unique emotional status, which has resulted from
combinations of cultural, genetic and environmental factors.
The environmental emotion detection system allows the robot
to predict the user’s feelings, to help increase the user’s level
of comfort in interacting with the robot in various situations.

The inputs of the environmental emotion detection sys-
tem presented here consist of features obtained from visual
perception of the environment that have a “proven” effect
on emotions [3, 10, 15, 19–21, 23]. There exist a number

of other features known to have an effect on the emotional
status of a person, such as the gaze of nearby pedestrians,
acoustics, and general lines and shapes in the environment. In
our future work, we aim at addressing more of these features.
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