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Abstract

We describe a new technique for sequential data analysis, called GDTW-
P-SVMs. It is a maximum margin method for the construction of classifiers
with variable-length input series. It employs potential support vector ma-
chines (P-SVMs) and Gaussian dynamic time warping (GDTW) to waive
the fixed-length restriction of feature vectors in training and test data. As
a result, GDTW-P-SVMs enjoy the P-SVM method’s properties such as the
ability to: i) handle data and kernel matrices that are neither positive definite
nor square and ii) minimise a scale-invariant capacity measure. The new tech-
nique elaborates on the P-SVM kernel functions, by utilising the well-known
dynamic time warping algorithm to provide an elastic distance measure for
the kernel functions. Benchmarks for classification are performed with sev-
eral real-world data sets from the UCR Time Series Classification/Clustering
page, the GeoLife trajectory data set, and the UCI Machine Learning Repos-
itory. The data sets include data with both variable and fixed-length input
series. The results show that the new method performs significantly better
than the benchmarked standard classification methods.

Keywords:
Support Vector Machines, Dynamic Time Warping, Time Series
Classification, Sequential Data Analysis

1. Introduction

Within the context of time series analysis, sequential data classification
has received great interest during the last decade. It has been widely applied
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to various research areas such as financial data mining [1, 2, 3], moving
object identification [4, 5], medical data analysis [6, 7, 8], trajectory data
analysis [9, 10, 11], time-stamped event data processing [12], and network
monitoring [13, 14]. In all applications of sequential data classification using
a kernel-based learning approach the data are represented in a new space
by a similarity/distance measure. In the new space the data are aligned
such that similar features correspond to each other. The features which
represent the same property of the data are called matching features/time
stamps. Different representations of the same sequential data could lead
to different matching feature sets. This makes sequential pattern matching
which includes comparing sequences of features for the presence of some
pattern, a challenging problem.

Many distance measures have been proposed to solve the above-mentioned
problem [15, 16, 17, 18]. In sequential pattern matching two types of dis-
tance measures have been employed: elastic [19] and metric [20] distance
measures. According to these two types, common distance measures fall into
three categories [18]:

1. Non-elastic metric (Euclidean Distance, lp-norms and Correlation [19])

2. Elastic non-metric (Dynamic Time Warping [21] and Longest Common
Sub-sequence [22])

3. Elastic metric (Edit Distance with Real Penalty [23])

Metric distance measures satisfy the triangle inequality1. This condition
makes possible the efficient pruning of large numbers of time series that
deviate too far from a matching pattern [24, 18]. Comprehensive applications
have shown that Dynamic Time Warping (DTW) [25, 21, 26] among elastic
non-metric distances and the Euclidean Distance among non-elastic metric
distances outperformed most of the other distance measures [27, 28, 29, 30,
24].

DTW is a dynamic programming algorithm for measuring the distance
between two sets of sequential data, which can be turned into a linear rep-
resentation in time space (Figure 1). DTW has initially been proposed and
used in automatic speech recognition [21]. It aims to align two sequences
of input series by warping the time axis iteratively until an optimal match
between the two sequences is found.

1d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).
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Figure 1: Sequence alignment using Dynamic Time Warping [21]; Illustration of comparing
points in two sequences using Dynamic Time Warping. As shown, the two sequences have
two different lengths. Finding the correspondence between data points has made DTW
capable of comparing data objects with different lengths.

3



DTW is capable of an elastic and robust sequential data matching, and
it tolerates variable sequence length which is common in sequential patterns
(for example movement trajectories). Sequences are warped/stretched non-
linearly in the time dimension to determine a measure of their similarity
independent of certain non-linear variations in the time dimension. DTW
has been widely used as a distance measure for time series classification and
clustering. A variety of the DTW algorithms have been proposed for different
applications such as weighted dynamic time warping [24], derivative DTW
[25], multidimensional DTW [31], DTW for pitch determination [32], scaling
up DTW [33] and optimised DTW [34]. However, DTW does not account for
the relative importance regarding the phase difference between a reference
point and a testing point [24]. This may lead to misclassification, especially
in applications where the shape similarity between two sequences is a major
consideration for accurate recognition [24]. All of the above mentioned algo-
rithms have employed DTW without using a learning algorithm. As we will
show in our experiments, combining DTW with a learning algorithm helps
to perform the classification of the sequential data with higher accuracy and
overcomes DTW problems.

Support vector machines (SVMs), on the other hand, have become a
popular approach to pattern classification since they can deliver state-of-
the-art performance on a wide variety of real-world classification problems
[35, 36, 37, 38]. Many interesting kernels have been proposed for sequential
data classifications using SVMs [8, 39, 40, 20]. Mutual information kernels
have been proposed for a special case of sequential string classification [8, 41].
These kernels are able to solve classification problems in high dimensional
space where labelled data are sparse and unlabelled data are abundant [41].
Context-free models or probabilistic suffix tree structure have been employed
to construct these kernels for an application of protein classification [8]. For
solving general classification problems for variable length data objects, it is
very tempting to plug the sequential distance measures into SVM kernels
such as the Gaussian kernel [20].

In the present article advantages and disadvantages of several classifica-
tion methods for variable-length input series are discussed and a new method
is proposed to avoid the shortcomings of others. The article is structured as
follows: Section 2 provides background on the existing classification meth-
ods. Section 3 introduces the new method called GDTW-P-SVM. The ex-
periments are described in section 4 which is followed by a discussion and
conclusion.
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2. Background

2.1. Support Vector Machines

Suppose the space X, containing the input data, is referred to as the
input space, while F = {φ(x) : x ∈ X} is an inner product space (Hilbert
Space) and is called the feature space, where φ : X −→ F is the feature map
from X to F . A kernel function [42] is a function K : X × X −→ R, such
that for all x, z ∈ X

K(x, z) = 〈φ(x), φ(z)〉 (1)

One of the most common kernel functions is the Gaussian kernel which is
defined as:

K(x, z) = exp
(
−γ ||x− z||2

)
(2)

where γ > 0 is a user-specified shape parameter. Consider classifying a
training sample S = ((x1, y1), . . . , (xl, yl)), using the feature space implic-
itly defined by the kernel K(x,y) and suppose the parameters α∗ solve the
following quadratic optimisation problem:

maximise W (α) =
∑l

i=1 αi −
1
2

∑l
j=1 yiyjαiαjK(xi,xj),

subject to
∑l

i=1 yiαi = 0,

C ≥ αi ≥ 0, i = 1, . . . , l, (3)

where l is the number of training samples, yi is the label for ith training
sample and C is a real parameter, which is varied through a wide range of
values while the optimal performance assessed using a separate validation
set by cross-validation [42]. Let f(x) =

∑l
i=1 yiα

∗
iK(xi,x) + b∗, where b∗ is

chosen so that yif(xi) = 1 for any i with C > α∗
i > 0. Then the decision rule

given by sgn(f(x)) is equivalent to the hyperplane in feature space implicitly
defined by the kernel K(x, z) that solves the optimisation problem (Equation
3), where b∗ is chosen using the Karush-Kuhn-Tucker conditions [43].

