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Summary. This paper analyzes and examines the general ability of Support Vector
Machine (SVM) models to correctly predict and trade daily EUR exchange rate
directions. Seven models with varying kernel functions are considered. Each SVM
model is benchmarked against traditional forecasting techniques in order to ascertain
its potential value as out-of-sample forecasting and quantitative trading tool. It is
found that hyperbolic SVMs perform well in terms of forecasting accuracy and
trading results via a simulated strategy. This supports the idea that SVMs are
promising learning systems for coping with nonlinear classification tasks in the field
of financial time series applications.

1 Introduction

Support Vector Machines (SVMs) have proven to be a principled and very
powerful supervised learning system that since its introduction (Cortes and
Vapnik (1995)) has outperformed many systems in a variety of applications,
such as text categorization (Joachims (1998)), image processing (Quinlan et
al. (2004)), and bioinformatic problems (Brown et al. (1999)). Subsequent ap-
plications in time series prediction (Müller et al. (1999)) indicate the potential
that SVMs have with respect to economics and finance. In predicting Aus-
tralian foreign exchange rates, Kamruzzaman and Sarker (2003b) showed that
a moving average-trained SVM has advantages over an Artificial Neural Net-
work (ANN) based model, which was shown to have advantages over ARIMA
models (2003a). Furthermore, Kamruzzaman et al. (2003) had a closer look at
SVM regression and investigated how it performs with different standard ker-
nel functions. It was found that Gaussian Radial Basis Function (RBF) and
polynomial kernels appear to be a better choice in forecasting the Australian
foreign exchange market than linear or spline kernels. Although Gaussian ker-
nels are adequate measures of similarity when the representation dimension
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of the space remains small, they fail to reach their goal in high dimensional
spaces (Francois et al. (2005)). We will examine the general ability of SVMs to
correctly classify daily EUR/GBP, EUR/JPY and EUR/USD exchange rate
directions. It is more useful for traders and risk managers to predict exchange
rate fluctuations than their levels. To predict that the level of the EUR/USD,
for instance, is close to the level today is trivial. On the contrary, to deter-
mine if the market will rise or fall is much more complex and interesting.
Since SVM performance mostly depends on choosing the right kernel, we em-
pirically verify the use of customized p-Gaussians by comparing them with a
range of standard kernels. The remainder is organized as follows: Section 2
outlines the procedure for obtaining an explanatory input dataset. Section 3
formulates the SVM as applied to exchange rate forecasting and presents the
kernels used. Section 4 describes the benchmarks and trading metrics used
for model evaluation. Section 5 gives the empirical results. The conclusion, as
well as brief directions for future research, are given in Section 6.

2 Data Selection

The obvious place to start selecting data, along with EUR/GBP, EUR/JPY
and EUR/USD is with other leading traded exchange rates. Also selected were
related financial market data, such as stock market price indices, 3-month in-
terest rates, 10-year government bond yields and spreads, the prices of Brent
Crude oil, silver, gold and platinum, several assorted metals being traded on
the London Metal Exchange, and agricultural commodities. Macroeconomic
variables play a minor role and were disregarded. All data is obtained from
Bloomberg and spans a time period from 1 January 1997 to 31 December
2004, totaling 2349 trading days. The data is divided into two periods. The
first period (1738 observations) is used for model estimation and is classified
in-sample. The second period (350 observations) is reserved for out-of-sample
forecasting and evaluation. Missing observations on bank holidays were filled
by linear interpolation. The explanatory viability of each variable has been
evaluated by removing input variables that do not contribute significantly
to model performance. For this purpose, Granger Causality tests (Granger
(1969)) with lagged values up to k=20 were performed on stationary I(1) can-
didate variables. We find that EUR/GBP is Granger-caused by 11 variables:

• EUR/USD, JPY/USD and EUR/CHF exchange rates
• IBEX, MIB30, CAC and DJST stock market indices
• the prices of platinum and nickel
• 10-year Australian and Japanese government bond yields

We identify 10 variables that significantly Granger-cause EUR/JPY:

• EUR/CHF exchange rate
• IBEX stock market index
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• the price of silver
• Australian 3-month interest rate
• Australian, German, Japanese, Swiss and US government bond yields
• UK bond spreads

For EUR/USD, the tests yield 7 significant explanatory variables:

• AUD/USD exchange rate
• SPX stock market index and
• the prices of copper, tin, zinc, coffee and cocoa

