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Abstract

The electronic structure and rovibrational spectroscopy of MH2, MHn+
2 ,

HMHen+ and MHen+
2 (M = Li, Be, Na, Mg, K, Ca; n = 1, 2) have been inves-

tigated using correlated ab initio ansatz.

In order to determine the efficacy of various electronic structure methods

with respect to Group-I and II hydrides and helides, atomic properties of Li, Be,

Na, Mg, K and Ca were calculated. Relativistically-corrected UCCSD(T) and IC-

MRCI(+Q) were deemed to be the most suitable ansatz with respect to both effi-

ciency and accuracy. The lowest 2A1 and 2Σ− states of MH2 were found to be purely

repulsive, in agreement with previous predictions. The main factor determining the

structure and stability of the excited states of MH2 was the relative orientations

and occupations of the valence p atomic orbital of M and the H2 1σu orbital. The

ground states of MHn+
2 were found to be the result of the charge-quadrupole inter-

action between Mn+ and the H2 molecular subunit. The structures of the ground

states of HMHe+ were extremely fluxional with respect to the central bond angle

co-ordinate. The ground state PESs of MHe+
2 were also extremely sensitive to the ab

initio ansatz by which they are modelled. The respective bonding of the H and He

in both HMHe+ and HMHe2+ appeared to be charge-dependent in the case of Be,

Mg and Ca. Despite the weak bonding observed for the Group-II hydrohelide and

helide monocations, the corresponding dications each exhibit thermodynamically

stable equilibria.

The solution algorithm of von Nagy-Felsobuki and co-workers was employed

in the calculation of vibrational and rovibrational spectra. This algorithm employed

an Eckart-Watson Hamiltonian in conjunction with rectilinear normal co-ordinates.



xiii

Vibrational and rovibrational Hamiltonian matrices were diagonalised using vari-

ational methods. This algorithm was extended so that the vibration transition

moment integrals, and hence vibrational radiative properties, of linear triatomic

molecules could be calculated. A method by which vibration-averaged structures

are calculated was also developed and implemented.

Analytical potential energy functions (PEFs) and dipole moment func-

tions (DMFs) of (1A1)LiH+
2 , (1A1)NaH+

2 , (1A1)BeH2+
2 , (1A1)MgH2+

2 , (1Σ+
g )BeHe2+

2 ,

(2Σ+)HBeHe2+, (1Σ+
g )MgHe2+

2 and (2Σ+)HMgHe2+ were developed using least-

square regression techniques in conjunction with discrete ab initio grids. Vibrational

structures and spectra of these species were subsequently calculated. In addition, the

rovibrational spectra of (1A1)LiH+
2 , (1A1)NaH+

2 , (1A1)BeH2+
2 and (1A1)MgH2+

2 were

calculated. For (1A1)LiH+
2 and (1A1)LiD+

2 , calculated rovibrational transition fre-

quencies for J ≤ 10 and 0 ≤ K ≤ 3 were within ca. 0.1-0.2% of experimental

values.
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1

CHAPTER 1

The Chemistry of Alkali and

Alkaline-Earth Metal Hydrides and

Helides

1.1. Introduction

The relationship between empirical observation and theoretical prediction in

science is necessarily synergic. In no field is this relationship more evident than in

quantum mechanics, and in particular, in quantum chemistry. Since the inception

of quantum chemistry in the mid-20th century, the interplay between theory and

experiment has continually advanced knowledge of molecular structure, energetics

and dynamics. This is certainly the case in the area of molecular spectroscopy.

Indeed, this area played host to the original success of molecular quantum mechanics

itself [1].

The interplay between experiment and theory may be illustrated using H+
3 -

a benchmark molecule of both quantum chemistry and rovibrational spectroscopy

[2]. The first rovibrational spectrum of H+
3 reported in the literature was an a priori

prediction made in the 1970s by Carney and Porter [3–5]. The rovibrational states

were calculated variationally, in conjunction with an analytical ab initio potential

energy surface (PES) embedded in the nuclear Hamiltonian operator. Carney and

Porter calculated the ν1 and ν2 fundamental frequencies to be 3185 and 2516 cm−1,

respectively, and also reported the lowest energies in the P , Q and R rotational

branches of H+
3 . In 1980 the first infra-red (IR) rovibrational spectrum of H+

3 was

reported and assigned by Oka [6]. Oka determined the ν2 fundamental frequency
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to be 2521.3 cm−1, a value ca. 5 cm−1 larger than that predicted by Carney and

Porter. Oka also assigned several rovibrational transitions of H+
3 that were generally

shifted by ca. 5 cm−1 relative to the values reported by Carney and Porter. The

consensus held at the time was that the variational calculation of accurate molecular

rovibrational spectra was possible, but was limited by the accuracy of the molecu-

lar PES employed. To this end, Meyer, Botschwina and Burton [7] constructed a

refined PES of H+
3 , ultimately yielding ab initio rovibrational transition frequencies

to within ca. 2 cm−1 of the experimental values. Subsequent calculations in 1988

by Miller and Tennyson [8] gave transition frequencies differing from experimental

values by ca. 0.01 cm−1. These calculations, together with the calculation [9] and

observation [10] of the vibrational overtone frequencies of H+
3 , ultimately assisted in

the detection of H+
3 in the Jovian atmosphere [11]. More important was the subse-

quent detection of H+
3 in the interstellar medium [12]. It is now believed that H+

3 is

the initiator of the majority of interstellar chemical processes [13].

The interaction between experimental and theoretical investigation is also

illustrated by He2. This interaction is somewhat more current relative to H+
3 , since

investigation into the structure and stability of He2 is ongoing. The motivation

driving the study of the He2 ‘molecule’ largely centers on the question of existence

alone. Initial theoretical studies into the nature of He2 were inconclusive as to

whether the dimer exhibited a bound state. This was due to the similarity between

the early values of the zero-point energy (ZPE) and the dissociation energy (De).

There is continuing theoretical interest into the nature of the He2 PES [14–30].

The helium dimer has also been investigated experimentally on numerous occasions

[31–34]. These studies have recently been reviewed by Jeziorski and co-workers

[35, 36] and Springall and co-workers [37]. In 2007 Jeziorski et al. [21] employed

symmetry adapted perturbation theory to characterise the He2 PES, reporting De,
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Re, D0 and 〈R〉 of 0.94842 ± 0.0003 meV, 2.968 ± 0.006 Å, 0.149 ± 0.03 µeV

and 45.6 ± 0.5 Å, respectively. The last two values are in reasonable agreement

with the experimentally measured values [38] of 0.95 +0.3/-0.2 µeV and 52 ± 4

Å, respectively. Prior to the investigation of Jeziorski et al. [21], van Mourik et

al. [39] reported a comparable De value of 0.9479 ± 0.03 meV using full configuration

interaction (FCI) at the complete basis set limit (CBS). Similarly, Anderson et

al. [29] employed quantum Monte-Carlo methods to predict De to be 0.9488 ± 0.09

meV. The stability of He2 was confirmed experimentally in 1996 by Schöllkopf and

Toennies [34].

The remainder of this Chapter is concerned primarily with a review of the

chemistries of hydrogen and helium. Due to the scope of the documented chem-

istry of hydrogen, this review will deal exclusively with investigations of alkali and

alkaline-earth metal hydrides of form MHn+
x (M = Li, Be, Na, Mg, K, Ca; n = 0, 1, 2;

x = 1, 2). Conversely, due to the relative sparsity of the investigations concerning

helium chemistry, the review presented here includes a cursory survey of all investi-

gations of small molecular helide species (viz. those of the main and transition metal

groups), with a more detailed focus upon those investigations of species of the form

HMHen+ and MHen+
x (M = Li, Be, Na, Mg, K, Ca; n = 0, 1, 2; x = 1, 2). Both

experimental and theoretical facets of these chemistries will be considered. Thus

the necessary synergy between experimental and theoretical investigation will be

highlighted.

1.2. An Overview of Alkali and Alkaline-Earth Metal Hydrogen Chemistry

If abundance alone were the determining criterion, atomic hydrogen would

be the most important elemental species, constituting 92.1% of the known atomic

matter in the universe [13]. The roles of atomic hydrogen with respect to nascent
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interstellar chemical processes are therefore elementary. For example, H2, H+
2 and

H+
3 have been postulated to be the initiators of more complex interstellar chemical

reactions and astrophysical processes [13, 40]. Ipso facto, the very existence of the

more complex chemistries (that not only sustain life) ultimately have their nexuses

in hydrogen chemistry.

A comprehensive account of the chemistry of hydrogen is far beyond the

scope of any single review. This observation is immediate from reviews such as

that of Aldridge and Downs [41], who list numerous prior review articles, conference

proceedings and books, each dealing with only a single aspect of hydrogen chem-

istry. At the turn of the 21st century the study of transition metal hydride com-

pounds had held prominence for approximately three decades (see references [41–43]

and references therein). The motivations driving this field of research ranged from

organometallic chemistry of transition metals and aspects of catalysis, through to

the discovery in 1984 of molecular dihydrogen complexes (see references [42, 43] and

references therein). Surprisingly, little headway into the main group chemistry of

hydrogen was made during this period. Accounts of main group hydrides written

during the 1970s [44, 45] had remained current until relatively recently. The lethargy

in the development of main group hydrogen chemistry has been attributed to vari-

ous factors, including heterogeneity and the general familiarity of the compounds in

question. The physical frailty of many of the species in question has also dissuaded

progress, with thermal decomposition and hydrophilicity posing particular problems

[41].

This has significantly changed over the last 10-15 years, with progress being

made in the synthesis, characterisation and preservation of molecular main group

metal hydrides. Aspects of such advances with respect to Al, Ga, In, As and Sb

hydrides have been reviewed by several authors [46–50]. Unprecedented impetus
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towards the study of alkali and alkaline-earth metal hydrogen chemistry, and in

particular investigation into mechanisms of the bulk storage of molecular hydrogen,

has also been provided from the evolution of ‘hydrogen economies’ [51, 52].

1.2.1. Hydrides of the Alkali Metals

Small hydrides and hydride ions of the alkali metals provide an illustrative

example of the synergy between experimental and theoretical science. Available ex-

perimental and theoretical spectroscopic parameters of the ground states of LiHn+,

NaHn+, KHn+ (n = 0, 1) are compared in Table 1.1. The ground and excited

states of LiH have received extensive theoretical and experimental attention over

many decades [41]. This molecule is an exemplary species with respect to the pre-

cision available through experimental submillimeter spectroscopic techniques. For

instance, observed rotational transitions [53] have resulted in an experimental Born-

Oppenheimer (BO) bond length of 1.594 908 11(16) Å - a value accurate to one part

in 108 Å. In 1993, Stwalley and Zemke [54] completed a comprehensive review of all

structural and spectroscopic studies of LiH. More recent spectroscopic investigations

were reviewed in 2007 by Tokunaga et al. [55] and in 2008 by Wu et al. [56]. There

have been several advances made in theoretical techniques for which LiH has been

invaluable as a prototypical system [57–59]. For example, Bubin and co-workers

[58, 59] have reported non-BO vibrational energies of the ground states of LiH and

LiH+. Accurate PESs for several electronic states of LiH and LiH+ are also a con-

tinual area of research [60–64]. Such advances for LiH and LiH+ have been reviewed

in 2007 by C̆uŕık [65] and in 2004 by Magnier [63], respectively.

Despite the abundance of studies available concerned with the spectroscopy

of NaH (as reviewed by Stwalley et al. [68] in 1991), theoretical investigations of the

spectroscopic and electronic structure of NaH remain sparse. Interestingly, the NaH
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PES poses significant challenges to theoretical [62, 67] and experimental [69, 74]

methods alike. Sodium hydride has also been speculated to comprise a significant

fraction of the interstellar gaseous medium [75, 76]. In 2003 Taylor and Newman [77]

surmised that there were numerous inconsistencies between the reported theoretical

and experimental literature concerning NaH. These discrepancies were illustrated by

the published range of De values at the time, viz. 8751 - 17100 cm−1 [77]. To this end,

these authors constructed a coupled-cluster with singles, doubles and perturbative

triples (CCSD(T)) CBS limit PES of the ground state of NaH. Subsequent to the

investigation of Taylor and Newman is that of Chen et al. [78], who employed a

quadratic configuration interaction (QCISD/6-311G**) method to investigate the

ground state equilibrium parameters of NaH. There is a scarcity of data reported

in the literature concerning the ground and excited states of NaH+. Moreover,

there is a complete lack of experimental spectroscopic information in the literature.

Theoretical investigations have therefore explored the chemistry of NaH+ to this

Table 1.1 Equilibrium parameters of ground state MH and MH+(M = Li, Na, K).

Re (/Å) ωe (/cm−1) De (/eV)
LiH

Exp. 1.59490811[53] 1405.50936[54] 2.4275[54]

Theor. 1.588-1.63578[62, 66, 67] 1386-1416[62, 66, 67] 2.42-2.53[62, 66, 67]

NaH
Exp. 1.8874[68, 69] 1171.0946[68, 69] 1.899[68]

Theor. 1.864-1.9144[62, 66, 67] 1162-1198[62, 66, 67] 1.91-1.99[62, 66, 67]

KH
Exp. 2.240164[68, 70, 71] 986.6484[70] 1.7708[68]

Theor. 2.214-2.313[62, 67] 954-995[62, 67] 1.68-1.86[62, 67]

LiH+

Exp. - - -
Theor. 2.16-2.20[63] 417-422[63] 0.1299-0.1410[63]

NaH+

Exp. - - -
Theor. 2.46-3.07[72] 266-330[72] 0.020-0.103[72]

KH+

Exp. - - -
Theor. 2.65-5.29[73] 226-372[73] 0.022-0.136[73]
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point. Magnier [72] reviewed such investigations in 2005, as well as reporting a

model potential study of the lowest 48 electronic states of NaH+.

In 1991, Stwalley et al. [68] reviewed spectroscopic studies of KH. This review

was updated in 2007 by Khelifi et al. [79], who also calculated extensive listings of

dynamical couplings and radiative/non-radiative lifetimes. Supplementary to these

reviews is the work of Bhattacharjee and Dastidar [80], who calculated dissociative

cross-sections of KH. In addition, the ground state PES of KH has been investigated

on several occasions [62, 67, 81–86]. Far fewer investigations were concerned with

KH+ when reviewed by Magnier in 2006 [73]. The latter investigation [73] was also

the most extensive study of KH+ to date, in which adiabatically correlated PESs

up to the K(4d) + H+ asymptotic limit were presented.