Let X = {x1, . . . ,xn} be a finite input space with K(xi,xj) a symmetric
function on X. Then K(xi,xj) is a Mercer kernel if the matrix

K = (K(xi,xj))
n
i,j=1 (4)

is positive semi-definite (PSD)2 [45, 46]. Three approaches for data classifi-
cation using SVMs have been proposed:

2A Hermitian matrix is PSD if all its eigenvalues are non-negative [44, 42].
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1. If the data matrix (Equation 4) is PSD, it is interpreted as a Gram
matrix and SVMs are subsequently applied [47].

2. If the data matrix is indefinite but symmetric, the matrix is projected
into a subspace spanned by the eigenvectors with positive eigenvalues
[48].

3. Another approach for dealing with indefinite data matrices involves
flipping the sign of negative eigenvalues [49].

All three approaches guarantee a PSD matrix on the available training set
but it may not be PSD on the new test set.

2.2. SVMs with GDTW kernel

The Gaussian function with Euclidean distance measure (Equation 2) is
among the most commonly used kernels in SVMs. It is well-known that
the Gaussian function provides a Mercer kernel [50]. It maps n vectors
v1, v2, . . . , vn into a Hilbert space [20] where φ(v1), φ(v2), . . . , φ(vn) span an
n-dimensional subspace [50]. The Euclidean distance measure used in Equa-
tion 2 is able to compare two vectors with the same length only. Therefore,
the classifier that is using this kernel function is restricted to an input space
with fixed-length feature vectors. For instance, sequential data that vary in
speed or time (such as: pedestrian’s trajectory data and human voice data
with variable recording times) cannot be directly used as the input space for
this kernel function.

In order to overcome this problem, a Gaussian function can be defined
with a DTW distance measure [51, 52]:

kGDTW (xr,ys) = exp

(
−D(xr,ys)

σ2

)
(5)

where xr is a time series with discrete time index varying between 1 and r,
ys is a time series with discrete time index varying between 1 and s, σ is
the Gaussian kernel width, and D(xr,ys) is the DTW distance. It can be
calculated recursively as [18]:

D(xr,ys) = ||xr − ys||p +min


D(xr−1,ys) delete,
D(xr−1,ys−1) match,
D(xr,ys−1) insert,

(6)

where xr ∈ Rd is the rth element (last element) of time series xr, ys ∈ Rd is
the sth element (last element) of time series ys, and ||xr − ys||p is the lp-norm
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in Rd. For further information about DTW algorithms and their variations
please refer to [18, 21, 53].

2.3. Two-step DTW-SVMs

The effective use of SVMs in classification necessitates the appropriate
choice of a kernel. Classifying data sets that contain variable-length input
series requires designing problem specific kernels. This involves the definition
of a similarity measure, with the condition that the kernels are PSD. An
alternative technique is discussed here, which uses a two-step architecture
for classifying the data.

In the first step of this classification technique, the data has been repre-
sented by the DTW distance measure. DTW is able to find the distance be-
tween two input series with different lengths. Each sample is represented by
its DTW distances to all other data samples. This is shown as a matrix in Fig-
ure 2 and we call it the DTW matrix. In this matrix each row/column is repre-
senting a transformed data sample. Since DTW (xrii ,x

rj
j ) = DTW (x

rj
j ,x

ri
i ),

the matrix is symmetric.
In the second step the DTW matrix is used as the input of a standard

two-class SVM classifier (as shown in Figure 2). This technique can be used
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Figure 3: Training phase for multi-class classification problems using the idea presented in
Figure 2; the pairwise classification algorithm (one-vs-one) is employed to train multi-class
data, 5-fold cross validation with a leave-one-out policy is utilised for tuning hyperparam-
eters (C, γ and kernel parameters).

along with the pairwise classification algorithm to classify multi-class time
series.

Figure 3 shows different stages in the training phase of the multi-class
classification method using the two-step DTW-SVMs classifier and a pairwise
one-vs-one algorithm. A 5-fold cross validation technique is also employed
to tune the SVM hyperparameters (C, γ and kernel parameters). As shown,
after calculating the DTW distances between all samples the distances are
scaled in [0, 1] (The scaling method is described in Section 4, Equation 10).
Then pairs are created using the scaled DTW matrix and class labels. Each
pair contains two classes of data only (one-vs-one pairwise algorithm). Af-
terwards, 5-fold cross validation is utilised to tune the hyperparameters. As
a result of this tuning, one SVM model for each pair of classes will be con-
structed.

The testing phase in this classification technique, as shown in Figure 4, is
different from the testing phase in commonly used classification methods. In
the training phase we used all training data to obtain the DTW matrix and
represent the input space for the SVM classifier. In the test phase each testing
object has to be mapped with the same representation as it was used in the
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Figure 4: Testing phase for trained models obtained using the architecture shown in Figure
3; a pairwise classification algorithm (one-vs-one) is employed to label multi-class data.

training phase. This means to classify a test sample, the distances between
the test sample and all samples in the training set have to be calculated.
The matrix that contains these distances is called the test DTW matrix in
Figure 4. The ith row of the matrix represents the DTW distances between
the ith test sample and all samples in the training set.

