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ABSTRACT

The Bayesian Total Error Analysis (BATEA) framework permits model
calibration and prediction to be informed by estimates of data and model uncertainty,
and allows assessment of the relative contribution of various sources of error to the total
uncertainty within the conceptual hydrologic modelling system. However, full BATEA
applications are presently limited to studies with relatively short record lengths. This is
because batch calibration rapidly becomes computationally infeasible as the number of

inferred input and/or model structural errors grows.

This thesis presents the development of a recursive implementation of the
BATEA framework based on particle filtering techniques. Particle filtering techniques,
traditionally used in automatic control and signal processing, are a group of sequential
Monte Carlo methods which can be adapted to provide a robust recursive
implementation of the BATEA framework within the non-linear and non-Gaussian
conditions presented by conceptual hydrologic models. The particle filter developed in
this thesis is designed to preserve the constraints and relationships between time-
invariant parameters and latents which exist in most conceptual hydrologic models. This
is achieved in a fully recursive manner through careful selection of appropriate
Importance Sampling proposals, design and selection of Markov Chain Monte Carlo
(MCMC) proposals which permit efficient regeneration of time-invariant parameters
and the construction of an approximation to the Metropolis-Hasting acceptance
probability which avoids the need for batch evaluation. The resulting particle filter is
capable of efficiently performing an approximate recursive BATEA analysis for a
conceptual hydrological model subject to observation, structural and parameter
uncertainty with the parameters of both the error model and the hydrological model
requiring inference. The performance of the approximate BATEA analysis technique is
demonstrated with synthetic case studies ranging from well-posed to highly ill-posed
problems and is shown to produce practically useful results at a small fraction of the

computational effort required in batch calibration.
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