The collision between a Li atom and H2 is one of the simplest three-body

problems. Nevertheless, due to the interplay between low-lying electronic states,

the chronological reconstruction of the exact collisional mechanism is a monumental

task [87]. The low-lying PESs in question have been characterised in a number of

theoretical investigations [66, 87–98]. As such, certain common features of vari-

ous low-lying states of LiH2 have been established. For example, there is common

agreement that the lowest state of 2A1 symmetry is purely repulsive, whereas the

minimum energy structure corresponds to the 2B2 PES minimum. This is also

the case for NaH2 and KH2 [97]. Over the last decade, the dynamics of NaH2 in

low-lying states have received extensive theoretical attention. In particular, the non-

adiabatic dynamics between the lowest 2A1 and 2B2 PESs, vibronic coupling and

electronic predissociation processes of NaH2 have been modelled in several stud-

ies [91, 96, 97, 99–108]. The investigation of these phenomena has also assisted

the development of semiclassical trajectory methods, such as the trajectory surface

hopping model [109] and optimal control theory of pulsed laser fields [105, 107, 108].
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The collisional quenching of Na(3 2P ) by H2 has also been observed in several ex-

periments [104, 106, 110, 111]. The presence of alkali metals, such as sodium and

potassium, have also been deduced from the spectra of dwarf stars and irradiated

planets (see reference [112] and references therein). Moreover, substellar objects

such as evolved methane brown dwarfs are hydrogen-rich [113]. In such an environ-

ment, the broadening of the spectral lines of these metals by hydrogen is expected

to be a prevalent phenomenon. Pump-probe spectroscopic techniques have been

utilised on several occasions to investigate the dynamics of the exciplex K* - H2 in-

teraction, and the associated rovibrational structures [114–117]. Far less theoretical

scrutiny has been passed on KH2. For example, only three theoretical investigations

[96, 97, 118] have been reported in the literature to date. In 2007, Page and von

Nagy-Felsobuki [97] characterised the structures and stabilities of the three lowest

bound states of KH2, viz. those of B2, B1 and Σ+
g symmetry using relativistically

corrected CCSD(T) and multi-reference CI (MRCI) (see Chapter 2).

The LiH+
2 collision complex is produced from the anisotropic interaction be-

tween the Li+ ion and the H2 quadrupole moment, and possesses a binding energy

of ca. 0.28 eV [119, 120]. The nature of the scattering collision between Li+ and H2

has been the subject of many theoretical investigations [87, 93, 94, 119, 121–140].

Investigations concerning the PES of the ground electronic state of LiH+
2 [119, 121–

127, 133, 134, 141] have been reviewed in 2007 by Page and von Nagy-Felsobuki

[139] (see Chapter 3). There is common agreement from these studies that the

ground electronic state of LiH+
2 possesses C2v symmetry, with a bond angle and

bond length of approximately 21◦ and 2.0 Å, respectively. The rovibrational struc-

ture of LiH+
2 has also been calculated using several different ab initio methods,

such as Møller-Plesset perturbation theory (MP2) [138], complete active space self

consistent field (CASSCF)/MRCISD [137] and FCI [139]. Bieske and co-workers
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[142, 143] have recently recorded IR rovibrational spectra of LiH+
2 and LiD+

2 , which

is in excellent agreement with the available ab initio data [139].

There has been in recent years a vigorous interplay between theory [137, 139]

and experiment [142, 143] with respect to the spectroscopy of LiH+
2 and LiD+

2 (see

references [139, 142] and references therein). This is illustrated by the compari-

son of selected FCI rovibrational transition frequencies for the K = 0 manifold of

LiD+
2 [139] with experimental values which is given in Table 1.2. It is evident that

the agreement between these theoretical and experimental transition frequencies was

better than ca. 5 cm−1 for all transitions listed. The largest differences arose from

the highest J values considered. This indicates that the analytical FCI PES em-

ployed in the calculation of these rovibrational energies is an accurate representation

of the ‘true’ surface. This fact is also reflected in the differences between experi-

mental and theoretical vibration-averaged structures for both LiD+
2 and LiH+

2 . For

instance, the differences between theoretical [139] and experimental [142, 143] Li+ -

H2 separations for these ground vibrational states are of the order of 0.010 Å.

The ground state of NaH+
2 also results from an ion-quadrupole interaction,

analogous to LiH+
2 . Subsequently, NaH+

2 exhibits similar structural and energetic

features to those of LiH+
2 . For example, the equilibrium bond length and angle of

NaH+
2 are ca. 2.4 Å and 18◦, respectively, whilst the binding energy is ca. 0.13 eV.

Nevertheless, there are fewer studies concerning NaH+
2 [144–147], and theoretical

investigations still lead the exploration into aspects of NaH+
2 such as thermochem-

istry [148], dissociation dynamics [149] and the PES [150]. The thermochemistry of

NaH+
2 has also been characterised experimentally [149]. The literature concerning

KH+
2 is also sparse. For example, only four investigations have focused on the ab

initio characterisation of the ground state of KH+
2 [144, 145, 147, 149]. Although no

spectroscopy of KH+
2 has been observed experimentally, Bushnell et al. [149] have
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Table 1.2 Comparison of selected experimental and ab initio rovibrational
transition frequencies (/cm−1) of LiD+

2
a.

Trans. Exp. Theor. ∆ Trans. Exp. Theor. ∆
R Branch P Branch

10,1 ← 00,0 2917.7 2920.6 2.9 00,0 ← 10,1 2911.5 2914.5 3.0
20,2 ← 10,1 2920.8 2923.7 2.9 10,1 ← 20,2 2908.4 2911.4 3.0
30,3 ← 20,2 2923.8 2926.9 3.1 20,2 ← 30,3 2905.3 2908.4 3.1
40,4 ← 30,3 2926.9 2930.0 3.1 30,3 ← 40,4 2902.2 2905.4 3.2
50,5 ← 40,4 2929.9 2933.2 3.3 40,4 ← 50,5 2899.1 2902.4 3.3
60,6 ← 50,5 2932.9 2936.4 3.5 50,5 ← 60,6 2896.0 2899.5 3.5
70,7 ← 60,6 2935.8 2939.7 3.9 60,6 ← 70,7 2892.9 2896.7 3.7
80,8 ← 70,7 2938.8 2943.0 4.2 70,7 ← 80,8 2889.8 2893.9 4.1
90,9 ← 80,8 2941.6 2946.4 4.8 80,8 ← 90,9 2886.7 2891.3 4.6
100,10 ← 90,9 2944.5 2949.9 5.4 90,9 ← 100,10 2883.6 2888.7 5.1

aExperimental data from reference [143]. Ab initio data (FCI with augmented triple-ζ basis sets)
from reference [139]. All transitions given in terms of JKa,Kc

for K = 0.

derived experimental thermochemistry, including the dissociation energy, in the gas-

phase. Ab initio equilibrium structures indicate that, in concurrence with LiH+
2 and

NaH+
2 , the ground state of KH+

2 arises from the ion-quadrupole interaction between

the metal ion and H2, respectively. The equilibrium bond length and bond angle

have been calculated to be ca. 3.1 Å and 13.7◦, respectively. The increase in Re and

decrease in θe relative to LiH+
2 and NaH+

2 may be understood in terms of the larger

ionic radius of K+.

1.2.2. Hydrides of the Alkaline-Earth Metals

Small neutral hydrides of the alkaline-earth metals Be, Mg and Ca have

provided ample opportunity for the comparison of experimental and theoretical data

over the last three decades. This is particularly the case for spectroscopic data, which

have been collated for the ground states of BeHn+, MgHn+ and CaHn+ (n = 0, 1)

and BeH2, MgH2 and CaH2 in Tables 1.3 and 1.4, respectively.

There has been extensive spectroscopic and theoretical analysis of the ground

and low-lying excited states of BeH, as reviewed in 2006 by Le Roy et al. [151]. In
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Table 1.3 Equilibrium parameters of ground state MH and MH+(M = Be, Mg,
Ca).

Re (/Å) ωe (/cm−1) De (/eV)
BeH

Exp. 1.342436-1.345[153, 158] 2061.41626-2071.87[153, 158] 2.035[153]

Theor. 1.33-1.34389[66, 67, 159] 2082-2148[66, 67] 1.67-2.01[62, 67]

MgH
Exp. 1.729682-1.729828[160, 161] 1478.2-1495.2632[160–162] 1.34-1.376808[54, 161]

Theor. 1.73-1.74859[66, 67] 1354-1532[66, 67] 1.24-1.30[66, 67]

CaH
Exp. 2.00083[163] 1298.3999[163] ≤1.70[54]

Theor. 1.99-2.074[67, 163–166] 1253-1284[67, 165] 1.58-1.70[67, 165]

BeH+

Exp. 1.312[167] 2221.7[167] 2.348[167]

Theor. 1.31-1.33[168–172] 2146-2243[168–172] 2.279-3.139[168–172]

MgH+

Exp. 1.6519[167] 1699.1[167] 2.1[173]

Theor. 1.6558-1.6542[174] 1699-1705[174] 1.78-2.03[173, 174]

CaH+

Exp. - - -
Theor. 1.881-2.085[175] 1467-1519[174, 175] 2.106-2.290[174, 175]

particular, BeH is part of a small set of molecules for which nearly all rovibronic

transitions have been identified experimentally [152]. Le Roy et al. [151] have esti-

mated that ca. 95% of the ground state rovibrational transitions have been assigned,

via techniques including Fourier-Transform IR (FTIR) [151–154], matrix IR [155]

and electron-spin resonance (ESR) [156]. There is generally good agreement in

the spectroscopic structural parameters with those obtained from crystal structure

measurements [157]. The experimental rovibrational studies of BeH have recently

been complemented by accurate theoretical methods including FCI [176] and non-

BO methods [177]. Other physical properties of BeH have also been investigated

theoretically, including hyperfine coupling [178] and magnetic moments [179]. The

rovibrational structure and associated radiative properties of BeH+ have been stud-

ied extensively using theoretical methods [169, 171, 172, 180, 181]. Additionally, the

PESs of low-lying states have been constructed in several investigations [168, 182].
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Of particular importance in this respect is the recent work of Bubin et al., who

investigated the ground state of BeH+ using non-BO methods. These experimental

rovibrational parameters are in good agreement with the high-resolution ultra-violet

(UV) emission spectrum obtained by Coxon et al. [183]. Far fewer investigations have

focused on the dication BeH2+. Nevertheless, several theoretical attempts have been

made to characterise the ground state PES of BeH2+ [170, 184–186]. Although no

spectrum of BeH2+has been observed experimentally, Franzreb et al. [187] employed

charge-stripping mass spectrometry techniques to generate BeH2+ in the gas-phase.

Magnesium hydride is a molecule of some astrophysical importance, as lines

of the (A2Π - X2Σ+) transition are present in the absorption spectra of the sun

[198, 199]. The first experimental spectroscopic characterisation of MgH was made

in 1926 [200], in an attempt to identify prevalent lines in astronomical spectra. The

state of theoretical and experimental spectroscopic investigation into MgH was as-

sessed in 2004 by Shayesteh et al. [201]. From this review it is evident that most

aspects of the MgH spectrum were exhaustively studied in the 1970s by Balfour

et al. (see reference [201] and references therein). Nevertheless, there are several

subsequent investigations of the spectrum of MgH reported in the literature [160–

162, 201–203]. Prior to the work of Shayesteh et al. [201] is that of Huber and

Herzberg [167], who in 1977 reported a nearly exhaustive review of the spectroscopy

of MgH. The ground state of MgH+ has also been the subject of several investigations

of theoretical [173, 204] and experimental [205–207] nature. For example Jørgenson

et al. [173] have modelled the photodissociation of a single MgH+ ion using adiabatic

PESs. Similarly, Dutta et al. [204] have calculated the collisional cross-section of the

reaction between Mg and H+ using semi-classical molecular orbital (MO) methods.

This photodissociative process has also been the focus of Coulomb-crystal experi-



13

T
a
b
le

1
.4

E
q
u
il
ib

ri
u
m

p
ar

am
et

er
s

of
gr

ou
n
d

st
at

e
(1

Σ
+ g

)M
H

2
(M

=
B

e,
M

g,
C

a)
.

R
e

(/
Å
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ments [205]. Several groups [206, 207] have studied the broadening of the transitions

of Mg+ by bulk hydrogen.

The investigation into the structure and spectroscopy of CaH is a much more

current area of research, with much of the investigation into the spectroscopy of

CaH occurring during the last decade (see reference [208] and references therein).

Techniques such as Stark and Zeeman spectroscopy [209–213] have been used ex-

tensively in this pursuit. Experimental investigations have been complemented in

1999 and 2003 by the ab initio calculation of rovibronic [165] and rovibrational [208]

spectra of CaH, respectively. These studies were predated by IR diode laser and

ESR spectroscopic investigations of CaH [163, 203] performed during the 1980s.

Investigation of CaH+ is also relatively recent, as reviewed in 2006 by Dutta et

al. [214]. These authors investigated the charge-transfer processes involved in colli-

sions between Ca+ and H using adiabatic PESs. The Ca+ line broadening in bulk

hydrogen has also been modelled [206, 207], as have the ground state spectroscopic

constants [175]. Boutalib et al. [215] have also studied several low-lying PESs using

an effective core potential (ECP) method.

Neutral BeH2 has been the subject of several theoretical investigations

[66, 192, 193, 193, 216–221], with much of this work focusing upon the theoretical

characterisation of equilibrium parameters [192, 193, 216–219] and the construc-

tion of accurate PESs [193, 217, 220, 221]. The rovibrational states of BeH2 have

also been recently studied using ab initio methods [193, 217]. In 1993 [155, 191],

2002-2003 [222, 223] and 2005 [190] the BeH2 monomer was identified experimen-

tally. Spectroscopic data of BeH2 and BeD2 were reported in 2006 by Shayesteh and

Bernath [188]. The chemical trapping of H2 by BeO has also been investigated ex-

perimentally [224]. Most recently, Sampath et al. [189] conducted IR spectroscopic

and inelastic neutron scattering experiments on solid BeH2. The dynamics of MgH2
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are dominated by the non-adiabatic interactions of energetically low-lying excited

singlet states, which dictate the dynamics of the Mg insertion into the H2 subunit

[195]. This fact has been the primary motivation for theoretical investigation into

the nature of MgH2 and its low-lying PESs. These dynamics and the related PESs

have been studied extensively using theoretical methods [174, 195, 225–231]. There

is also considerable motivation for the experimental investigation into the structure

and dynamics of MgH2, particularly since magnesium hydrides have been postulated

to be economical solutions to the bulk storage of molecular hydrogen [232]. Aspects

of MgH2 such as synthesis [233–237], structure [162, 194, 233, 238] and spectroscopy

[194] have been the subject of several experiments. In 2007 Li and Le Roy [229]

reported accurate ab initio rovibrational energies which were within ca. 1 cm−1 of

experimental values [194].