This technique overcomes the problem of classifying data samples with
different lengths using SVMs, and it enjoys the benefits of using the DTW dis-
tance measure without suffering from employing non-PSD kernels in SVMs.
However in the testing phase, to calculate the test DTW matrix (as shown
in Figure 4) the training set as well as the trained models are required for
classification. This makes it difficult to distribute trained data. Either be-
cause they are too big to distribute or in some cases the training data sets
are not allowed to be accessed by a testing party. Also, the DTW distances
between each test sample and all training samples have to be calculated,
which obviously slows down the testing process. Therefore this method is
not technically feasible for applications that have a big training set or re-
quire real-time classification.

3. Proposal of GDTW-P-SVMs

3.1. Positive semi-definiteness and the GDTW kernel

As noted by [51] and supported by the proof provided by [54], kGDTW
cannot be a PSD function in general. Positive definiteness of kGDTW de-
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pends on the DTW distances between the data objects and we cannot say
that the GDTW function always satisfies or always does not satisfy Mercer’s
condition. The trainability of SVMs with the GDTW kernel is compared
with the proposed method in Section 4.1.1.

Using the GDTW kernel in SVMs may result in a non-PSD kernel and
in this case the existence of a Reproducing Kernel Hilbert Space is not guar-
anteed [55]. Another approach is to apply a transformation to the kernel
matrix and make it PSD. This approach can lead to kernel matrices with
large diagonal entries, resulting in overfitting [56]. Also it is not clear how
this approach can handle new data objects in the test set [57]. As discussed
in [57], fixing the diagonal values by subtracting the smallest eigenvalue from
the diagonal does not increase the accuracy of the resulting classifier.

3.2. Combination of GDTW and P-SVMs

Employing DTW distance as a distance measure in Gaussian Kernel Func-
tions and obtaining a new kernel function (Equation 5) called GDTW, is a
tempting solution to waive SVM restriction on length of feature vectors. As
discussed (above section), it is not clear under what conditions the GDTW
function (Equation 5) satisfies Mercer’s conditions and could be considered
as a valid kernel function for SVMs.

On the other hand, the discussed two-step DTW-SVMs classification
method has two main shortcomings: i) It needs the training data sets as
well as the trained model when testing a new sample, and ii) while online
testing is a common requirement of many time series classification problems
such as speech recognition and handwriting recognition, testing against a
large training data set using the two-step DTW-SVMs classifier (as shown
in Figure 4) could be a very slow process.

To overcome the shortcomings of the two-step DTW-SVMs, and the
shortcomings of using a non-PSD kernel in conventional SVMs, and being
able to analyse data sets with different lengths in input series, we propose a
new approach called GDTW-P-SVMs. It elaborates on P-SVM kernel func-
tions, by utilising the DTW algorithm to provide an elastic distance measure
for the kernel function [49]. It utilises GDTW (Equation 5) as the kernel func-
tion in potential support vector machines (P-SVMs). In contrast to two-step
DTW-SVMs, which calculate the similarities between input series to obtain
fixed-length feature vectors (the DTW matrix in Figure 2), GDTW-P-SVMs
employ DTW in their kernel to waive the SVM requirement of fixed-length
feature vectors.
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Potential support vector machines (P-SVMs) have been proposed by
Hochreiter and Obermayer to analyse dyadic data where two sets of objects
(row and column objects) are characterised by a matrix of numerical val-
ues [49]. It is a maximum margin method for construction of classifiers and
regression functions for the column objects in a data matrix. The P-SVM
optimisation problem can be summarised as follows:

minimise 1
2
‖XT

φω‖2 + C1T (ξ+ + ξ−)

subject to KT (XT
φω − y) + ξ+ ≥ 0

KT (XT
φω − y)− ξ− ≥ 0

0 ≤ ξ+, ξ− (7)

where ω is a weight vector and ξ+ and ξ− are slack variables used for the
regularisation scheme proposed in [49]. A large value for the slack variables
indicates that the particular object only weakly influences the direction of
the classification boundary. In Equation 7, C ≥ 0 is a constant value. If the
noise is large, the value of C must be small to remove the corresponding con-
straints via the slack variables ξ. After employing Lagrangian optimisation
the following dual optimisation problem will be derived:

minimise 1
2
αTKTKα− yTKα

subject to −C1 ≤ α ≤ C1, (8)

where α is the vector of Lagrange multipliers. Equation 8 depends on the
data via the kernel or data matrix K only. One of the most crucial proper-
ties of the P-SVM procedure is that the dual optimisation problem depends
on only K via KTK. Therefore, K is not required to be PSD or square.
This allows the construction of SVM-based classifiers for matrices K of gen-
eral shape that includes indefinite kernels. The offset b∗ of the classification
function f(x) =

∑l
i=1 yiαiK(xi,x) + b∗ is given by [49]:

b∗ =
1

l

l∑
i=1

yi. (9)

The GDTW-P-SVMs method not only has the advantage of employing
the DTW distance measure for comparing input series with different lengths
but also overcomes the shortcomings of the two-step DTW-SVMs. As the
testing phase for this approach is performed using only the created models,
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the training set is not required when testing a new data sample. This makes
it convenient to distribute the trained data which, are essentially the models.
On the other hand, in testing process it is not required to compare each test
sample against the entire training set. This makes it an appropriate method
for problems that demand real-time classification results.

4. Experiments

To practically evaluate the effectiveness of the two-step DTW-SVMs clas-
sifier and GDTW-P-SVMs, we use a set of standard benchmark classification
tasks for time series. The experiments used all time series available at the
UCR repository [58], the character trajectory data set available at UCI ma-
chine learning repository [59] and GeoLife human trajectory data sets [60].

One common method to evaluate classification techniques is comparing
results obtained from n-fold cross-validation optimisation. The optimisation
involves tuning the hyperparameters (C, γ and kernel parameters) to min-
imise the error rate. We note that to obtain comparable results, whenever
tuning takes place, every adjustment should be considered as a separate inde-
pendent experiment. The recommended procedure is to use cross validation
tuning entirely within the training set and use a separate test set for eval-
uating the classification method [61]. When doing comparative evaluations,
everything that is done to modify or prepare the algorithms must be done in
advance of seeing the test data [61, 62]. In our experiments, to follow this
recommendation a training subset and a testing subset are either pre-defined
by the data set providers or a separate tuning set is defined to tune the
hyperparameters.