3 SVM Classification Model and Kernels

3.1 SVM Classification Model

We will focus on the task of predicting the rise (”+1”) or fall (”-1”) of
daily EUR/GBP, EUR/JPY and EUR/USD exchange rates. We apply the
C-Support Vector Classification (C-SVC) algorithm as described in Boser et
al. (1992) and Vapnik (1998), and implemented in R packages ”e1071” (Chang
and Lin (2001)) and ”kernlab” (Karatzoglou et al. (2004)): Given training vec-
tors xi ∈ Rn(i = 1, 2, . . . , l), in two classes, and a vector y ∈ Rl such that
yi ∈ {+1,−1}, C-SVC solves the following problem:

minw,b,ξ
1
2
wT w + C

l∑
i=1

ξi (1)

yi

(
wT φ(xi) + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, 2, . . . , l

The dual representation is given by

minα
1
2
αT Qα− eT α (2)

0 ≤ αi ≤ C, i = 1, 2, . . . , l

yT α = 0

where e is the vector of all ones, C is the upper bound, Q is a lxl positive
semidefinite matrix and Qij ≡ yiyjK(xi, xj). K(xi, xj) ≡ φ(xi)T φ(xj) is the
kernel, which maps training vectors xi into a higher dimensional, inner prod-
uct, feature space by the function φ. The decision function is

f(x) = sign

(
l∑

i=1

yiyjK(xi, x) + b

)
(3)
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Training a SVM requires the solution of a very large quadratic programming
optimization problem (QP) which is solved by using the Sequential Minimiza-
tion Optimization (SMO) algorithm (Platt (1998)). SMO decomposes a large
QP into a series of smaller QP problems which can be solved analytically.
Time consuming numerical QP optimization as an inner loop can be avoided.

3.2 Kernel Functions

How to find out which kernel is optimal for a given learning task is a rather
unexplored problem. Under this circumstance, we compare a range of kernels
with regards to their effects on SVM performance. Standard kernels chosen
include the following:

• Linear: k(x, x′) = 〈x, x′〉
• Polynomial: k(x, x′) = (scale · 〈x, x′〉+ offset)degree

• Laplace: k(x, x′) = exp(−σ ‖x− x′‖)
• Gaussian radial basis: k(x, x′) = exp(−σ ‖x− x′‖2)
• Hyperbolic: k(x, x′) = tanh(scale · 〈x, x′〉+ offset)

• Bessel: k(x, x′) =
Besselnv+1(σ‖x−x′‖)

(‖x−x′‖−n(v+1))

Also, the use of customized p-Gaussian kernels K(xi, xj) = exp (−d(xi, x)p/σp)
with parameters p and σ is verified. The Euclidean distance between data
points is defined by d(xi, x) = (

∑n
i=1 |xi − x|2)1/2. Compared to RBF-kernels,

p-Gaussians include a supplementary degree of freedom in order to better
adapt to the distribution of data in high-dimensional spaces. p and σ depend
on the specific input set for each exchange rate return time series and are
calculated as proposed in (Francois et al. (2005)):

p =
ln
(

ln(0.05)
ln(0.95)

)
ln
(

dF
dN

) ;σ =
dF

(−ln(0.05))1/p
=

dN

(−ln(0.95))1/p
(4)

In the case of EUR/USD, for example, we are considering 1737 8-dimensional
objects. We calculate 1737x1737 distances and compute the 5% (dN ) and 95%
(dF ) percentiles in that distribution. In order to avoid the known problem of
overfitting, we determine robust estimates for C and scale (σ) for each kernel
through 20-fold cross validation.

4 Benchmarks and Evaluation Method

Letting yt represent the exchange rate at time t, we forecast the variable

sign(∆yt+h) = sign(yt+1 − yt) (5)
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where h = 1 for a one-period forecast with daily data. The näıve model
(sign(ŷt+1) = sign(yt)) and univariate ARMA(p, q) models are used as bench-
marks. ARMA(p, q) models with p autoregressive (AR) terms and q moving
averages (MA) are given by

yt = c + α1yt−1 + α2yt−2 + . . . + αpyt−p + εt + β1εt−1 + . . . + βqεt−q (6)

where εt ∼ i.i.d. (0, σ2). Simple models, that were estimated according to
Box and Jenkins (1976), provide the best testing results while preserving
generalization ability for forecasting (s-step-ahead predictions for s ≤ q are
given in parentheses):

• c = −3.58E − 05, β1 = −0.0535, and β3 = −0.0559 (ŷt+s = ĉ + β̂sεt +
β̂s+2εt−2) for the EUR/GBP series

• c = −7.84E − 05 and β1 = 0.0288 (ŷt+s = ĉ + β̂sεt) for the EUR/JPY
series

• c = −8.32E − 05, α1 = −0.5840 and β1 = 0.5192 (ŷt+s − ĉ = α̂1(ŷT+s−1 −
ĉ) + β̂sεt) for the EUR/USD series