The equilibrium bond angle of the ground electronic state of CaH2 is still

uncertain, despite a number of experimental and theoretical investigations [164, 166,

174, 197, 231, 239–242]. These theoretical investigations have indicated that the

uncertainty arises due to the flat curvature of the molecular PES along the H-Ca-H

bend co-ordinate. Although the equilibrium structure of CaH2 has been determined

to be non-linear in a number of rare gas matrix isolation experiments [196, 197, 243],

uncertainty with respect to the bond angle remains due to the possible interference

of matrix effects. Despite attempts, no gas-phase experimental structure has been

determined to date [244]. Using a fully anharmonic ab initio PES, Koput [239]

reported that CaH2 exhibits a non-linear equilibrium structure with θe = 164.37◦.

The postulated experimental bond angle is 166-168◦ [196, 197, 243]. However, the

PES of Koput [239] possesses a barrier height with respect to θ = 180◦ of only

6 cm−1. In the most recent theoretical investigation of the ground state of CaH2,

Page and von Nagy-Felsobuki [174] employed relativistically corrected CCSD(T) and
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internally contracted MRCI (IC-MRCI) to determine a linear equilibrium structure

(see Chapter 2).

The dihydrides of Ben+, Mgn+ and Can+ result from the charge-quadrupole

interaction between the metal ion and H2, as do those of Lin+, Nan+ and Kn+.

However, the chemistries, PESs and structures of the alkaline-earth metal dihydride

cations remain relatively unexplored compared to their alkali counterparts. For ex-

ample, the ground state of BeH+
2 has been investigated by Poshusta et al. [245]

and Hinze et al. [221]. Discussion on the symmetry of the ground state of BeH+
2 is

ongoing, with some investigations indicating the existence of symmetry breaking

in the two Be - H bonds [221]. This symmetry breaking has been explained qual-

itatively using simple MO arguments. Other theoretical studies [245, 246] have

predicted equilibrium structures of C2v symmetry. The ground state of BeH2+
2 has

also received theoretical attention [221, 247–249]. Most recently, Page and von

Nagy-Felsobuki [248] calculated rovibrational transition frequencies and radiative

properties of BeH2+
2 using an IC-MRCI PES and dipole moment surface (DMS)

(see Chapter 4). There have been no reported experimental data with respect to

the ground state of any positively charged beryllium dihydride at present. Limited

theoretical study of MgH+
2 and MgH2+

2 has been reported in the literature. For

example, Bauschlicher et al. [250] reported the first ab initio PES of the ground and

low-lying electronic states of MgH+
2 using MRCI. Simandiras et al. [251] determined

the equilibrium parameters of MgH2+
2 using SCF and MP2. More recently, Petrie

[252] investigated the Mg2+ cation affinity of H2 using high-level ab initio tech-

niques. In 2007 Page and von Nagy-Felsobuki [253] employed relativistically cor-

rected CCSD(T) to construct the rovibrational spectrum of MgH2+
2 for low-lying

vibrational and rotational states (see Chapter 6). The latter investigation is the

only reported theoretical study of the rovibrational structure of MgH2+
2 reported
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in the literature, although Ding et al. [254] have reported spectroscopic parameters

of MgD+
2 based on photo-fragmentation mass-spectrometric techniques. Krośnicki

and co-workers have studied the CaH+
2 complex in several investigations [255, 256].

These workers constructed adiabatic PESs of the ground state and excited states

corresponding to the (3d)2D and (4p)2P Ca+ terms, in both C∞v and C2v con-

figurations. Of particular interest in the present context is the calculation of the

vibrational structure and band origins of the (3d)2DCa+-H2 exciplex [256]. The

Ca+-H2 complex has also been studied in Paul trap experiments [257, 258].

1.3. An Overview of Alkali and Alkaline-Earth Metal Helium Chemistry

Of all the elements helium is the least reactive, possessing a first ionisation

energy (IE1) and dipole polarisability of 24.587 eV and 0.205 Å3, respectively [259].

Helium is also the second most abundant atomic substance, constituting 7.8% of the

known atomic matter in the universe [13]. The inertness of atomic helium prevents

many potential ligands which would fix helium in a chemical sense. Indeed, amongst

the only chemical species known to exhibit traditional chemistry with neutral atomic

helium is helium itself [260] (viz. species of the form Hen, n ≥ 2), atomic mercury

[261, 262] and C60 [263, 264]. Molecules of form OBeHe [265, 266], HHeF [267] and

RNBeHe [268] (where R- included groups such as H-, HO-, F-, HCH2-, HOCH2 and

C6H5-) have also been predicted to be thermodynamically stable using theoretical

methods. The spectroscopy of the He-CO2 complex has also been measured exper-

imentally, and modelled theoretically (see references [269] and references therein).

Helium cations Hen+ (n = 1, 2) are, on the other hand, chemically reactive species.

For any atom L, reaction L + Hen+ → LHen+ will result simply in charge transfer

(i.e. LHen+ → He + Ln+), due to the relative magnitudes of IEs of L and Hen+.

Chemical bonding may result however, provided that L possesses a sufficiently high
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IE. Elements including oxygen, flourine, neon and argon were therefore originally

considered as appropriate candidates. In 2004 Grandinetti [270] completed a com-

prehensive review of theoretical and experimental investigations of helium cation

chemistry. This survey augments previous reviews including those of Frenking and

co-workers [271–273], von Ragué-Schleyer [274] and Bauschlicher et al. [275].

The initial contemplation of helium chemistry came in the form of a predic-

tion by Pauling in 1933 [276], concerning the stability of the bound states of He+
2 and

He2+
2 . Mass spectrometric techniques were employed in the detection of He+

2 soon

after this prediction. Investigation into both He+
2 and He2+

2 is ongoing [277–281].

It is now well established that (2Σ+
u )He+

2 and (1Σ+
g )He2+

2 are strongly bound, ex-

hibiting equilibrium bond lengths of 1.08 and 0.70 Å, respectively [270, 282]. The

dissociation energies of these states are ca. 2.5 and 1.5 eV, respectively [283, 284].

With respect to the dissociation products He+ + He+, the ground state of He2+
2 is

metastable, having an estimated lifetime of ca. 10−6 s using Coulomb explosion

techniques [285]. Of particular interest within the context of this work are those

investigations which are concerned with the rovibrational and rovibronic states of

He+
2 . Such investigations were reviewed in 2008 by Raunhardt et al. [286]. The

first experimental identification of a helide ion consisting of more than two atoms

occurred in 1968 by Patterson [287], who observed He+
3 . From this investigation the

dissociation energy of He+
3 (with respect to [He+

2 + He]) was determined to be 0.17

± 0.03 eV. Subsequent theoretical and experimental investigation into He+
3 has been

reviewed in 2007 by Paidarová et al. [288]. The vibrational spectrum of the ground

state of He+
3 was also recently calculated by Karlický et al. [289].

The hydrohelide cation, HeH+, was first detected experimentally in 1925 by

Hogness and Lunn [290] in the mass spectra of ionised helium containing H2 [270].

It has since been postulated that HeH+ is prevalent in astronomical phenomena,
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such as planetary nebula [291–294], white dwarfs [295], supernovae [296] and qua-

sistellar objects [297]. The X1Σ+ ground state of HeH+ exhibits a bond length of

ca. 0.77 Å, and an adiabatic dissociative potential well-depth of ca. 1.9 eV [298, 299].

The lowest excited state, (A1Σ+)HeH+, lies ca. 11.5 eV above the X1Σ+ limit, and

so (X1Σ+)HeH+ is essentially isolated. The relatively large permanent dipole mo-

ment of HeH+ (brought on by the lack of inversion symmetry) renders HeH+ unique

amongst helide ionic species, in that it is amenable to high-resolution IR spectro-

scopic techniques [299, 300]. Current ab initio vibrational and rovibrational energies

are therefore in excellent agreement with experimentally measured values [300–302].

The theoretical study of main group helide ions assisted in the initial eluci-

dation of the mechanisms underpinning helium chemistry [265, 273]. Throughout

the 1990s diatomic species such as MHe+ and MHe2+, where M = B - F and Al - Cl,

were studied extensively [270]. Investigations into the structures and stabilities of

ground and excited state MHe+ species by Frenking and co-workers [265, 273, 303]

culminated in the proposal of the ‘donor-acceptor’ bonding model. This model qual-

itatively explained the bonding trends observed for MHe+ in terms of the electronic

configuration of the ligand. The dissociative potential well-depth of the ground

states of MHe+ (M = B - F, Al - Cl) are generally less than 0.1 eV, with excep-

tions including M = B, N, O and Si [270]. The converse is generally the case for

the low-lying excited states of the monocations. The ground states of MHe2+ (M

= B - F, Al - Cl) are also generally strongly bound, and possess dissociative well-

depths (with respect to [M2++ He]) ranging from ca. 0.2 eV (M = Cl) to ca. 10.5

eV (M = O). Trends observed (with respect to structure and stability) in diatomic

main group helide ions are essentially observed in the analogous triatomic dihelide

ions. Theoretical and experimental methods have also unravelled a surprisingly rich

chemistry between the helium and the heavier rare-gas (RG) elements [270].
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Transition metal (TM) helide ions pose a unique challenge to theoretical

methods, due largely to the valence configuration of the TM ligand. This has been

illustrated in theoretical investigations of MHe+ (M = Sc - Cu [304–306], M = Ti,

V, Cr, Fe, Co [307, 308], M = Cr, Co, Ni [308] and M = Au [309]), MHe2+ (M =

Sc - Cu [305, 310], M = Ti [311] and M = Sc, Ti [312]) and MHe3+ (M = Sc [313],

M = Sc - Cu [314], M = Y [315] and M = La, Eu, Gd, Yb, Lu [316]). In the case

of MHe+, these theoretical calculations indicate that TM ligands possessing a dns1

valence configuration (Sc+, Ti+, Mn+ and Fe+) yield De and Re values of ca. 0.004 -

0.043 eV and 3.2 - 4.1 Å, respectively, whereas TM ligands possessing a dn+1 valence

configuration (V+, Cr+, Co+, Ni+ and Cu+) yield De and Re values of ca. 0.017

- 0.195 eV and 1.8 - 2.7 Å, respectively [304–306]. This differential phenomena is

not present in MHe2+ and MHe3+, since all TM dications arise from a dn+1 and

dn valence configuration, respectively. These conclusions are also supported by gas-

phase field-ion microscopy data concerning MHen+(M = V, Fe, n = 2, 3) [317].

1.3.1. Helides of the Alkali Metals

In contrast to some molecular helide ions of alkaline-earth metals (vide infra),

molecular helide ions of the alkali metals exhibit very weak bonding in the ground

state [270]. This bonding may be generally classified as purely electrostatic in nature.

Nevertheless, larger helium clusters doped with neutral and cationic Li, Na and K

adducts have been studied both theoretically [318–321] and experimentally [322,

323]. In particular, Shindo et al. [322] have observed the spectral line broadening

of the (52P ← 42S) transition of K in a gaseous helium environment. Murano et

al. [324] have synthesised LiHe+ from the reaction of LiCl and He in the gas-phase.

The existence of LiHe+ has also been confirmed by Scheidermann et al. [323], who

employed molecular beam and electron impact techniques.
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There are several motivations driving investigation into the nature of di-

atomic helide ions of the alkali metals. For instance, the interaction between He

and an alkali metal cation M+ is a archetypal example of the interaction between

two closed-shell species. The solvation of alkali cations in helium and related ionic

mobility studies have also provided impetus into the investigation of MHe+ systems.

There has therefore been significant theoretical interest in the construction of ground

and excited state MHe+ PESs (M = Li - Fr) [118, 273, 304, 321, 325–349]. Salient

data concerning the spectroscopic properties of MHe+ (M = Li, Na, K) are listed in

Tables 1.5, 1.6 and 1.7, respectively.

It is evident from Table 1.5 that, for the ground state of LiHe+, reason-

able agreement has been achieved between reported experimental and theoretical

equilibrium structures. For example, the ‘best’ approach employed (CCSD(T)/aug-

cc-pV5Z [332]) and yielded Re and De values ca. 0.07 Å and 0.002 eV larger than the

experimental values [329, 347, 350]. From comparison of the CCSD(T)/cc-pV5Z and

CCSD(T)/aug-cc-pV5Z data it may be inferred that the addition of diffuse functions

to the cc-pV5Z basis set has a minimal effect on the ground state LiHe+ PES. For

example, the differences observed in Re and De values are 0.001 Å and 0.0039 eV, re-

spectively, whereas these ωe values are in exact agreement. The MOCI calculations

of Hiyama [348] indicate that the interaction of the (3s 1S)Li+ ion with He results in

a strongly bound complex, compared to the ground state of LiHe+. Nevertheless, the

Re value of this excited state is ca. 1.8 Å larger than that of the ground state. The

ground state of LiHe2+ resides on a purely repulsive PES as reported by both Frenk-

ing et al. [273] and Hughes and von Nagy-Felsobuki [351]. It is therefore anticipated

that both NaHe2+ and KHe2+ also exhibit unbound ground states, although no ex-

perimental or theoretical data is available to definitively support such a statement.

The experimental and theoretical data concerning the ground state of NaHe+ listed
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Table 1.5 Equilibrium parameters of LiHe+ reported in the literature.