A pairwise strategy with a one-vs-one policy is utilised for multi-class
problems. For model selection, a five-fold cross-validation with a leave-one-
out policy is performed on each pair of data. In n-fold cross-validation, n = 5
and n = 10 are the two most commonly used values for the number of folds.
In our experiments some data sets have only a few samples in some classes.
In these cases the number of samples in a pair can be less than the number of
folds and therefore some folds may remain empty. To reduce the frequency
of occurrence of empty folds we used n = 5 as the number of folds. If the
number of samples in a pair is still less than the number of folds, then a
sample repetition technique is used to ensure there is at least one sample in
each fold. In essence, the sample repetition technique repeats the existing
samples with consideration of the balance of data for both classes in the pair.
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A shuffling technique is also applied to the data prior to fold generation.
The technique helps to maintain a balance of the number of classes in each
fold. The accuracy of a model cannot be judged using an unbalanced testing
set where the majority of its data belong to one class only. The shuffling
technique runs over the data a hundred times to find the folds with balanced
training and testing sets.

To perform data classification the LIBSVM [63] and the P-SVM [49] tool-
boxes are used for implementing two-step DTW-SVMs and GDTW-P-SVMs
respectively. To ensure a fair comparison, the hyperparameter selection pro-
cedure was equal in all methods. Best values are selected from a generated
hyperparameter set to minimise the error rate in the training phase. More
precisely, the settings for the GDTW-P-SVMs and the two-step DTW-SVMs
are listed below:

• Two-step DTW-SVMs : The Gaussian kernel (Equation 2) is used as the
kernel function for SVM learning. The best C values (Equation 3) are
selected for each fold among a predefined set of values, {C1, C2, . . . Cpc}.
We decided to use a logarithmic distribution for C with higher den-
sity close to zero. The values in the set are obtained using Ci =
exp(i × ln(Cmax)

pc
); i = 0, 1, . . . , pc, where pc and Cmax are two constant

values that indicate number of values and the maximum value for C
respectively. The same strategy has been employed for selecting the
best γ among γi = exp[ln(γmin) + i× ( ln(γmax)−ln(γmin)

pγ
)]; i = 0, 1, . . . , pγ,

where pγ is the number of values for γ, γmin and γmax are the minimum
and maximum values for γ, respectively. In the experiments we choose
Cmax = 215, pc = 26, γmin = 2−10, γmax = 23, pγ = 24.

• GDTW-P-SVMs : We used the GDTW function (Equation 5) as the
kernel function for P-SVM classification. C (see Equation 8) and γ
(γ = 1/σ2 in Equation 5) values are selected using the same methods
as described for the DTW-SVMs.

All possible permutations of hyperparameters are used to find the min-
imum classification error rate for k = 5 folds. Then for each pair we have
s ≥ k selected sets (some sets result in the same minimum error rate for the
same fold). Among the s sets, the most frequent set with the lowest error
rate is determined as the best hyperparameter set for that particular pair.
If there are more than one set with that feature then the set that contains
the biggest value for C will be selected as the best set. For example assume
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H = {h1, . . . , hn} is a set that contains all possible permutations of C and γ
and it is used to train a classification problem with two classes. For all five
folds the error rate associated with each hyperparameter set in H is calcu-
lated. For each fold some sets produced the lowest error rate for that fold,
these folds are added to set of candidate hyperparameters (S). The most
frequent set among all members of S is selected as the best hyperparameter.
In case of more than one class of data the same method for choosing the hy-
perparameters is performed for each pair of classes. This provides a trained
model for each pair.

Testing a new data sample is performed against all trained models (one for
each pair). A predicted label with the highest number of votes will be selected
as the class of the new data sample. If the highest number of votes belongs
to more than one class then the same voting algorithm will be performed
on the pairs consisting of selected classes only. This routine continues until
eventually one class wins the competition. If the voting algorithm fails to
find the winner, the label with the lowest class number among selected classes
will be chosen as the predicted class for that particular data sample.

The standard DTW algorithm has quadratic time and space complexity
that limits its use to only small time series data sets. To overcome this
problem, we used the DTW algorithm described in [64]. The algorithm
provides the DTW alignments with linear time and space complexity. It
uses a multilevel approach that recursively projects a solution from a coarser
resolution and refines the projected solution. This makes it possible for
the proposed classification technique, GDTW-P-SVMs, to have the same
complexity as the P-SVMs with Euclidean distance. As discussed in [65],
regardless of the exact algorithm used, the computational cost of solving
the SVM Quadratic Problem grows at least like n2 when C is small and n3

when C gets large. It depends on number of samples (n), number of support
vectors, and the hyperparameters (C and γ).

Large margin classifiers are known to be sensitive to data normalisation.
The accuracy of a SVM can be severely degraded if the data is not normal-
ized [66]. The main advantage of normalising is to avoid attributes in greater
numeric ranges dominating those in smaller numeric ranges. Another advan-
tage is to avoid numerical difficulties during the calculation. Because kernel
values usually depend on the inner products of feature vectors, e.g. the linear
kernel and the polynomial kernel, large attribute values might cause numeri-
cal problems [63]. The normalisation could be performed on input space (on
the data sets) and feature space (in the kernel function). The RBF-based
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kernels normalise the feature space themselves [67]. This does not mean that
input space normalisation is not required [66]. In the selected data sets for
this experiment, there exist many features. Each of these features may be
measured in a different scale and has a different range of possible values. In
this case it is beneficial to scale all the features to a common range in each
data set [67]. This method is also known as standardisation. For scaling
our data, a min-max method is employed to scale the training data to the
common range, [0, 1]:

x̂ =
x− xmin

xmax − xmin
, (10)

where xmin and xmax are minimum and maximum values of the scaling data
set, x̂ is the scaled data, and x is the raw data sample. As previously dis-
cussed in section 2.3, the DTW-SVMs classification technique requires the
training set as well as the trained models to test data samples. Maximum
and minimum values of the training set are used to scale the test set to the
desired range.

The proposed classification method is examined with two types of data
sets:

1. Fixed-length feature vectors : Data sets where the data have a certain
number of features and the values of all features for all samples are
provided.

2. Variable-length input series : Data sets where the data do not have a
fixed number features or values of some features for some samples are
not available. Trajectory-based data sets are one of the most common
examples of this type, such as character trajectory data sets and human
trajectory data sets.

The next two subsections discuss classification results obtained using both
types of data.