Out-of-sample forecasts are evaluated statistically via confusion matrices and
practically via trading simulations. The reason for this twofold evaluation
procedure is that trading decisions driven by a model with a small statistical
error may not be as profitable as those driven by a model that is selected
using financial criteria. In case of the latter, return predictions ŷt+1 are first
translated into positions. Next, a decision framework is established that tells
when the underlying asset is bought or sold depending on the level of the
price forecast. We define a single threshold τ , which is set to τ = 0 and use
the following mechanism:

It =

 1 if ŷt < yt−1 − τ
−1 if ŷt > yt−1 + τ

0 if otherwise
, with It =

 1 if the position is long
−1 if the position is short

0 if the position is neutral
(7)

The gain or loss πt on the position at time t is πt = It−1(yt − yt−1). Since
financial goals are user-specific, we examine the models’ performances across
nine Profit and Loss (P&L) related measures:

• Cumulated P&L: PLC
T =

∑T
t=1 πt

• Sharpe ratio: SR = PLA
T

σA
T

, with annualized P&L PLA
T = 252 1

T

∑T
t=1 πt,

and annualized volatility σA
T =

√
252
√

1
T−1

∑T
t=1(πt − π̄)2

• Maximum daily profit: Max(π1, π2, . . . , πT )
• Maximum daily loss: Min(π1, π2, . . . , πT )
• Maximum drawdown: MD = Min(PLC

t −Maxi=1,2,...,t(PLC
i ))

• Value-at-Risk with 95% confidence: V aR = µ−Q(π, 0.05) with µ = 0

• Net PLC
T : NPLC

T =
∑T

t=1(πt − It · TC), where It =
{

1 if πt−1 · πt < 0
0 else
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• Average gain/loss ratio: AG
AL = ( Sum of all πt>0)/#up

( Sum of all πt<0)/#down

• Trader’s advantage: TA = 0.5
(

1 +
(

(WT ·AG)+(LT ·AL)√
(WT ·AG2)+(LT ·AL2)

))
with WT :=

number of winning trades, LT := number of losing trades, AG:= average
gain in up periods, and AL:= average loss in down periods

Accounting for transaction costs (TC) is important for assessing trading per-
formance in realistic ways. An average cost of 3 pips (0.0003) per trade, for a
tradable amount of typically 10 to 20 million EUR is considered a reasonable
guess and incorporated in NPLC

T . A model is operationally superior compared
to another if it exhibits a larger number of superior performance measures.

5 Empirical Results

Accuracy rates for the out-of-sample period are depicted in bar charts as
shown in Figure 1. Figures 2 through 4 give results of the trading simulation as
described in Section 4. Dominant strategies are represented by the maximum
value(s) in each row and are written in bold. We observe the following:

• Statistically, both the näıve and the linear model are beaten by SVM with
a suitable kernel choice. The SVM approach is statistically justified.

• Hyperbolic SVMs deliver superior performance for out-of-sample predic-
tion across all currency pairs. In the case of EUR/GBP, the Laplace and
hyperbolic SVM perform equally well. In the cases of EUR/JPY and
EUR/USD, hyperbolic kernels outperform the other models more clearly.
This makes hyperbolic kernels promising candidates to map all sorts of
financial market return data into high dimensional feature spaces.

• Operational evaluation results confirm statistical ones in the case of
EUR/GBP. The hyperbolic and Laplace SVM give the best results along
with the RBF-SVM. For EUR/JPY and EUR/USD, statistical superior-
ity of hyperbolic SVMs cannot be confirmed. Operational evaluation tech-
niques not only measure the number of correctly predicted exchange rate
ups and downs but also include the magnitude of returns. Consequently, if
local extremes can be exploited, forecasting methods with less statistical
performance may yield higher profits than methods with greater statisti-
cal performance. In the case of EUR/USD, the trader would have been
better off applying a p-Gaussian SVM to maximize profit. In regards to
EUR/JPY, no single model is able to outperform the näıve strategy. The
hyperbolic SVM, however, dominates two performance measures.

• p-Gaussian SVMs perform reasonably well in predicting EUR/GBP and
EUR/USD return directions. For these two currency pairs, p-Gaussian
data representations lead to better generalization than Gaussians due to
an additional degree of freedom p.



Foreign Exchange Trading with Support Vector Machines 7

Fig. 1. Classification performance EUR/GBP, EUR/JPY, EUR/USD.

Table 1. Operational performance for EUR/GBP, EUR/JPY, and EURUSD.

6 Conclusion

The results support the general idea that SVMs are promising learning sys-
tems for coping with nonlinear classification and regression tasks in financial
time series applications. Future research will likely focus on improvements
of SVM models, such as examination of other kernels, adjustment of kernel
parameters and development of data mining and optimization techniques for
selecting the appropriate kernel. In light of this research, it would also be
interesting to see if the dominance of hyperbolic SVMs can be confirmed in
further empirical investigations on financial market return prediction.
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