Re De
a ωe

Method State (/Å) (/eV) (/cm−1)
SCFb 1Σ+ 1.89 - -
MP2c 1Σ+ 2.062 0.065 208
Model Potentiald 1Σ+ 1.896 0.0804 272
MOCIe 1Σ+ 2.00 0.079 244
CEPAf 1Σ+ 1.92 - -
CEPA2g 1Σ+ 1.894 0.0810 -
QCISD(T)h 1Σ+ 1.95 0.068 -
QCISD(T)i 1Σ+ 1.910 0.0781 260
CCSD(T)j 1Σ+ 1.898 0.0801 258.4
CCSD(T)k 1Σ+ 1.897 0.08049 258.4
Expt.l 1Σ+ 1.96 0.0781 -
Expt.m 1Σ+ 1.96 0.0737 -
Expt.n 1Σ+ 1.92 0.0781 -
MOCIe [Li+ (3s 1S)]1Σ+ 3.73 0.496 -

aRefers to the reactions [LiHen+ → Lin+ + He].
bUsing a model potential; see reference [346].
cIn conjunction with the 6-31G(d,p) basis set; see reference [273].
dSee reference [349].
eIn conjunction with [5s5p2d] (He), [5s4p2d] (Li), [6s6p2d] (Na) and [8s6p2d] (K) basis sets; see

reference [348].
fIn conjunction with [9s4p] (Li) and [7s3p2d] (He) basis sets; see reference [330].
gSee reference [352].
hIn conjunction with augmented 6-311G basis sets; see reference [325].
iIn conjunction with the 6-311G+(3df ,3pd) basis sets. The ωe is calculated using MP2/6-

311G+(3df ,3pd); see reference [327].
jIn conjunction with the cc-pV5Z basis set; see reference [321].
kIn conjunction with the aug-cc-pV5Z basis set; see reference [332].
lSee reference [329].

mSee reference [350].
nSee reference [347].

in Table 1.6 are indicative of an electrostatically bound complex. In particular,

these data highlight the difficulties encountered in approximating a shallow molec-

ular PES. For example, significant discrepancies are evident in the CCSD(T) values

[319, 321, 336, 337] of Re listed in Table 1.6. The PES is therefore extremely sensi-

tive to the basis sets employed. For example, Marinetti et al. [321] (who employed

CCSD(T)/cc-pV5Z) reported an equilibrium bond length value ca. 0.15 Å smaller

than that of Nakayama et al. [319]. The latter authors also employed CCSD(T), but

used the cc-pVQZ basis set for Na and the cc-pV5Z basis set for He. The equilibrium
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Table 1.6 Equilibrium parameters of NaHe+ reported in the literature.

Re De
a ωe

Method State (/Å) (/eV) (/cm−1)
SCFb 1Σ+ 2.33 - -
SCFc 1Σ+ 2.415 0.033 129
Model Potentiald 1Σ+ 2.324 0.0408 155
EXGFe 1Σ+ 2.328 0.0409 -
CASSCFf 1Σ+ 2.421 0.037 138.4
MOCIg 1Σ+ 2.40 0.035 114
QCISD(T)h 1Σ+ 2.41 0.028 -
QCISD(T)i 1Σ+ 2.334 0.0490 160
CCSD(T)j 1Σ+ 2.232 0.0411 148.2
CCSD(T)k 1Σ+ 2.38 0.03507 -
CCSD(T)l 1Σ+ 2.307 - -
CCSD(T)m 1Σ+ 2.325 0.0408 -
Expt.n 1Σ+ 2.41 0.0390 -
Expt.o 1Σ+ 2.33 0.0434 -
CASSCFf 3Σ+ 3.536 1.011 239.4
CASSCFf [He+ (1s 1S)]1Σ+ 3.904 0.603 206.9
MOCIg [Na+ (3s 1S)]1Σ+ 3.95 0.707 -

aRefers to the reactions [NaHen+ → Nan+ + He].
bUsing a model potential; see reference [346].
cIn conjunction with contracted ANO basis sets; see reference [304].
dSee reference [349].
eSee reference [338].
fIn conjunction with the aug-cc-pVTZ basis sets; see reference [335].
gIn conjunction with [5s5p2d] (He), [5s4p2d] (Li), [6s6p2d] (Na) and [8s6p2d] (K) basis sets; see

reference [348].
hIn conjunction with augmented 6-311G basis sets; see reference [325].
iIn conjunction with the 6-311G+(3df ,3pd) basis sets. The ωe is calculated using MP2/6-

311G+(3df ,3pd); see reference [327].
jIn conjunction with the cc-pV5Z basis set; see reference [321].
kIn conjunction with the cc-pVQZ (Na) and cc-pV5Z (He) basis sets; see reference [319].
lIn conjunction with the C-Huz-5 basis sets; see reference [336].

mIn conjunction with the aug-cc-pVQZ basis sets; see reference [337].
nSee reference [347].
oSee reference [328].

parameters obtained from experiment are in better agreement. For example, these

Re and De values differ by ca. 0.08 Å and 0.004 eV, respectively. As was the case

for LiHe+, the excited Σ states of NaHe+exhibit deeper energy wells than does the

ground state. This is illustrated by the CASSCF calculations of Panin et al. [335]

with respect to (3Σ+)NaHe+. According to these results the 3Σ+ state of NaHe+ ex-

hibits a potential well-depth two orders of magnitude greater than that of the ground
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Table 1.7 Equilibrium parameters of KHe+ reported in the literature.

Re De
a ωe

Method State (/Å) (/eV) (/cm−1)
SCFb 1Σ+ 2.91 - -
Model Potentialc 1Σ+ 2.825 0.0229 100
EXGFd 1Σ+ 2.852 0.0290 -
SAPTe 1Σ+ 2.867 0.0155 -
MOCIf 1Σ+ 2.90 0.024 84
CCSD(T)g 1Σ+ 2.83 0.0230 96.78
Expt.h 1Σ+ 2.90 0.0217 -
Expt.i 1Σ+ 2.91 0.0173 -
MOCIf [K+ (3s 1S)]1Σ+ 4.35 0.360 -

aRefers to the reactions [KHen+ → Kn+ + He].
bUsing a model potential; see reference [346].
cSee reference [349].
dSee reference [343].
eSee reference [341].
fIn conjunction with [5s5p2d] (He), [5s4p2d] (Li), [6s6p2d] (Na) and [8s6p2d] (K) basis sets; see

reference [348].
gIn conjunction with the cc-pV5Z basis set; see reference [321].
hSee reference [347].
iSee reference [344].

state. In addition, the curvature of the (3Σ+)NaHe+ CASSCF PES differs substan-

tially from that of the ground state, as indicated by the respective values of ωe.

Table 1.7 shows that there are fewer ab initio investigations of the ground state of

KHe+ reported in the literature. Nevertheless, theoretical and experimental PES

parameters are consistent for the ground state of KHe+. The CCSD(T)/cc-pV5Z Re

and De values of Marinetti et al. [321] are ca. 0.07 Å and 0.013 eV larger than the

experimental values. No excited state of KHe+ has been observed experimentally to

date. The MOCI data for the ([K+ (3s 1S)]1Σ+)KHe+ are consistent with that for

the analogous Li and Na species however, in that this excited state exhibits a larger

dissociative potential well-depth and equilibrium bond length.

Very few studies of polyatomic helide ions of the alkali metal have been re-

ported in the literature. The study of the equilibrium structures and stabilities of

species of the form MHe+
2 is therefore ongoing. For example, Sapse et al. [327] com-
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pleted a systematic study of the structures and stabilities of LiHe+
n and NaHe+

n (n

= 1-4) using MP2 and QCISD(T) in conjunction with 6-311+G(3df ,3pd) basis sets.

Sapse et al. [327] predicted bound symmetric non-linear structures for all species

investigated. More recently, in 2007 Marinetti et al. [321] employed CCSD(T)/aug-

cc-pV5Z to predict non-linear and linear equilibrium structures of LiHe+
2 and NaHe+

2 ,

respectively. From a comparison of the energies of linear and non-linear LiHe+
2 equi-

libria, Marinetti et al. [321] concluded that a definitive equilibrium structure of

LiHe+
2 using CCSD(T)/aug-cc-pV5Z was not attainable. Marinetti et al. [321] also

predicted a linear equilibrium structure for the ground state of KHe+
2 . The latter is

the only reported data concerning KHe+
2 available in the literature.

In a series of studies, Bodo and co-workers [353, 354] have investigated the sol-

vation of cationic alkali metal dimers in helium. To this end, these workers developed

molecular PESs for Li2He and M2He+ (M = Li, Na, K) using MP4(SDTQ)/cc-pV5Z.

At this level of theory M2He+ (M = Li, Na, K) exhibit D∞h equilibrium structures.

Although the method of Bodo et al. [353] and Sapse et al. [327] differ both in the ap-

proximation of correlation and the size of basis set employed, comparison between

the equilibrium structures of M2He+ and MHe+
2 (M = Li, Na) suggests that the

latter C2v species exhibit marginally larger potential well-depths. Most notably in

the present context is the calculation of Bodo et al. [353] of 12, 7 and 5 vibrational

states (M = Li, Na, K, respectively) [353] for J = 0. The number of bound levels

for these species reflects the trend observed by Bodo et al., viz. that the potential

well-depth of M2He+ decreases markedly with an increasing atomic mass of M. At

present, no study of dications of form MHe2+
2 (M = Li, Na, K) has been reported,

although it is expected (from trends observed for the analogous alkaline-earth metal

helide ions, vide infra) that such species reside on repulsive molecular PESs due

to the respective trends observed in the corresponding diatomic dications. Bodo
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and co-workers [355, 356] have also modelled the solvation of single Li+, Na+ and

K+ ions in small helium nanodroplets via Monte Carlo techniques.

No investigation of an alkali metal hydrohelide ion has been reported in the

literature. However, the neutral HLiHe and HNaHe species have been studied on

several occasions using ab initio methods [357–361]. In particular, Taylor and co-

workers [359–361] have constructed CCSD(T) PESs for the purposes of studying

the dynamics of vibrational and rovibrational energy transfer in HLiHe and HNaHe.

Bodo and co-workers [357, 358] have also investigated the bound rovibrational states

of HLiHe.

1.3.2. Helides of the Alkaline-Earth Metals

With respect to helium chemistry, the alkaline-earth metals exhibit a wide

range of bonding characteristics, from weak van der Waals interactions through

to strong covalent and ionic bonds. For many molecular systems the interaction

between alkaline-earth metal cations and helium has been shown to be thermody-

namically stable [270]. The hydrides and helides of the alkaline-earth metals are

also of interest with respect to interstellar chemistry [175, 362]. Although there has

been no reported experimental observation of a beryllium helide, the helides of the

heavier alkaline-earth metals have been observed in several experiments. In partic-

ular, discussion into the structures of helium nanodroplets doped with Mg, Ca, Sr

and Ba is ongoing [363–365]. Alignment effects in the CaHe(5 1P1 - 5 3PJ) energy

transfer collision have also been observed using laser scattering techniques, in which

an absorption profile for the Ca-He collision complex has been identified [366, 367].

No alkaline-earth metal helide cation has been identified experimentally to date.

Extensive ab initio investigation of diatomic beryllium helides has been con-

ducted. Results pertinent to this thesis are collated in Table 1.8. It is evident that
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the 2Σ+ ground state of BeHe+ has been well characterised using ab initio meth-

ods. For example, using CCSD(T) and IC-MRCI in conjunction with augmented

quadruple-ζ basis sets, Page et al. [368] have reported Re, De and ωe values in agree-

ment to within 0.004 Å, 0.0001 eV and 1.6 cm−1. These values of Re and ωe are

also in reasonable agreement with the QCISD(T) data of Leung et al. [369]. The

lowest 2Π state has been investigated by Frenking et al. [273] and Leung et al. [369],

both of which employed MP2. The data presented by these workers indicate that

(2Π)BeHe+ is significantly more stable than (2Σ+)BeHe+. Similarly, the SCF and

post-SCF data of Hayes and Gole [370] and Bu and Zhong [371], respectively, indi-

cate that the ground state of BeHe2+ is also strongly bound.

With respect to calcium and magnesium helides, the focus has been centred

on the diatomic species [252, 304, 372–377]. Appropriate data concerning the di-

Table 1.8 Ab initio parameters of diatomic beryllium helide cations reported in
the literature.

Re De
a ωe

Method State (/Å) (/eV) (/cm−1)
BeHe+

MP2b 2Σ+ 3.132 0.013 68
MP2c 2Σ+ 3.105 - 67
QCISD(T)d 2Σ+ 2.96 - 73
CCSD(T)e 2Σ+ 2.940 0.0161 75.9
IC-MRCIe 2Σ+ 2.936 0.0160 74.3
MP2b 2Π 1.415 0.676 -
QCISD(T)d 2Π 1.38 0.7247 916

BeHe2+

HFf 1Σ+ - 0.807 -
MP2c 1Σ+ 1.453 0.872 829

aRefers to the reactions [BeHen+ → Ben+ + He].
bRe and ωe calculated in conjunction with the 6-31G(d,p) basis set. The De was calculated using

MP4(SDTQ)/-311G(2df ,2pd); see reference [273].
cIn conjunction with the 6-311G++(3df ,3pd) basis set; see reference [371].
dIn conjunction with the 6-311++G**(3df , 3dp) (Be) and aug-cc-pVQZ (He) basis sets; see

reference [369].
eIn conjunction with the aug-CVQZ (Be) and aug-cc-pVQZ (He) basis sets; see reference [368].
fSee reference [370].
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atomic cations of magnesium and calcium with helium are summarised in Tables

1.9 and 1.10, respectively. Trends observed with respect to the 2Σ+ and 2Π states

of BeHe+ are also present in MgHe+ and CaHe+. For instance, it is evident from

Table 1.9 that the ground 2Σ+ state of MgHe+exhibits Re, De and ωe values of

ca. 3.5 Å, 0.01 eV and 50 cm−1, whereas these parameters for the lowest 2Π state

are ca. 1.9 Å, 0.28 eV and 468 cm−1. These ratios between Re and De values for

(2Σ+)CaHe+ and (2Π)CaHe+ are also of similar magnitudes. At present, there has

been no calculated harmonic frequencies of any excited state of CaHe+. Page and

von Nagy-Felsobuki [174] have also reported CCSD(T), IC-MRCI and quadruples-

corrected IC-MRCI (IC-MRCI+Q) equilibrium parameters of (1Σ+)CaHe2+ which

Table 1.9 Ab initio parameters of diatomic magnesium helide cations reported in
the literature.

Re De
a ωe

Method State (/Å) (/eV) (/cm−1)
MgHe+

SCF/MCPFb 2Σ+ 3.565 0.009 21
MP2c 2Σ+ 3.611 0.011 45
MP2d 2Σ+ 3.611 0.009 46
QCISD(T)c 2Σ+ 3.535 0.012 -
QCISD(T)e 2Σ+ 3.56 0.008 44
CCSD(T)f 2Σ+ 3.5151 0.009 49.8
IC-MRCIf 2Σ+ 3.5929 0.008 47.9
IC-MRCI+Qf 2Σ+ 3.5311 0.008 49.5
QCISD(T)e 2Π 1.86 0.2806 468

MgHe2+

MP2d 1Σ+ 1.910 0.320 434
CCSD(T)f 1Σ+ 1.8920 0.3327 483.8
IC-MRCIf 1Σ+ 1.8919 0.3424 483.2
IC-MRCI+Qf 1Σ+ 1.8923 0.3285 483.3

aRefers to the reactions [MgHen+ → Mgn+ + He].
bSee reference [304].
cIn conjunction with the 6-311+G(3df , 3pd) basis set; see reference [327].
dIn conjunction with the 6-311+G(3df , 3pd) basis set; see reference [378].
eIn conjunction with the 6-311+G(2df) (Mg) and aug-cc-pVQZ (He) basis sets; see reference

[372].
fIncludes basis set superposition error and relativistic corrections, in conjunction with the

[9s, 8p, 5d, 2f ] ANO-RCC (Mg) and aug-cc-pVQZ (He) basis sets; see reference [174].