4.1. Fixed-Length Feature Vector Classification

This section describes experiments that compare various classification
techniques using data sets with fixed-length feature vectors. The classifica-
tion performance of GDTW-P-SVMs is compared with two groups of classi-
fiers. The first group contains classifiers that use the first nearest neighbour
(1NN) technique along with a selection of common distance measures to
classify UCR data sets. In the second group we compare our method with
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kernel-based classifiers that employ DTW as a distance measure in their ker-
nel. The outcome is a pairwise comparison of these classifiers with respect
to their classification accuracy.

4.1.1. UCR data sets

The UCR time series data sets [58] are used to benchmark our proposed
methods and compare them with some other previously presented classifica-
tion techniques. An overview of the UCR data sets and their properties is
given in Table 1. This benchmark database includes a wide variety of prac-
tical classification problems including speech recognition, face recognition,
motion tracking data analysis, and electrocardiography data classification.
The length of the time series varies from 60 to 637 time steps and the data
sets contain 24,009 time series in total. Each of the 20 data sets comes with
a training set and a test set.

Table 2 shows the results obtained for different classification methods.
The methods, which are discussed in this table, employed the 1-nearest
neighbor classifier with a distance measure. We use the 1-nearest neighbor
classifier because the 1-nearest neighbor classifier with DTW showed very
competitive performance and has been widely used for time series classifi-
cation [24]. In the table, for space concerns, the acronyms of the methods’
names are used: 1NN ED (first nearest neighbour with Euclidean Distance),
DTW (classic Dynamic Time Warping [21]), ODTW (Optimised Dynamic
Time Warping [68]), LCSS (Longest Common Sub-sequence [22]) and ERP
(Edit distance with Real Penalty [23]).

Figure 5 compares our proposed classification technique with the other
methods. Red dots and blue dots show error rates for GDTW-P-SVMs and
DTW-SVMs, respectively for each data set. The black line in each diagram is
representative of the case where both methods undergoing comparison would
have equal error rates. More blue/red dots above the black line means the
DTW-SVMs/GDTW-P-SVMs have lower classification error rates than the
comparing method. As shown the GDTW-P-SVMs (red dots) have lower er-
ror rates in most cases even when comparing with powerful distance measures
such as LCSS and ERP (last two diagrams in Figure 5). The DTW-SVMs
have a lower error rate than most other techniques, but they always have a
higher error rate than GDTW-P-SVMs.

Figure 6 shows Receiver Operating Characteristic (ROC) curves of the
GDTW-P-SVMs and SVM with ED-Gaussian Kernel classifiers for the five
data sets from the UCR repository which have two classes (binary classifica-
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Table 1: UCR time series data set properties [58]

Dataset
Name

Number Size of Size of Length
of training testing of series

classes set set
Synthetic

6 300 300 60
control
Gun-Point 2 50 150 150
CBF 3 30 900 128
Face(all) 14 560 1690 131
OSU Leaf 6 200 242 427
Swedish

15 500 625 128
Leaf
50 Words 50 450 455 270
Trace 4 100 100 275
Two

4 1000 4000 128
Patterns
Wafer 2 1000 6174 152
Face(four) 4 24 88 350
Lightning-2 2 60 61 637
Lightning-7 7 70 73 319
ECG 2 100 100 96
Adiac 37 390 391 176
Yoga 2 300 3000 426
Fish 7 175 175 463
Beef 5 30 30 470
Coffee 2 28 28 286
Olive oil 4 30 30 570
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Table 2: UCR time series classification error rates, 1NN: first nearest neighbour, ED:
Euclidean distance, ODTW: optimised DTW, LCSS: longest common sub-sequence, ERP:
edit distance with real penalty. GDTW-P-SVMs show better results for automatic time
series classification with fixed-length feature vectors. Best result(s), i.e. lowest error rate,
for each data set are shown in bold.

Dataset
Name

1NN 1NN 1NN 1NN 1NN DTW GDTW
ED ODTW DTW LCSS EPR SVM P-SVM

Synthetic
0.12 0.017 0.007 0.047 0.036 0.007 0.000

control
Gun-Point 0.087 0.087 0.093 0.013 0.040 0.200 0.000
CBF 0.148 0.004 0.003 0.009 0.003 0.000 0.000
Face (all) 0.286 0.192 0.192 0.201 0.201 0.256 0.102
OSU Leaf 0.483 0.384 0.409 0.202 0.397 0.355 0.330
Swedish

0.213 0.157 0.210 0.117 0.120 0.184 0.094
Leaf
50 Words 0.369 0.242 0.310 0.213 0.281 0.264 0.222
Trace 0.24 0.01 0.000 0.20 0.170 0.000 0.000
Two

0.090 0.0015 0.000 0.000 0.000 0.000 0.000
Patterns
Wafer 0.005 0.005 0.020 0.000 0.009 0.010 0.000
Face (four) 0.216 0.114 0.170 0.068 0.102 0.079 0.023
Lightning-2 0.246 0.131 0.131 0.180 0.148 0.197 0.164
Lightning-7 0.425 0.288 0.274 0.452 0.301 0.370 0.260
ECG 0.120 0.120 0.230 0.100 0.130 0.150 0.100
Adiac 0.389 0.391 0.396 0.452 0.378 0.371 0.289
Yoga 0.170 0.155 0.164 0.137 0.147 0.151 0.147
Fish 0.217 0.233 0.267 0.091 0.120 0.206 0.194
Beef 0.467 0.467 0.500 0.533 0.500 0.500 0.500
Coffee 0.250 0.179 0.179 0.214 0.250 0.179 0.000
Olive oil 0.133 0.167 0.133 0.800 0.167 0.133 0.133

Average Rank 4.650 3.000 3.650 2.800 3.000 3.100 1.400
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tion problems) [69]. The False Positive Rate (FPR) is defined as the fraction
of the false negatives out of total negatives, and the True Positive Rate
(TPR) is defined as the fraction of the true positives out of total positives.
The Area Under Curve (AUC) when using GDTW-P-SVMs for ECG, Gun-
Point, Wafer, Coffee, and Yoga data sets are 0.825, 0.985, 0.916, 1.000, and
0.894, respectively, and when using SVMs they are 0.891, 0.837, 0.688, 0.713,
and 0.5683. The ROC curves show that GTDW-P-SVMs have higher accu-
racy in classifying positive and negative samples than SVM with Gaussian
kernel. They also support the classification error rates presented in Table 2.

