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Abstract

Spiking neural networks (SNNs) are computational models of biological neu-
rons and the synapses that connect them. They are chosen for their character-
istic property of information exchange via the timing of events called spikes,
in contrast to earlier-developed models such as sigmoid neural networks which
have no explicit timing component. SNNs are often applied to tasks in arti-
ficial intelligence by using existing models of biological neural networks that
were used in neuroscience in the past, and that are detailed enough to contain
the timing-property. Neurons can be modelled at many levels of detail, and of-
ten a neuron model is chosen with scant consideration of the most appropriate
level of detail for the given task. This thesis presents a novel spiking neuron
model developed to retain the timing-property, including proposed favourable
characteristics for application to artificial intelligence tasks, while removing
the unnecessary detail for achieving those characteristics that current SNN
models contain. The result is a computationally powerful neuron model with
an analytically solvable spiking-time calculation.

While SNNs have been applied to various tasks in artificial intelligence, in-
cluding robot control, the types of control problems faced have been primarily
of a stable nature. This thesis focuses on unstable control problems, that is,
problems where the dynamics governing the motion of the robot under control
are such that small disturbances, inaccuracies, or pauses in control can lead to
a rapid acceleration away from a desired state. Concretely, simulation experi-
ments are conducted (i) on a planar underactuated inverted double-pendulum
called the Acrobot for the swing-up and balance task which, combined with
linear quadratic regulation (LQR) control for balance, was able to achieve the

task, and (ii) to a 1.5m tall biped for the distance locomotion task, where it
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walked 16m without collapsing. In the interests of automatically developing
bipedal dynamic walking behaviour, via the stochastic tuning of spiking neu-
ral network parameters, a new spherical-foot model is presented that exhibits
favourable dynamical properties.

Existing physical biped robot morphologies can be clustered into three
main groups based on their feet and ankle configurations. One group contains
large flat feet with actuated ankles, and is most often seen in environments
and tasks requiring moving in both sagittal (forward-backward) and coronal
(left-right) planes, such as robotic soccer. The second group contains point
feet with no ankles, and finds success in fast locomotion such as running,
where coronal motion is limited. The third group consists of passive-dynamic
walkers, that contain rounded feet and are able to walk in the sagittal plane
along a slight decline without any control input. In this thesis a new biped
feet-angle configuration is proposed which is a marriage of these groups, with
relatively small (second group) rounded feet capable of smooth continuous
ground contact (third group), and actuated ankles (first group) that aid in
standing balance control. An analysis of this novel type of foot configuration
is presented here for the planar case, and a controller for standing balance is

included.
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