29

Table 1.10 Ab initio parameters of diatomic calcium helide cations reported in
the literature.

Re De
a ωe

Method State (/Å) (/eV) (/cm−1)
CaHe+

SCFb 2Σ+ 4.1 0.006 -
CISDc 2Σ+ 4.4 0.004 -
B3LYPd 2Σ+ 4.01 0.006 47.6
CCSD(T)e 2Σ+ 4.3086 0.004 29.9
IC-MRCIe 2Σ+ 4.4231 0.005 30.2
IC-MRCI+Qe 2Σ+ 4.3344 0.004 30.2
CISDc [Ca+(3d 2D)]2∆ 2.9 0.017 -
CISDc [Ca+(3d 2D)]2Π 2.6 0.023 -
CISDc [Ca+(3d 2D)]2Σ+ 4.8 0.002 -
SCFb [Ca+(4p 2P )]2Π 2.4 0.090 -
CISDc [Ca+(4p 2P )]2Π 2.4 0.088 -
SCFb [Ca+(4p 2P )]2Σ+ 6.09 0.001 -
CISDc [Ca+(4p 2P )]2Σ+ 6.99 0.0009 -
CISDc [Ca+(5s 2S)]2Σ+ 2.3 0.16 -
CISDc [Ca+(4d 2D)]2∆ 2.4 0.10 -
CISDc [Ca+(4d 2D)]2Π 2.4 0.16 -

CaHe2+

CCSD(T)e 1Σ+ 2.3576 0.1483 295.5
IC-MRCIe 1Σ+ 2.3644 0.1245 298.7
IC-MRCI+Qe 1Σ+ 2.3596 0.1434 295.6

aRefers to the reactions [CaHen+ → Can+ + He].
bSCF model potential method; see reference [379].
cSCF/CISD pseudopotential method; see reference [380].
dIn conjunction with the 6-311+G(3df) basis set; see reference [381].
eIncluding basis set superposition error and relativistic corrections, in conjunction with the

[10s, 9p, 5d, 2f ] ANO-RCC (Ca) and aug-cc-pVQZ (He) basis sets; see reference [174].

indicate similar trends to those observed in (1Σ+)BeHe2+ and (1Σ+)MgHe2+ (see

Chapter 6).

Investigations of the heavier (viz. Sr and Ba) alkaline-earth metal helides are

limited. There are no reported studies of any Ra helide species. Moreover, studies

of diatomic Sr and Ba helides are limited to the neutral case [382–387]. However,

Fukuyama et al. [388, 389] have observed laser-induced flourescence of the BaHe+and

Ba∗He+ exciplexes in both gaseous and liquid helium environments.

There are very few ab initio investigations concerning polyatomic alkaline-
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earth metal helide ions in the literature. All ab initio data reported in the literature

concerning triatomic cations of beryllium, magnesium and calcium with helium are

listed in Tables 1.11, 1.12 and 1.13, respectively. Of particular interest with respect

to (2A1)BeHe+
2 is the bend mode frequency of a1 symmetry. The ab initio data

reported by Bu and co-workers [371, 378] and Page et al. [192, 368] are indicative of

an extremely shallow PES and a small barrier to linearity. The latter observation

is also drawn from the analytical IC-MRCI+Q PES for (2A1)BeHe+
2 constructed

by Page et al. [368]. Conversely, (1Σ+
g )BeHe2+

2 resides in a deep potential well and

dissociates into [BeHe2+ + He] at ca. 0.8 eV, as indicated by the Hartree-Fock (HF)

results of Harrison et al. [390]. Page et al. [192] employed IC-MRCI+Q to predict a

dissociative potential well-depth of ca. 0.9 eV. The latter authors also constructed an

analytical IC-MRCI+Q (1Σ+
g )BeHe2+

2 PES. Ab initio calculations [192, 391] indicate

that HBeHe+is also strongly bound. For example, the MP2, QCISD, CCSD and

CASSCF calculations of Antoniotti et al. [391] yielded a dissociative well-depth

(with respect to [BeH+ + He]) of ca. 0.32 eV. Similarly, Page et al. [192], who

employed CCSD(T), IC-MRCI and IC-MRCI+Q, determined this well-depth to be

ca. 0.37 eV.

Sapse et al. [327] determined the equilibrium properties of the ground state of

MgHe+
n (n = 1−4) using MP2 and QCISD(T) in conjunction with 6-311+G(3df ,pd)

basis sets. Bu and Zhong [378, 392] have also used MP2 to investigate MgHem+
n (m =

1, 2;n = 1−10) and MgHe+
n (n = 1−4). These workers determined that the ground

states of MgHe+
2 and MgHe2+

2 correspond to C2v equilibrium structures. Conversely,

Page and von Nagy-Felsobuki [174] predicted a D∞h equilibrium structure for the

ground state of MgHe2+
2 , using relativistically corrected CCSD(T) and IC-MRCI

(see Chapter 6).

Investigations of polyatomic calcium helides have been limited to the neutral,
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Table 1.11 Ab initio parameters of triatomic beryllium helide cations reported in
the literature.

Re(Be-He) Re(Be-H) θe De
a Frequencies (/cm−1)

Method (/Å) (/Å) (/◦) (/eV) ω1 ω2 ω3

(2A1)BeHe+
2

MP2b 3.085 - 61.3 0.1959 69 25 60
MP2c 3.020 - 60.6 0.1380 89.4 46.4 77.0
CCSD(T)c 2.924 - 60.1 0.1688 82.2 43.4 70.6
IC-MRCI+Qc 2.920 - 60.2 0.1863 67.3 23.7 68.1

(1Σ+
g )BeHe2+

2

HFd 1.44 180 0.768 - - -
CCSD(T)e 1.4373 - 180 0.8808 730.8 13.7 995.2
IC-MRCIe 1.4372 - 180 0.8811 727.1 105.2 1010
IC-MRCI+Qe 1.4373 - 180 0.8731 - - -

(1Σ−)HBeHe+

B3LYPf 1.525 1.302 180 0.33 - - -
MP2f 1.519 1.294 180 0.29 642.9 278.3 2349.5
QCISDf 1.529 1.304 180 0.28 - - -
CCSD(T)f 1.529 1.305 180 0.28 - - -
CCSD(T)e 1.5178 1.2998 180 0.3762 - - -
IC-MRCIe 1.5181 1.2998 180 0.3759 1038 334.2 2047
IC-MRCI+Qe 1.5175 1.2998 180 0.3699 - - -

aRefer to the reactions [BeHe2+
n → BeHen+ + He] and [HBeHe+→ BeH+ + He], as appropriate.

bRe and θe calculated in conjunction with the 6-311+G(3df ,3pd) basis set, ω values calculated
using the 6-311+G(2d,2p) basis set; see reference [371].
cBasis set superposition error corrected values, in conjunction with the aug-CVQZ (Be) and

aug-cc-pVQZ (He) basis sets; see reference [368].
dSee reference [390].
eRe, θe and De values are corrected for basis set superposition error, calculated in conjunction

with the aug-CVQZ (Be) and aug-cc-pVQZ (He) basis sets. CCSD(T) ω values are harmonic and
neglect basis set superposition error correction. IC-MRCI ω values are anharmonic and include
basis set superposition error correction; see reference [192].

fRe, θe, De values calculated using the 6-311++G(2df ,2pd) basis set. The ωe values were calcu-
lated using the 6-31G(d); see reference [391].

singly and doubly positively charged species. For example, Jalbout and Soliman-

nejad [381] have studied CaHe+
n (n = 1 − 4) with density functional theory (DFT)

and have predicted that these species exhibit thermodynamically stable equilib-

ria. Groenenberg and Balakrishnan [393] employed CCSD(T) to generate a PES for

(2Σ+)HCaHe, which consisted of 3700 symmetrically distinct points. Most recently,

Page and von Nagy-Felsobuki [174] investigated the ground states of HCaHe+ and

CaHe2+
2 (see Chapter 6). These workers observed that both HCaHe+ and CaHe2+

2 ex-
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Table 1.12 Ab initio parameters of triatomic magnesium helide cations reported
in the literature.

Re(Mg-He) Re(Mg-H) θe De
a Frequencies (/cm−1)

Method (/Å) (/Å) (/◦) (/eV) ω1 ω2 ω3

(2A1)MgHe+
2

MP2b 3.600 - 51.9 - 23 46 43
MP2c 3.602 - 52.47 0.0212 21.45 45.85 42.65

MgHe2+
2

MP2b 1.911 - 135.9 0.2892 413 45 453
CCSD(T)d 1.8960 - 180.0 0.3261 446 47.2 508
IC-MRCId 1.8964 - 180.0 0.3011 448 47.6 513
IC-MRCI+Qd 1.8936 180.0 0.3178 450 47.4 510

(1Σ−)HMgHe+

CCSD(T)e 2.1665 1.6493 180.0 0.0809 664 194 1570
IC-MRCIe 2.1779 1.6512 180.0 0.0752 662 192 1594
IC-MRCI+Qe 2.1689 1.6494 180.0 0.0800 664 194 1574

aRefer to the reactions [MgHe2+
n →MgHen+ + He] and [HMgHe+→MgH+ + He], as appropriate.

bIn conjunction with the 6-311+G(3df ,3pd) basis set; see reference [371].
cIn conjunction with the 6-311+G(3df ,3pd) basis set; see reference [327].
dIncludes basis set superposition error and relativistic corrections, in conjunction with the

[9s, 8p, 5d, 2f ] ANO-RCC (Mg) and aug-cc-pVQZ (He) basis sets; see reference [368].

Table 1.13 Ab initio parameters of triatomic calcium helide cations reported in
the literature.

Re(Ca-He) Re(Ca-H) θe De
a Frequencies (/cm−1)

Method (/Å) (/Å) (/◦) (/eV) ω1 ω2 ω3

(2A1)CaHe+
2

B3LYPb 4.05 - 57.8 0.013 62.3 33.1 54.3
(2A1)CaHe2+

2

CCSD(T)c 2.3667 - 106.0 0.1435 - - -
IC-MRCIc 2.3516 - 109.9 0.1469 - - -
IC-MRCI+Qc 2.3419 - 108.1 0.1514 - - -

(2A′)HCaHe+

CCSD(T)c 2.6271 1.9215 113.4 0.0416 - - -
IC-MRCIc 2.6441 1.9260 115.1 0.0404 - - -
IC-MRCI+Qc 2.6309 1.9210 113.3 0.0425 - - -

aRefer to the reactions [CaHe2+
n → CaHen+ + He] and [HCaHe+→ CaH+ + He], as appropriate.

bIn conjunction with the 6-311+G(3df) basis set; see reference [381].
cBasis set superposition error corrected values, in conjunction with the aug-CVQZ (Ca) and

aug-cc-pVQZ (He) basis sets; see reference [368].
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ist as quasi-linear species. That is, the HCaHe+ and CaHe2+
2 PESs both exhibit

minima corresponding to non-linear structures, but are unable to support a bound

vibrational state in the bend mode. Moreover, Page and von Nagy-Felsobuki [174]

calculated the barriers to linearity for HCaHe+ and CaHe2+
2 to be ca. 115 and 3

cm−1, respectively.

1.4. Conclusions and Outline

The aims of this thesis are twofold. Firstly, trends in the hydrides, hydrohe-

lides and helides of alkali and alkaline-earth metals will be analysed and elucidated

using ab initio techniques. Secondly, accurate ab initio molecular rovibrational spec-

tra of a subset of suitable non-linear and linear triatomic species will be generated.

The algorithm by which these aims will be achieved is outlined in Figure 1.1. The

investigations pursued in this thesis will in some, but not all, cases involve the a

priori prediction of structural, energetic and spectroscopic properties of the species

in question. The relevant chemistries of hydrogen and helium have been therefore

reviewed in this Chapter, addressing stage (a) of Figure 1.1. Particular emphasis

has been placed on the synergic relationship between experimental and theoretical

investigation in fields such as molecular spectroscopy and quantum chemistry.

The remainder of this thesis may be outlined as follows. Chapter Two details

methods and applications of electronic structure theory (stage (b) of Figure 1.1). In

particular, MO theory, one-electron basis sets and methods of electron correlation

approximation will be emphasised. Ab initio properties of alkali and alkaline-earth

metal atoms will be benchmarked. The equilibrium properties of their respective

dihydrides will also be presented and discussed. These equilibrium parameters

are necessary for the development of accurate molecular property surfaces and

vibrational/rovibrational spectra. Chapter Three discusses the construction and
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Figure 1.1 Algorithm for the ab initio investigation of alkali and alkaline-earth
metal hydrides and helides.

analytical representation of ab initio molecular property surfaces (stage (c) of

Figure 1.1). The generation of accurate PESs and DMSs will be discussed in

detail. In particular, the PESs and DMSs of the ground states of LiH+
2 , BeH2+

2 and

BeHe2+
2 , and analytical representations thereof, will also be presented. The solution

of the nuclear Schrödinger equation (stage (e) of Figure 1.1) is discussed in Chapter

Four. This solution requires the molecular PES and DMS to be embedded in

the vibrational Hamiltonian operator. Eckart-Watson vibrational Hamiltonians

for both non-linear and linear triatomic molecules will be given explicitly. The

form of the rovibrational ‘super-matrix’ elements for non-linear molecules will also

be given. The algorithm by which dipole transition moment integrals and hence

radiative properties of non-linear molecules are calculated will be described. This
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algorithm will also be extended to the linear case. Molecular rovibrational and

vibrational spectra of the ground states of the isoelectronic species BeH2+
2 and

HBeHe+, respectively, will be presented in Chapter Four. Stages (c), (d) and (e)

of Figure 1.1 will be applied to hydride, hydrohelide and helide cations of (Li,

Na, K) and (Be, Mg, Ca) in Chapters Five and Six, respectively. The electronic

structures, stabilities and energetics of these ground state species will therefore be

investigated. Molecular PESs, DMSs and rovibrational spectra of suitable species

will also be constructed. Chapter Seven will present the general conclusions and

discussion of the main results of this thesis.
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[137] W. P. Kraemer and V. Špirko, Chem. Phys. 330, 190 (2006).