As seen in Figure 5 and in the last column of Table 2, GDTW-P-SVMs
clearly outperform the other classification methods; in most cases the ac-
curacy of GDTW-P-SVMs is higher than that of others. The experimental
results for fixed-length feature vectors indicate that our proposed method
(GDTW-P-SVMs) is promising for automatic time series classifications with
fixed-length feature vectors.

Table 3 compares classification results obtained using kernel-based clas-
sification techniques which use DTW as the distance measure in their ker-
nel function. In the table, for space concerns, the acronyms of the meth-
ods’ names are used: ppfSVM-NDTW (pairwise proximity function SVM
[70] with negated DTW kernel [57]), ppfSVM-GDTW (pairwise proximity
function SVM with GDTW kernel), SVM-NDTW (conventional SVM with
negated DTW kernel), SVM-GDTW (conventional SVM with GDTW ker-
nel).

Figure 7 compares our proposed classification technique with other meth-
ods, which were discussed in Table 3. In this figure, we used the same rep-
resentation as in Figure 5. As shown the GDTW-P-SVMs (red dots) have
lower error rates in all cases even when comparing them with pairwise prox-
imity function SVMs with GDTW and NDTW kernels (last two diagrams in
Figure 5).

The last row of Table 2 and Table 3 shows the average rank of each
classifier using the Friedman test [71]. The average rank is calculated for
each group of classifiers separately. To obtain the average rank initially the
classifiers were ranked on each data set separately. Then for each data set
the classifier with lowest error rate (highest performance) is assigned rank
1, the second best rank 2, and so on. In the case of ties average ranks are

3The closer the value of AUC to 1, higher the accuracy of classification.
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Figure 5: Comparison of time series classification methods (presentation method adopted
from [18]). x− axes represent error rates for DTW-SVMs and GDTW-P-SVMs with blue
and red dots respectively. y−axes show error rates for the other five classification methods
which were compared in Table 2. Black lines represent f(x) = x. More blue/red dots above
the black line means that the DTW-SVMs/GDTW-P-SVMs have lower classification error
rates than the comparing method. As shown the GDTW-P-SVMs (red dots) have lower
error rates in most cases even when compared with powerful distance measures such as
LCSS and ERP (last two diagrams in the figure).
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Figure 6: Comparison of Receiver Operating Characteristic (ROC) curves for SVMs with
Gaussian Kernel and GDTW-P-SVMs for five UCR data sets with two classes; False Pos-
itive Rate (FPR) is defined as the fraction of the false negatives out of total negatives.
True Positive Rate (TPR) is defined as the fraction of the true positives out of total pos-
itives. The Area Under Curve (AUC) when using GDTW-P-SVMs for ECG, Gun-Point,
Wafer, Coffee, and Yoga data sets are 0.825, 0.985, 0.916, 1.000, and 0.894, respectively,
and when using SVM they are 0.891, 0.837, 0.688, 0.713, and 0.568 (the closer the value
of the AUC is to 1, the higher is the accuracy of classification).
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Table 3: UCR time series classification error rates using DTW-based kernel function clas-
sifiers. ppfSVM/NDTW: pairwise proximity function SVM with negated DTW kernel,
ppfSVM/GDTW: pairwise proximity function SVM with GDTW kernel, SVM/NDTW:
conventional SVM with negated DTW kernel, SVM/GDTW: conventional SVM with
GDTW kernel. GDTW-P-SVMs show promising results for automatic time series classifi-
cation with fixed-length feature vectors. Best result(s) for each data set is shown in bold.
The classifiers were ranked on each data set according to their performance and the ranks
averaged over all data sets (lower rank indicates better performance.)

Dataset
Name

ppfSVM ppfSVM SVM SVM DTW GDTW
NDTW GDTW NDTW GDTW SVM P-SVM

Synthetic
0.013 0.013 0.013 0.023 0.007 0.000

control
Gun-Point 0.047 0.140 0.460 0.127 0.200 0.000
CBF 0.003 0.001 0.010 0.046 0.000 0.000
Face(all) 0.237 0.226 0.170 0.265 0.256 0.102
OSU Leaf 0.405 0.355 0.706 0.401 0.355 0.330
Swedish

0.147 0.155 0.363 0.382 0.184 0.094
Leaf
Trace 0.000 0.000 0.000 0.000 0.000 0.000
Two

0.000 0.001 0.007 0.000 0.000 0.000
Patterns
Wafer 0.010 0.015 0.181 0.034 0.010 0.000
Face(four) 0.148 0.114 0.102 0.114 0.079 0.023
Lightning-2 0.328 0.316 0.492 0.115 0.197 0.164
Lightning-7 0.301 0.315 0.219 0.301 0.370 0.260
ECG 0.160 0.220 0.440 0.170 0.150 0.100
Adiac 0.325 0.343 0.512 0.560 0.371 0.289
Yoga 0.227 0.177 0.534 0.219 0.151 0.147
Fish 0.189 0.240 0.240 0.297 0.206 0.194
Beef 0.567 0.533 0.633 0.600 0.500 0.500
Coffee 0.107 0.179 0.500 0.179 0.179 0.000
Olive oil 0.167 0.267 0.133 0.267 0.133 0.133

Average rank 3.421 3.868 4.737 4.500 3.052 1.421
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Figure 7: Comparison of time series classification methods (presentation method adopted
from [18]). x− axes represent error rates for DTW-SVMs and GDTW-P-SVMs with blue
and red dots respectively. y−axes show error rates for the other four classification methods
which were compared in Table 3. Black lines represent f(x) = x. More blue/red dots above
the black line means that the DTW-SVMs/GDTW-P-SVMs have lower classification error
rates than the comparing method. As shown the GDTW-P-SVMs (red dots) have lower
error rates in most cases even when compared with ppfSVM-NDTW and ppfSVM-GDTW
(the first two diagrams in the figure).
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assigned for that data set. Then the ranks are averaged over all data sets in
each group.