[138] V. P. Bulychev, K. M. Bulanin, and M. O. Bulanin, Opt. Spectrosc. 96, 205 (2004).

[139] A. J. Page and E. I. von Nagy-Felsobuki, J. Phys. Chem. A 111, 4478 (2007).

[140] D. M. Bishop and S. M. Cybulski, Chem. Phys. Lett. 230, 177 (1994).

[141] W. Kutzelnigg, V. Staemmler, and C. Hoheisel, Chem. Phys. 1, 27 (1973).

[142] C. Emmeluth, B. L. J. Poad, C. D. Thompson, G. H. Weddle, and E. J. Bieske, J.

Chem. Phys. 126, 204309 (2007).

[143] C. D. Thompson, C. Emmeluth, B. L. J. Poad, G. H. Weddle, and E. J. Bieske, J.

Chem. Phys. 125, 044310 (2006).

[144] J. G. Vitillo, A. Damin, A. Zecchina, and G. Ricchiardi, J. Chem. Phys. 122, 114311

(2005).

[145] M. Barbatti, G. Jalbert, and M. A. C. Nascimento, J. Chem. Phys. 114, 2213 (2001).

[146] J. D. Switalski, J. T. J. Huang, and M. E. Schwartz, J. Chem. Phys. 60, 2252 (1974).



41
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CHAPTER 2

Atomic and Molecular Applications

of Electronic Structure Methods

2.1. Introduction

The formulation of quantum mechanics has had a dramatic impact upon

the field of chemistry. As advances in the theory and implementation of quantum

chemistry are made, the accuracy and efficiency with which atomic and molecular

properties are calculated has increased. Concomitantly, there has been an increase in

the size of molecular system amenable to theoretical modelling. Accurate prediction

(a priori) of the properties of molecular systems containing hundreds of atoms is

now possible [1]. However, the highest levels of theory are still realistically applicable

only to electron-sparse molecules.

There are several motivations for the theoretical investigation of alkali and

alkaline-earth metal dihydrides. For instance, the ubiquity of atomic and molecu-

lar hydrogen throughout the interstellar media of the early (and present) universe

would suggest that primordial chemistry, and hence the early chemical evolution

of the universe, may have been dominated by the formation/decomposition pro-

cesses of simple metal hydrides [2–4]. As such, there has been extensive theoretical

investigation into the nature of LiH2 [5–13] and BeH2 [14–17].

The heavier alkali and alkaline-earth metal dihydrides are of interest due

to the natures of the respective PESs. NaH2 is of particular theoretical interest,

since it exhibits an archetypal example of an electronically non-adiabatic process
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(that is, one in which the electronic state changes non-radiatively). For example,

the exciplex (2P )Na-H2 undergoes electronic-to-rotational-and-vibrational energy

transfer according to [18],

(2P )Na + (1Σ+
g )H2(v, J) → (2S1/2)Na + (1Σ+

g )H2(v
′, J ′)

→ (1Σ+)NaH(v′′, J ′′) + (2S1/2)H

This reaction is prototypical of many reactions of a metal with a covalent molecule,

and therefore has been studied extensively [8, 19–27]. Similarly, the dynamics of

the formation of MgH2 (viz. by the insertion of Mg into the H2 subunit) are also

dominated by non-adiabatic transitions between low-lying singlet states [28]. The

reaction,

(1S0)Mg + (1Σ+
g )H2 → (1Σ+

g )MgH2

is also endoergic, since theoretical calculations [29, 30] indicate that (1Σ+
g )MgH2 lies

energetically above the asymptotic limit of (1S0)Mg + (1Σ+
g )H2. These facts have

spawned numerous investigations into the ground state of MgH2 [29, 31–37]. In

addition, MgH2 has been postulated to be a possible candidate for the bulk storage

of molecular hydrogen [38].

Although bonding in the alkaline-earth metal dihydrides is ionic in nature,

variation in the H-M-H bond angle is observed with increasing atomic number (with

respect to M). For example, BeH2 [14–17] and MgH2 [28, 29, 31–34] are linear,

whereas SrH2 and BaH2 are predicted to be bent [39]. There is uncertainty as to

the equilibrium bond angle of the ground state of CaH2 despite significant theo-

retical and experimental scrutiny [34, 39–45]. Although KH2 is of interest with

respect to chemical processes present in brown dwarfs [46, 47], only two theoretical

investigations of KH2 have been reported in the literature to date [13, 48].
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The aim of the present Chapter is to give a cursory review of approximate MO

based methods of electronic structure in the context of atomic and electron-sparse

molecular systems. As such, SCF theory and correlated wave function methods in-

cluding CI and CC will be discussed. The use of Gaussian type orbitals (GTOs)

in electronic structure calculations will also be reviewed, with an emphasis placed

upon GTO basis sets for alkali and alkaline-earth metals. Such levels of theory will

be benchmarked using the ground state properties of Li, Be, Na, Mg, K and Ca.

Equilibrium molecular properties of the neutral dihydrides of these elements will sub-

sequently be investigated. Knowledge of equilibrium molecular parameters serves

two purposes in the present context (i.e. Figure 1.1). Firstly, molecular candidates

suitable for vibrational and rovibrational calculations may be assessed by considering

the relative structures and stabilities of the species in question. Secondly, a knowl-

edge of these equilibrium molecular parameters is necessary if accurate descriptions

of molecular property surfaces (i.e. PESs and DMSs) are to be attained.

2.2. The Dirac Equation

Dirac [49–51] proposed that the time-independent quantum mechanics of a

free particle are described (in atomic units) by the eigenfunction satisfying,

i~ = Ĥ |Ψ (r)〉 (2.1)

where r are a set of arbitrary position co-ordinates,

Ĥ = cα · p + βmc2 (2.2)
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and α and β are the Hermitian Dirac matrices. It follows that a relativistic particle

in a central field is described by the four-spinor |Ψ〉 ≡ |Ψ (r)〉 such that,

(
E − cα · p− βmc2 − V̂ (r)

)
|Ψ〉 = 0 (2.3)

for some potential operator V̂ (r). Extending equation (2.3) to an n-electron atomic

system requires a Hamiltonian of the form [52–55],

Ĥ = ĥD (ri) +
n∑
i<j

ĝij (2.4)

where ĥD (ri) is the one electron Dirac operator,

ĥD (ri) =
n∑
i

(
cαi · pi + (β − 1) c2 − Vi

)
(2.5)

and ĝij is the two electron operator [56],

ĝij =
1

|ri − rj|
(2.6)

The latter appears in the Coulombic and exchage operators. The Breit-Pauli (BP)

Hamiltonian truncates the n-electron relativistic Hamiltonian to first-order in
(
v
c

)2
.

This Hamiltonian is of form,

ĤBP = Ĥ0 + ĤDarw + ĤMV + ĤSO (2.7)

Here, Ĥ0 is the non-relativistic Hamiltonian, ĤDarw is the one- and two- electron

Darwin correction, ĤMV is the relativistic mass-velocity correction, ĤSO is the spin-

orbit coupling correction, Si, ri and pi are the instantaneous spin, position and



55

momentum vectors of electron i, respectively, rij is the instantaneous distance be-

tween electrons i and j and Z is the nuclear charge.

Several Hamiltonians have simplified ĤBP by the exclusion of various terms.

For instance, the Hamiltonian of Zeigler, Snijders and Baerends [57] assumes the

relativistic nature of the electron to be dominated by the ĤMV, ĤDarw and ĤSO in

equation (2.7). Similarly, the Hamiltonian employed by Cowan and Griffin (CG)

[58] consists of these three terms, however the spin-orbit coupling is neglected in

the SCF wave function. An alternative approach was employed by Douglas, Kroll

and Hess (DK) [59, 60]. The DK Hamiltonian employs a ‘no-pairs’ approach, using

external projection operators corresponding to a particle in the field of a nucleus.

The BP, CG and DK Hamiltonians can be readily extended to molecular systems,

for which ĤMV, ĤDarw and ĤSO are incorporated as a truncated perturbation to the

total energy (i.e. DKn). Collins et al. [61] have shown that the DK Hamiltonian is a

reliable alternative to the Dirac HF (DHF) method for molecular systems containing

heavy atoms, provided that spin-orbit coupling is small.

2.3. The Time-Independent Schrödinger Equation

Equation (2.1) collapses to the time-independent non-relativistic Schrödinger

equation [62–65] in the limit c→∞,

Ĥ0 |Ψ〉 = E |Ψ〉 (2.8)

where, in the n-electron atomic case,

Ĥ0 = −1

2

n∑
i=1

∇2
i −

n∑
i=1

Z

ri
+

n∑
i=1

∑
i<j

ĝij (2.9)
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Similarly, for an N -nuclei n-electron molecular system,

Ĥ0 = −
N∑
I=1

1

MI

∇2
I +

n∑
i=1

ĥi +
n∑
i=1

∑
i<j

ĝij

+
N∑
I=1

∑
I<J

ZIZJ
|RI −RJ |

(2.10)

where ĥi is the one-electron operator,

ĥi = −1

2
∇2
i +

N∑
I=1

ZI
|RI − ri|

(2.11)

The first terms of equations (2.10) and (2.11) are the nuclear and electronic kinetic

energy operators respectively, and the fourth term of equation (2.10) is the potential

energy operator corresponding to the repulsion between nuclei I and J. The mass and

instantaneous position vectors of nucleus I are denoted by MI and RI , respectively.

2.4. The Born-Oppenheimer Approximation

By employing the BO approximation equation (2.10) may be recast so that,

Ĥ0 |Ψ〉 =
(
Ĥnuc + Ĥelec

)
|Ψ〉 = E |Ψ〉 (2.12)

Thus it is possible to consider the motion of the electrons in the field of station-

ary nuclei. The electronic energy is then parametrically dependent on a particular

nuclear geometry. In equation (2.12),

Ĥnuc = −
N∑
I=1

1

MI

∇2
I +

N∑
I=1

∑
I<J

ZIZJ
|RI −RJ , |

(2.13)
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and,

Ĥelec =
n∑
i=1

ĥi +
n∑
i=1

∑
i<j

ĝij + V̂nuc (2.14)

where V̂nuc is the potential operator defined at a particular molecular geometry.

The assumption that the nuclei exhibit only small amplitudes of vibration is

implicit within the BO formulation [66]. However, Born [67, 68] provided a more

general formulation applicable to any nuclear geometry, making no assumptions with

respect to the amplitude of nuclear motions. This allows the nuclear and electronic

motions to be rigorously decoupled.

2.5. Self Consistent Field Theory

All MO approximations to the solutions of equation (2.12) are based on the

SCF method [69–71]. The SCF wave function for an N -nuclei n-electron molecular

system (with all MOs doubly occupied) is a single Slater determinant (SD),

|ΦSD〉 =
1√
N !

∑
P

(−1)p P̂
n∏
i,j

γi (j) (2.15)

Here P̂ is a permutation operator and {φi} and {α, β} are orthonormal such that

γi(j) = φi(j)αi(j) or γi(j) = φi(j)βi(j) for spin functions α and β. The explicit form

of the spatial component of γi(j), φi(j), will be discussed in subsequent sections (vide

infra). By construction |ΦSD〉 necessarily satisfies the Pauli exclusion principle. Self

consistent field theory assumes that |Ψ〉 ≡ |ΦSD〉 and so,

ESCF =
〈

ΦSD

∣∣∣Ĥ0

∣∣∣ΦSD

〉
(2.16)

The variational diagonalisation of the electronic Hamiltonian in the atomic orbital

(AO) basis yields the spectrum of SCF energies. In the case of closed-shell atomic



58

and molecular systems, this is achieved by solving the Roothaan-Hall equations

[72, 73],

FC = SCε (2.17)

where F, C and S are, respectively, the Fock, atomic orbital coefficient and one-

electron overlap integral matrices and ε are the SCF energies. The latter are the

expectation values of the canonical SCF orbitals, φ
′
i, in the AO basis. Spin-restricted

HF (RHF) MOs obtained by the solution of equation (2.17) are eigenfunctions of

〈S2〉 by construction. This is not the case for the spin-unrestricted HF (UHF) open-

shell formulation due to Pople and Nesbet [71], in which different spatial orbitals

are assigned to electrons with different spins. The use of two distinct sets of spatial

orbitals in this manner leads to lower SCF energies, and so the UHF wave function is

superior to the RHF wave function in this respect. However, the restrictions placed

on |ΦSD〉 with respect to spin and spatial symmetries observed in RHF theory are

not present in UHF theory. The value of 〈S2〉 in the UHF MO basis may therefore

become prohibitively large, a phenomenon known as spin contamination.

There are several advantages obtained in the use of the HF method for the

calculation of atomic and molecular properties. For example, the HF method is a

conceptually simple and size extensive variational method known to yield total elec-

tronic energies that are in error by less than 1%. In addition, important physical

molecular properties, such as equilibrium bond lengths, dipole moments, electric

polarisabilities, force constants and electronic excitation energies are generally re-

produced (with respect to experiment) to within 5-10% using the HF method [74].

SCF orbitals are also suitable zero-order wave functions for both variational and

perturbative correlated methods [75].

Nevertheless, there are unattractive features of SCF based electronic wave

functions. For example, SCF wave functions fail to accurately predict properties of
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systems possessing substantial electron correlation since, by construction, electron

correlation is neglected in |ΦSD〉. Similarly, because SCF theory is a single-reference

method, it is often inadequate when applied to molecular dissociation (for example

H2 [76]) and systems possessing strong multi-configurational character (for example

O3 [77]).

The latter shortcoming of SCF theory is alleviated by taking into account

different arrangements of electrons in the initial description of the electronic wave

function. This equates to the use of multiple Slater determinants as a starting point

in the solution of the HF equations. For such a set of Slater determinants {|ΦSD〉i},

the multi-reference SCF (MCSCF) wave function |ΨMCSCF〉 is optimised using the

orbital rotation operator e−κ thus,

|ΨMCSCF〉 = e−κ
∑
i

Ai |ΦSD〉i (2.18)

In the optimisation of |ΨMCSCF〉, both the CI coefficients Ai and |ΦSD〉i are optimised

with respect to the parameters of e−κ [74].

An inherent difficulty in the optimisation of MCSCF wave functions is an

appropriate choice of {|ΦSD〉i}; that is, the active space. Ideally, the active space

should represent the most important chemical and physical aspects of the system

in question [78]. The CASSCF method [76, 79] considers all possible electronic

excitations over the chosen set of active determinants. The restricted active space

SCF method [80–82] further partitions this set into several subsets, each of which is

individually optimised.