Critical value for the two-tailed Bonferroni-Dunn test [72] with α = 0.05
for Table 2 is qα = 2.638. Critical difference (CD)4 for this table is obtained
as:

CD = qα

√
k(k + 1)

6N
= 1.8021 (11)

Where k is the number of classification techniques and N is the number
of data sets. Critical value for the two-tailed Bonferroni-Dunn test with
α = 0.05 for Table 3 is qα = 2.576. Critical difference (CD) is obtained as:

CD = qα

√
k(k + 1)

6N
= 1.5636 (12)

A pairwise comparison of the average rank of classifiers and the obtained
critical value for Table 2 and Table 3 using the Bonferroni-Dunn test are
presented in Table 4 and Table 5, respectively. Bold values in Table 4 and
5 show that the corresponding classifier on left performs significantly better
than the corresponding classifier on top. The values in these two tables are
obtained by subtracting the average ranks of corresponding classifiers. If
the value is more than the critical difference then the difference between the
compared classifiers is significant [73].

The differences between the rank of GDTW-P-SVMs and the ranks of
other the classification methods, in the first group of classifiers, are always
greater than the CD (obtained in Equation 11). Therefore GDTW-P-SVMs
perform significantly better than the other classification methods that are
discussed in Table 2. Although the difference between GDTW-P-SVMs and
1NN-LCSS is just above the CD, still GDTW-P-SVMs have statistically sig-
nificantly better performance. In the second group of compared classifiers,
the rank of GDTW-P-SVMs showed even a greater difference compared to
others. As shown in Table 5, the differences between the rank of GDTW-P-
SVMs and the ranks of the other classification methods are always greater
than the CD obtained in Equation 12. Therefore GDTW-P-SVMs perform
significantly better than the other classification methods that are shown in
Table 3.

4The performance of two classifiers is significantly different if the corresponding average
ranks differ by at least the critical difference [73].
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Table 4: A pairwise comparison of the average rank of classifiers discussed in Table 2 using
Bonferroni-Dunn test. The classifiers employed 1-NN with a selection of common measure
distances. Bold values in the table show that the corresponding classifier on left performs
significantly better than the corresponding classifier on top. The CD = 1.802 for this
group of classifiers is obtained using Equation 11.

Classifiers
1NN 1NN 1NN 1NN 1NN DTW GDTW
ED ODTW DTW LCSS EPR SVM P-SVM

1NN
N/A -1.75 -1.225 -2 -1.65 -1.625 -3.825

NDTW
1NN

1.75 N/A 0.525 -0.25 0.1 0.125 -2.075
ODTW
1NN

1.225 -0.525 N/A -0.775 -0.425 -0.4 -2.6
DTW
1NN

2 0.25 0.775 N/A 0.35 0.375 -1.825
LCSS
1NN

1.65 -0.1 0.425 -0.35 N/A 0.025 -2.175
EPR
DTW

1.625 -0.125 0.4 -0.375 -0.025 N/A -2.2
SVM
GDTW

3.825 2.075 2.6 1.825 2.175 2.2 N/A
P-SVM
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Table 5: A pairwise comparison of the average rank of classifiers with DTW-based kernel
(discussed in Table 3) using Bonferroni-Dunn test. Bold values in the table show that
the corresponding classifier on left performs significantly better than the corresponding
classifier on top. The CD = 1.5636 for this group of classifiers is obtained using Equation
12.

Classifiers
ppfSVM ppfSVM SVM SVM DTW GDTW
NDTW GDTW NDTW GDTW SVM P-SVM

ppfSVM
N/A 0.447 1.316 1.079 -0.368 -2

NDTW
ppdfSVM

-0.447 N/A 0.868 0.631 -0.816 2.447
GDTW
SVM

-1.316 -0.868 N/A -0.237 -1.684 -3.316
NDTW
SVM

-1.079 -0.631 0.237 N/A -1.447 -3.079
GDTW
DTW

0.368 0.816 1.684 1.447 N/A -1.632
SVM
GDTW

2 2.447 3.316 3.079 1.632 N/A
P-SVM
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We have not used the ANOVA [74] to evaluate our classifier because:
1. ANOVA assumes that the classification error rates (performance) are
drawn from a normal distribution, which is not always the case in general.
2. ANOVA requires that random variables have equal variance. Neither learn-
ing algorithms, nor data sets can satisfy this condition [73].

In the next two subsections the proposed classification method is tested
against two trajectory-based data sets with variable-length input series.

4.2. Variable-length feature series classification

The comprehension of phenomena related to movement – not only of
people and vehicles but also of animals and other moving objects – has always
been a key issue in many areas of scientific investigation and social analysis.
Data collected for movement based analysis are called trajectory data and
it can be represented as sequences of time stamped locations. Trajectory
data are normally obtained from location-aware devices that capture the
position of an object during a specific time interval. Since object movements
can occur at different speeds the trajectory data are variable-length input
series, which makes them suitable data sets for the GDTW-P-SVMs. In this
section we present our classification results for the character [59] and human
[75] trajectory data sets.

4.2.1. Character trajectory data set

The character trajectory data set consists of labelled samples of pen tip
trajectories recorded whilst writing individual characters. All samples are
from the same writer, for the purposes of primitive extraction. Only char-
acters with a single pen-down segment were considered. The data consist of
2858 character samples with different lengths. Each sample is a 3-dimensional
velocity trajectory (x, y, and pen tip force). The data has been numerically
differentiated and Gaussian smoothed, with a sigma value of 2 [59, 76]. The
classification task is to recognise characters in the data set using trained
models.

Table 6 presents the classification error rates resulting from our exper-
iments. Three data representations are used for character classification in
[77]:

1. Likelihood : Employs the label information that is available for the ob-
jects in the training data and represents the data using maximum like-
lihood [77].
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Table 6: Classification error rate (%) on the handwritten character data set for four
different classification methods presented in [77] as well as our classification methods.
The data set includes data objects with different lengths input series. While no feature
presentation method is applied on the data for GDTW-P-SVMs and DTW-SVMs, they
have shown the lowest classification error rates.

Classifier Feature Representation Error rate
Bayes Likelihood 12.46

Softmax
Likelihood 8.14

Fisher 8.23
Fisher Kernel Learning 6.95

SVMs
Likelihood 7.91

Fisher 7.64
Fisher Kernel Learning 6.91

DTW-SVM – 5.450
GDTW-P-SVM – 3.010

2. Fisher kernel : The Fisher kernel is defined as the inner product of
the directions of gradient ascent, i.e., the inner product of the natural
gradients. It simply uses the gradients as features, without any further
rescalings or normalizations [76].