The optimisation of CASSCF wave functions is demanding for even a limited

number of active determinants. Knowles et al. [83–85] developed a CASSCF solution

algorithm quadratically convergent in both Ai and {|ΦSD〉i}. MCSCF, CASSCF and
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restricted active space SCF routines are present in many available ab initio quantum

chemistry codes [86–91].

2.6. Electron Correlation Methods

Optimised SCF orbitals correspond to the most accurate atomic and molec-

ular electronic energies and wave functions for a given single Slater determinant,

disregarding the effects of electron correlation. An analogous statement is true with

respect to an optimised MCSCF wave function and the corresponding set {|ΦSD〉i}.

While the effects of correlation are included implicitly in a MCSCF wave function (in

that several electronic configurations are included in the optimisation of |ΨMCSCF〉),

neither SCF nor MCSCF provide an explicit description of electron correlation. The

correlation energy for a particular one-electron basis set is defined as,

ECORR = E − ESCF (2.19)

Post SCF electronic structure methods attempt to recover ECORR, and generally use

either a single- or multi-reference SCF wave function as a starting point (although

the latter is not necessary). Although there are a number of ab initio correlated

methods, the present discussion will be limited to the CI and CC methods.

2.6.1. The Configuration Interaction Method

The CI wave function |ΨCI〉 is constructed as a linear combination of Slater

determinants |Φi〉,

|ΨCI〉 =
∑
i

Ci |Φi〉 (2.20)
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where Ci are linear coefficients. Here |Φi〉 represents both SCF [92, 93] and MCSCF

[94–96] wave functions. The FCI wave function includes all possible substitutions

out of this reference wave function into unoccupied orbitals of order one, two, three,

four and so on. As such, the FCI wave function recovers ECORR in its entirety for

the one-electron basis set employed. The trial FCI wave function is of the form,

|ΨFCI〉 = C0 |Φ0〉+
occ∑
i

virt∑
a

Ca
i |Φa

i 〉+
occ∑
i<j

virt∑
a<b

Cab
ij

∣∣Φab
ij

〉
+

occ∑
i<j<k

virt∑
a<b<c

Cabc
ijk

∣∣Φabc
ijk

〉
+ . . .

(2.21)

where |Φ0〉 is optimised SCF/MCSCF reference wave function. The determinantal

coefficients of equation (2.21) are variationally optimised by minimising the expec-

tation value of the electronic energy.

The number of determinants to be evaluated in a FCI calculation using ni

electrons of spin i with m basis functions is,

N =

(
m

nα

)(
m

nβ

)
(2.22)

It is immediate that for all but the smallest systems with few basis functions that

a FCI wave function is impractical. Several methods that circumvent this problem

have been developed recently, such as the intrinsic scaling method [97–101] (which

estimates the correlation energy using an extrapolation scheme) and the sparse FCI

method [102] (which utilises the sparse nature of the FCI vectors in the determi-

nantal basis to reduce computational demands). A more common approach is to

employ truncated CI methods, in which the excitations from |Φ0〉 are restricted to a

certain order. For instance, the singly and doubly excited CI wave function (CISD)
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is of form,

|ΨCISD〉 = C0 |Φ0〉+
occ∑
i

virt∑
a

Ca
i |Φa

i 〉+
occ∑
i<j

virt∑
a<b

Cab
ij

∣∣Φab
ij

〉
(2.23)

The computational expense of the truncated single-reference CI methods scales as

n2k+2, where k is the highest order of excitation in the truncation. Hence single-

reference CISD, CISD with triple excitations (CISDT) and CISDT with quadruple

excitations (CISDTQ) scale as n6, n8 and n10 respectively. The optimisation of

MRCI wave functions is a substantially larger problem in dimension, for which var-

ious contraction schemes have been developed [103, 104]. FCI routines are included

in several quantum chemistry codes [86, 88], as are routines allowing arbitrary CI

excitation from single-reference reference wave functions [89, 105].

Several attempts to correct the lack of size-extensivity of truncated CI wave

functions have been made. One commonly used correction is that due to Langhoff

and Davidson [106], which is defined as,

EDav = (1− C2
0)ECISD

CORR (2.24)

where ECISD
CORR is the correlation energy calculated using CISD. EDav can also be

interpreted as the correction for the lack of quadruple or higher excitations in the

CI truncation (i.e. CISD+Q) [74].
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2.6.2. The Coupled-Cluster Method

The CC wave function |ΨCC〉 is a non-linear exponential parameterisation of

the HF reference wave function [107–109],

|ΨCC〉 = eT̂ |Φ0〉 (2.25)

where the non-Hermitian cluster operator T̂ ,

T̂ = T̂1 + T̂2 + . . . (2.26)

consists of the first, second and third excitation operators. As such, CC wave func-

tions are size-extensive but non-variational. Truncation of equation (2.26) yields

various single-reference truncated CC methods the nomenclature of which follows

that of CI (i.e. CCS, CCSD, CCSDT, CCSDTQ, . . .,). The computational ex-

pense of these truncated CC methods scales as does the corresponding truncated

CI method. However, any truncated CC wave function is both more efficient and

compact than its CI counterpart. For instance, the CCSD wave function takes the

form [74],

|ΨCCSD〉 = |Φ0〉+ T̂1 |Φ0〉+

(
T̂2 +

1

2
T̂ 2

1

)
|Φ0〉

+

(
T̂1T̂2 +

1

6
T̂ 3

1

)
|Φ0〉+

(
1
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T̂ 2

2 +
1

2
T̂2T̂

2
1 +

1

24
T̂ 4

1

)
|Φ0〉+ . . .

(2.27)

Multi-reference CC wave functions are generally considered in terms of three broad

categories, viz. valence-universal, state-universal and state-specific. These methods

have recently been extended to arbitrary orders of excitation [110–112], but will not
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be pursued further in the present work.

The accurate calculation of molecular properties using a CC wave function

generally requires the inclusion of (at least) triples excitation from |Φ0〉, which is

feasible only for relatively small systems. For this reason, a number of methods

which approximate the triples contribution to the wave function have been devel-

oped [113, 114]. The most popular of these is the CCSD(T) method [113], in which

the connected triples are incorporated as a perturbation to the CCSD wave func-

tion. The CCSD(T) method scales as n7, and can approximate up to 90% of the full

triples correction to the CCSD wave function [74]. In addition, molecular proper-

ties such as equilibrium structures, atomisation energies and conformational barrier

energies calculated using CCSD(T) and CCSDT have been shown to be in excel-

lent agreement for a range of molecules [74]. There are many implementations of

single-reference CCSD and CCSD(T) available [86–90, 115]. Codes able of calcu-

lating arbitrary CC excitations for single-reference wave functions have also been

developed [89, 105].

2.7. One-Electron Basis Sets

Electronic structure methods have been discussed in Sections 2.5 and 2.6 in

the context of AOs and MOs for atomic and molecular systems, respectively. The

AOs are typically constructed from GTOs centred on the nuclei [116],

Gijk (rA, α) = xiyjzke−αr
2
A (2.28)

where i, j and k are non-negative integers, α is a positive real number and rA is

the position of the electron relative to the nucleus A. The AOs constructed using

a single GTO (primitive AOs) fail to model the hydrogenic orbital accurately for
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both small and large values of r. However, this problem is overcome by employing

a linear combination of several GTOs (a contracted GTO (CGTO)) [117],

χCGTO
n =

∑
j

dnjG (rA, α) (2.29)

This contraction can be general (in which all primitive GTOs of a given angular

momentum on an atomic center are allowed to contribute to all CGTOs of that

angular momentum) or segmented (in which each primitive GTO contributes to a

single CGTO).

AOs may also be constructed using Slater type orbitals (STOs) as opposed

to GTOs. A STO is defined as,

Sijk (rA, α) = xiyjzke−αrA (2.30)

and therefore explicitly resembles the hydrogenic wave function. The STOs provide

a more accurate and compact description of an AO than do GTOs. However, the

calculation of the various integrals required for atomic and molecular properties is

significantly more efficient when using CGTOs as opposed to STOs [118]. This is

therefore the procedure employed by the majority of quantum chemistry codes [86–

91]. Recent developments in STOs have however made STOs a genuine alternative

to GTOs in atomic and molecular calculations [119–121]. Since STOs are not used

in the present work they will not be discussed further.

A MO is constructed as a linear combination of a set of AOs {χν},

φi (r) =
∑
ν

ciνχν (2.31)

Ideally, an AO basis set would be infinite (and hence complete) in which case the
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optimised MOs would define the HF limit. The quality of an ab initio calculation is

largely determined by the quality of the finite basis set, and therefore, by the quality

of the one-electron basis functions used. Basis sets should satisfy three criteria,

viz. that a basis set should provide an adequate description of electron correlation,

systematically cover all of co-ordinate space and be as compact as possible [122].

One-electron basis sets are organised in terms of the number of functions pre-

scribed to each AO on the neutral atom. For instance, the single-ζ (minimal) basis

set is one which describes each AO using a single function, a double-ζ (DZ) basis set

is one which describes each AO using two functions, and so on. The radial flexibil-

ity of a basis set can be increased by increasing the number of functions employed.

Similarly, the angular flexibility of a basis set can be increased through the addition

of functions of higher angular momentum (polarisation functions). Even tempered

basis sets are constructed systematically through utilising an approximately con-

stant ratio between orbital exponents of orbitals with the same angular momentum

[123, 124]. Well tempered basis sets are constructed in the same way, with the

exception that the valence orbitals are preferentially covered [125].

There is myriad basis sets concerning the alkali and alkaline-earth elements

available in the literature, such as the split-valence basis sets of Pople and co-workers

[126–129]. Also, the correlation-consistent (aug)-cc-p(C)VXZ (X = D,T,Q, 5) ba-

sis sets for Li, Be, Na, Mg and Ca have been developed by several workers [130–133],

based on the earlier work of Dunning et al. [134–137]. Similar core-valence corre-

lation basis sets (CVXZ, X = D,T,Q, 5) have been developed for all alkali and

alkaline-earth elements by Iron et al. [138]. The latter family of basis sets were

optimised using CI. A correlation-consistent basis set is constructed so that each

correlating orbital is represented by a single primitive GTO, chosen so that the con-

tribution to the correlation energy is maximised. All correlating orbitals with similar
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contributions to the correlation energy are subsequently added together [130]. This

hierarchical construction has led correlation-consistent basis sets to be amongst the

most widely employed basis sets in the literature.

An alternative choice is to use atomic natural orbital (ANO) basis sets, whose

construction is based around the expectation values of the one-electron density ma-

trix for the occupied HF and virtual correlated orbitals. The atomic natural orbitals

(ANOs) of Almlöf and Taylor [139, 140] have been extended to all alkali and alkaline-

earth elements by Roos et al. [141]. The latter ANO-RCC basis sets incorporate

scalar relativistic effects through the use of a DK Hamiltonian in conjunction with

multi-reference correlated methods.

2.8. Application to Atomic Calculations

2.8.1. Computational Procedure

In order to ascertain the effectiveness of the various ab initio methods dis-

cussed in Section 2.6, a range of properties of the ground state atoms Li, Be, Na,

Mg, K and Ca have been calculated. Since the bonding in several of the molecular

systems under investigation in this thesis is dominated by charge-induced dipole

interactions, the properties that have been considered presently are those pertinent

to such dispersive forces. As such, IE1, electronic polarisabilities (α) and energies

of low-lying electronic transitions for the ground state Li, Na and K have been

calculated using various correlated methods. The open-shell RHF (ROHF), spin-

unrestricted CC (UCCSD(T), UCCSDT), CASSCF, IC-MRCI, IC-MRCI+Q meth-

ods will be considered in conjunction with the ANO-RCC [141] contracted basis

sets. Explicitly, these basis sets are defined as [8s7p4d2f ] (Li), [9s8p5d2f ] (Be),

[9s8p5d4f ] (Na), [9s8p6d2f ] (Mg), [10s9p5d3f ] (K) and [10s9p6d2f ] (Ca) contrac-
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tions. The atomic properties of Li and Be have also been investigated using FCI, in

conjunction with the CVXZ [138] and ANO-RCC [141] basis sets. All basis sets em-

ployed in this thesis are included in Appendix A. For an (1, 2, . . . , n)s1,2(2, . . . , k)p6

electronic configuration, multi-reference methods employed an active space consist-

ing of (n + 1)s and (k + 1)p functions. The impact of relativistic effects on these

atomic properties will also be investigated. Where possible, comparison has been

made between the results of this work and prior theoretical and experimental data.

2.8.2. FCI Calculations of Li and Be

The convergence of various atomic properties of Li and Be as a function of

basis set has been considered using all-electron FCI. The conclusions reached from

this comparison will be extrapolated to all other alkali and alkaline-earth metals

considered here. Table 2.1 details the comparison between the values of IE1, α and

the 2PJ ← 2S1/2 and 3PJ ← 1S0 transition frequencies for Li and Be, respectively.

The basis sets considered here include the three largest ANO-RCC contractions [141]

and the CVXZ basis sets (X = T, Q, 5) [138]. The latter are defined as [6s5p3d1f ]

(X = T), [8s7p5d3f1g] (X = Q) and [10s9p7d5f3g1h] (X = 5) contractions. Also

given in Table 2.1 are FCI atomic properties of Be calculated using the aug-CVQZ

basis set [142], which consists of the [8s7p5d3f1g] basis set augmented with diffuse

(1s1p1d1f1g) functions added in an even tempered manner.

With respect to Li, Table 2.1 illustrates that the ANO-RCC basis sets are

more efficient and stable than are the CVXZ basis sets, for X=T, Q, 5. For example,

the addition of (1s1p1d1f) functions to the [6s5p2d] contraction increases the IE1

value by 0.0035 eV. A further addition of diffuse (1s1p1d1f1g) functions increases

the IE1 value by another 0.0006 eV. The basis set convergence for the CVXZ basis

sets is less noticeable. For example, the difference between IE1 for X = T and X = Q
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Table 2.1 Differences between FCI and experimentala atomic properties for Li
and Be.