3. Fisher kernel learning (FKL): Trains the model in such a way that
objects with the same class induce gradients that are similar, whereas
objects with different classes induce log-likelihood gradients that are
dissimilar [77].

In our proposed classification method, we used a simple data projection
for representing the data. It projects 3D trajectory data (2D coordinates and
pen force value) into 1D variable-length sequential data samples. As seen in
Table 6 the proposed method has lower error rates compared to the other
methods.

4.2.2. Human trajectory data sets

The rise of GPS and broadband-speed wireless devices has led to a range
of applications broadly characterized as location based services. These appli-
cations will provide users with information that is targeted and personalized
to their location, whether it be nearby stores, friends, traffic conditions, etc.

The human trajectory data set that we used in our experiments was col-
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Table 7: Total distance and duration of transportation modes in the GeoLife data set [75].

Transportation Mode Distance (km) Duration (hours) #train #test
Walk 11,457 5,126 1,586 1,910
Bike 6,335 2,304 274 602
Bus 21,931 1,430 930 629

Car and Taxi 34,127 2,349 318 324
Train 74,449 459 412 870
Total 18,7679 12,041 3,520 4,335

lected in the Geolife project by 167 users in a period of over three years. A
GPS trajectory of this data set is represented by a sequence of time-stamped
points, each of which contains the information of latitude, longitude and al-
titude. This data set contains 17,355 trajectories with a total distance of
about 1 million kilometers and a total duration of 48,000+ hours. These
trajectories were recorded by different GPS loggers and GPS-phones. This
data set recorded a broad range of users’ outdoor movements, including not
only life routines like going home and going to work but also some entertain-
ment and sports activities, such as shopping, sightseeing, dining, hiking, and
cycling [75].

The classification task defined here is based on supervised learning to au-
tomatically recognise users’ transportation modes, such as driving, walking,
taking a bus, riding a bike and traveling on a train, from raw GPS logs. 59
users have labeled their trajectories with transportation mode. The total
distance and duration of transportation modes are listed in Table 7. Trajec-
tories with unknown and airplane transportation mode were excluded from
the data set.

Table 8 shows the classification accuracy for our approaches as well as
four other classification methods described in [78] over the training set and
testing set. In [78] two segmentation methods, by length and by duration,
along with a classifier were used to recognise the transportation mode. As our
proposed method is able to handle data samples with different lengths this
step can be waived and the raw GPS trajectory data can be used to recognise
the transportation mode. Here again a dimension projection that projects 3D
(latitude, longitude, and altitude) into 1D variable-length sequential data is
applied. As seen in Table 8 the accuracy of our proposed approach (GTDW-
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Table 8: Classification accuracy for the GeoLife data set. The data set includes data
objects with variable-length input series. While no segmentation method is applied to
the data for GDTW-P-SVMs and DTW-SVMs methods, they have shown the highest
classification accuracy.

Classifier Segmentation Method Accuracy (%)

Decision Tree
by length 70

by duration 75

SVMs
by length 57

by duration 62

Bayes net
by length 69

by duration 71

CRF
by length 53

by duration 40
DTW-SVM – 79

GDTW-P-SVMs – 81

PSVMs) is higher than the other approaches.

5. Discussion and Future Work

The new technique presented in this article coupled a SVM-based clas-
sification technique with an indefinite kernel. We compared our coupling
combination with a number of other combinations that have been recently
proposed (SVMs-NDTW, SVMs-GDTW, ppfSVMs-NDTW, and ppfSVMs-
GDTW). In addition to those combinations, there exist a variety of indefinite
kernels and classification techniques that can be coupled [39, 40]. The kernels
do not satisfy Mercer’s condition and they induce associated functional spaces
called Reproducing Kernel Krein Spaces (RKKS), which are a generalisation
of Reproducing Kernel Hilbert Spaces (RKHS). This article emphasised the
importance of such couplings by giving GDTW-P-SVMs as an example with
a classification accuracy that is significantly higher than existing methods
for wide varieties of benchmarked data sets. Experimenting with indefinite
kernels and other combinations of kernel-based classification techniques that
can handle indefinite kernels is a possible direction of future research.

Although in the experiments we employed GDTW-P-SVMs to solve clas-
sification problems, the ability of GDTW-P-SVMs to handle variable length
data objects can be utilised for time series segmentation. For example, an
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energy-based model for unsupervised factorisation has been employed for un-
supervised time series segmentation with fixed-length using SVMs [79, 80]. A
similar approach could be applicable for segmenting time series with variable
length using GDTW-P-SVMs.

6. Conclusion

We introduced a new classification technique, GDTW-P-SVMs, for se-
quential data analysis where each data object is characterised by a series of
numerical values that may have different lengths for different data objects.
The well-known DTW algorithm was utilised to provide an elastic distance
measure that is able to compare variable-length input series. We compared
GDTW-P-SVMs with the two-step DTW-SVMs method where training data
were required in the testing phase as well as the trained models. Although
DTW-SVMs were able to classify trajectory data with acceptable error rates,
they are not able to provide the classification results in real-time as the test-
ing phase for this technique is too slow for problems that have a big training
set. GDTW-P-SVMs were proposed to overcome the shortcomings of the
DTW-SVMs by altering the kernel function in P-SVMs using DTW. As a
result, GDTW-P-SVMs could handle data and kernel matrices that were
neither positive definite nor square, and it could also be applied to data
with variable-length input series. Benchmarks for classification were per-
formed with several real-world data sets from the UCR Time Series Classi-
fication/Clustering page, the GeoLife trajectory data set, and the character
trajectory from the UCI repository. The data sets included data with both
variable and fixed-length input series. In the case of variable-length data
samples, GDTW-P-SVMs significantly outperformed other existing methods
by two main advantages: i) the proposed method had significantly lower
classification error rates and ii) it waived the need for data representation
as fixed-length feature vectors. The second advantage is important when the
extraction of fixed-length feature vectors is not feasible or when using fixed-
length segments of data objects fails to describe the relationship between
data objects properly. We are currently investigating possible applications
of the proposed classification method.
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