Li
Basis Set IE1 α 2PJ ← 2S1/2 Timeb

(/eV) (/a3
0) (/eV) (/(h:m:s))

[6s5p2d]c −0.0080 −0.1 −0.0041 00:00:00.47
[7s6p3d1f ]c −0.0045 −0.1 −0.0012 00:00:02.38
[8s7p4d2f1g]c −0.0039 0.3 −0.0012 00:00:27.10
CVTZd −0.0128 −2.1 −0.0027 00:00:01.37
CVQZd −0.0031 −1.3 −0.0009 00:00:58.99
CV5Zd 0.0010 −1.1 −0.0003 00:17:29.65

Be
Basis Set IE1 α 3PJ ← 1S0 Timeb

(/eV) (/a3
0) (/eV) (/(h:m:s))

[7s6p3d]c −0.0138 −0.3 0.0009 00:00:37.79
[8s7p4d1f ]c −0.0093 −0.1 0.0004 00:05:20.00
[9s8p5d2f1g]c −0.0079 −0.1 0.0009 00:29:47.88
CVTZd −0.0196 −1.0 0.0221 00:00:25.44
CVQZd −0.0057 −1.0 0.0110 00:37:43.26
aug-CVQZe −0.0056 0.0 −0.0004 03:09:57.96
CV5Zd −0.0027 −0.5 0.0048 14:37:14.54

aExperimental data: IE1 see reference [143]; α see reference [144]; transitions see reference [143].
bCPU time for a single energy calculation, performed on an Intel 64 bit 1.6GHz Core 2 duo CPU,

4GB RAM, 500GB disk space. All data calculated using Molpro [86].
cANO-RCC basis set; see reference [141].
dSee reference [138].
eSee reference [4].

is 0.0097 eV, whereas the difference between IE1 for X =Q and X = 5 is 0.0041 eV,

with the latter value being the most accurate with respect to experiment. Similar

trends with respect to the calculated values of the 3PJ ← 2S1/2 transition frequency

are observed. For example, data in Table 2.1 indicate that for X = 5, convergence

has not yet been achieved. Due to the relative size of the CV5Z computation (largely

due to the presence of the contracted 3g and 1h functions), further augmentation

of the CV5Z contraction would be computationally prohibitive. Conversely, 3PJ ←

2S1/2 transition frequency values calculated using the [7s6p3d1f ] and [8s7p4d2f1g]

transition frequencies are identical, and differ from the [6s5p2d] value by 0.0029 eV.

With respect to α, all three ANO-RCC basis sets provide more accurate values, with
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respect to experiment, than the CVTZ, CVQZ and CV5Z basis sets for Li.

The CVXZ basis sets generally provide a more accurate value of IE1 than do

the ANO-RCC basis sets for Be. For example, from Table 2.1 it is evident that the

IE1 values calculated using the CVQZ, aug-CVQZ and CV5Z basis sets are all in

closer agreement with experiment than that calculated using the [9s8p5d2f1g] ANO-

RCC basis set. Nevertheless, the difference between the [8s7p4d1f ] and [9s8p5d2f1g]

ANO-RCC basis sets is only 0.0014 eV. Conversely, the α values for Be calculated

using the ANO-RCC basis sets are superior to those calculated using the CVXZ

basis sets. The single exception is the aug-CVQZ basis set, which gives an α value

in exact agreement with experiment. This is attributed to the presence of the

added diffuse (1s1p1d1f1g) functions. The disparate computation times between

the [9s8p5d2f1g] ANO-RCC and aug-CVQZ basis sets is also illustrated in Table

2.1. The [7s6p3d], [8s7p4d1f ] and [9s8p5d2f1g] ANO-RCC contractions for Be yield

3PJ ← 1S0 transition frequencies converged to 0.0005 eV. No such convergence is

observed with respect to the CVTZ, CVQZ and CV5Z contractions.

2.8.3. Relativistic Energy Corrections of Li, Be, Na, Mg, K and Ca

The inclusion of relativistic effects (not including spin-orbit effects) for alkali

and alkaline-earth metals is anticipated to be significant, particularly for those in

the second and third rows. Relativistic effects have been investigated for Li, Be, Na,

Mg, K and Ca using both the CG and DK schemes. In particular, the mass-velocity

and Darwin correction terms, as will as ROHF(CG) ROHF(DKn) (n = 2, 4 and

6) corrected energies have been calculated. The investigation of relativistic effects

on atomic energies has been limited to the ROHF level, since Harrison [145] has

shown that scalar relativistic effects are largely independent of the ab initio method

employed. The use of ROHF here also facilitates comparison with numerical DHF
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results [146]. These data are presented in Table 2.2.

The mass-velocity and Darwin correction terms for Li, Be, Na, Mg, K and Ca

increase in magnitude with increasing atomic number as anticipated. In particular,

the presence of a fully-occupied 2p shell creates a noticeable difference between

1st and 2nd row mass-velocity correction terms. For example, the mass-velocity

correction for Na is two orders of magnitude greater than that for Be. This difference

between the 2nd and 3rd row elements is smaller in a relative sense.

The CG corrections to the non-relativistic energy are perturbative and

are therefore not upper-bounds to the DHF energy. This is illustrated by the

ROHF(CG) energies for Na, Mg, K and Ca, for which the ROHF(CG) energy is lower

than the corresponding DHF energies. The differences between the ROHF(CG) and

DHF energies for K and Ca are very pronounced, the former values being ca. 31 and

Table 2.2 Relativistic ROHF energy corrections (/Eh) for Li, Be, Na, Mg, K and
Ca.

Li Be Na
ROHFa -7.43268712 -14.5728580 -161.822586
Mass-velocityb -0.00419850 -0.0149795 -1.317747
Darwinb 0.00346026 0.0120053 0.874815
ROHF(CG)b -7.43342536 -14.5758321 -162.265519
ROHF(DK2) -7.43338399 -14.5755048 -162.067248
ROHF(DK4) -7.43338401 -14.5755051 -162.067457
ROHF(DK6) -7.43338401 -14.5755051 -162.067457
DHFc -7.43353 -14.57591 -162.07777

Mg K Ca
ROHFa -199.555777 -598.390534 -675.757213
Mass-velocityb -2.002654 -46.135736 -60.768194
Darwinb 1.282932 11.862628 14.989167
ROHF(CG)b -200.275499 -632.663642 -721.536240
ROHF(DK2) -199.920722 -601.457945 -679.628294
ROHF(DK4) -199.921080 -601.464058 -679.636510
ROHF(DK6) -199.921081 -601.464076 -679.636537
DHFc -199.93488 -601.52556 -679.70984

aNon-relativistic value. All data calculated in conjunction with the largest ANO-RCC basis set
[141] for each metal using Molpro [86].
bCalculated using the CG scheme; see reference [58].
cNumerical value; see reference [146].
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42 Eh lower than the latter, respectively. This trend is anticipated however, due to

the inclusion of DK relativistic effects in the construction of the ANO-RCC basis

sets.

For Li and Be, convergence with respect to the ROHF(DKn) energies is

obtained essentially at n = 2, since the difference between ROHF(DK2) and

ROHF(DK6) is of the order of 1 µEh. For Na and Mg, the order of truncation

must be increased to n = 4 in order to achieve convergence in the ROHF(DKn)

energies. The ROHF(DK2), ROHF(DK4) and ROHF(DK6) energies for Na and

Mg are converged to within ca. 0.1 and 1 mEh, respectively, whereas for K and Ca

these methods are converged to within ca. 18 and 27 µEh, respectively. Discussion

of the effects of relativistic corrections with respect to atomic ionisation energies,

dipole polarisabilities and electronic transitions is included in following sections (vide

infra).

2.8.4. Ground State Properties of Li, Be, Na, Mg, K and Ca

Ab initio and experimental values of IE1 and P state transition frequencies

for M and M+ (M = Li, Be, Na, Mg, K and Ca) are compared in Table 2.3. Ab

initio values of α for Li, Be, Na, Mg, K and Ca are compared to experimental values

in Table 2.4. All ab initio values in Tables 2.3 and 2.4 have been reported in terms

of mean relative errors (∆), mean absolute errors (∆abs), standard deviations (σ)

and maximum absolute errors (∆max) from experiment. The error in a calculation

is defined as ∆i = (IE1)
calc.
i − (IE1)

expt.
i . Complete lists of IE1 values, transition

frequencies for M and M+, and α values for M are given in Appendix B.

Despite the appropriateness of using both ROHF and CASSCF wave func-

tions as a zero-order approximation to the atomic wave function, data from Tables

2.3 and 2.4 suggest that these methods perform relatively poorly for all species in
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Table 2.3 Comparison of calculated IE1 and transition frequencya values (/eV)
for M and M+ with experiment (M=Li, Be, Na, Mg, K and Ca).

Mc M+c

Methodb ∆ ∆abs. σ ∆max. ∆ ∆abs. σ ∆max.

ROHF 1.23 2.33 10.30 35.00 1.04 4.08 16.54 56.57
ROHF(DK2) 1.23 2.34 10.29 34.97 1.04 4.07 16.54 56.56
UCCSD(T) -0.01 -0.03 0.04 0.12 0.00 -0.07 0.07 0.21
UCCSD(T)(DK2) -0.01 -0.02 0.03 0.10 0.00 -0.07 0.08 0.24
UCCSDT -0.01 -0.04 0.04 0.12 0.00 -0.08 0.07 0.21
UCCSDT(DK2) -0.01 -0.02 0.03 0.10 0.00 -0.08 0.08 0.24
CASSCF 0.46 -1.22 1.16 3.12 0.02 -0.12 1.52 2.93
CASSCCF(DK2) -0.36 -1.79 1.31 3.87 -0.07 -0.99 1.25 2.88
IC-MRCI -0.02 -0.08 0.07 0.20 -0.01 -0.34 0.85 3.03
IC-MRCI(DK2) -0.02 -0.06 0.06 0.17 0.00 -0.09 0.09 0.25
IC-MRCI+Q -0.01 -0.04 0.04 0.13 0.00 -0.07 0.07 0.21
IC-MRCI+Q(DK2) -0.01 -0.03 0.04 0.11 0.00 -0.07 0.08 0.24

aCorresponding to the 2PJ ← 2S1/2 (M) and 3PJ ← 1S0 (M+) (M = Li, Na, K), and 3PJ ←
1S0 (M) and 2PJ ← 2S1/2 (M+) (M = Be, Mg, Ca). All transitions averaged over the J quantum
number where appropriate.
bIn conjunction with the largest ANO-RCC basis set for each metal. All data calculated using

Molpro [86].
cSee text for definition of ∆, ∆abs., σ and ∆max.. See reference [143] for experimental data.

question, regardless of relativistic corrections. From Table 2.3 for example, ∆max, ∆

and ∆abs for ROHF are observed to be generally two orders of magnitude larger than

those of all correlated methods considered. The values of these statistical metrics

with reference to the CASSCF method employed are generally one order of magni-

tude greater than the correlated methods considered. With respect to α, the ROHF

and ROHF(DK2) values of ∆max. listed in Table 2.4 correspond to K values. The

experimental α value of K is 292.9 a3
0 [147], and so the errors in these calculated

values are of a similar magnitude to the value itself.

The values of ∆, ∆abs, σ and ∆max in Tables 2.3 and 2.4 for both M and

M+ using CC indicate that little benefit is gained from the computation of the full

triples term in the CC expansion. It may be inferred therefore that convergence

is achieved using SD(T) excitation in the CC expansion with respect to all atomic

properties in question. It is also evident from values of ∆max that the inclusion of
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Table 2.4 Comparison of calculated and experimental α values (/a3
0) for Li, Be,

Na, Mg, K and Ca.

Methoda ∆ ∆abs. σ ∆max.

ROHF 0.16 26.18 33.93 94.07
ROHF(DK2) 0.15 24.50 31.54 87.62
UCCSD(T) 0.00 1.39 7.54 15.92
UCCSD(T)(DK2) -0.01 -0.16 5.97 10.07
UCCSDT 0.00 1.77 7.39 16.12
UCCSDT(DK2) 0.00 0.27 5.89 10.53
CASSCF 0.08 21.24 36.12 93.07
CASSCF(DK2) 0.06 18.57 33.68 85.62
IC-MRCI 0.01 3.21 12.19 27.48
IC-MRCI(DK2) 0.00 1.63 10.25 21.37
IC-MRCI+Q 0.00 0.83 8.08 15.79
IC-MRCI+Q(DK2) -0.01 0.27 8.65 15.79

aIn conjunction with the largest ANO-RCC basis set [141] for each metal. See text for definition
of ∆, ∆abs., σ and ∆max.. Comparison made using experimental (Li [148], Na [149], K [147], Ca
[147]) and theoretical (Be [147], Mg [150]) values. All data calculated using Molpro [86].

the DK2 correction slightly improves the agreement between calculated and exper-

imental P state transition frequencies and IE1 values for the neutral species. The

converse is true for the monocations, since the inclusion of the DK2 correction in

the UCCSD(T)/UCCSDT wave function increases ∆max from 0.21 to 0.24 eV. The

effects of scalar relativistic correction are more noticeable with respect to calculated

values of α. For example, the inclusion of the DK2 correction in the UCCSD(T),

UCCSDT and IC-MRCI wave functions improves these ∆max values by ca. 5-6 a3
0.

There is little difference between the overall performance of the CC and IC-

MRCI with respect the P state transition frequencies and IE1 values of Li, Be, Na,

Mg, K and Ca. This fact is implied from the differences in ∆, ∆abs, σ and ∆max

values calculated using these two methods. Nevertheless, it is observed that in the

case of the cations the ∆max values using CCSD(T), CCSDT and IC-MRCI are 0.21,

0.21 and 3.03 eV, respectively. This discrepancy is alleviated upon the inclusion of

+Q corrections in the latter method. For example, the ∆max value for the neutral

and ionic species atoms using IC-MRCI+Q are 0.07 and 2.82 eV lower than the
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IC-MRCI values, respectively. The inclusion of relativistic corrections in the IC-

MRCI and IC-MRCI+Q wave functions improves the values of all statistical metrics

employed for both the neutral and ionic species. The only exception is the ∆max

value using IC-MRCI+Q for the cations, which is increased from 0.21 to 0.24 eV

upon addition of the DK2 correction.

With respect to ∆, ∆abs., σ and ∆max., Table 2.4 shows that IC-MRCI and

IC-MRCI(DK2) perform more poorly than do either UCCSD(T) and UCCSDT.

This suggests that triplet (or higher) excitation from the reference determinant is

necessary for α to be modelled accurately. Inclusion of +Q corrections to the IC-

MRCI wave function provides a significant improvement in the calculated values of

α. For example, it is evident that ∆, ∆abs., σ and ∆max. using IC-MRCI+Q are

0.01, 2.38, 4.11 and 11.69 a3
0 smaller than those for IC-MRCI, respectively.

Although inclusion of the DK2 correction in the UCCSD(T), UCCSDT and

IC-MRCI wave functions significantly improves ∆, ∆abs., σ and ∆max. for α, the

same inclusion in the IC-MRCI+Q wave function has a more tempered effect. For

example, the values of ∆ and ∆abs. for IC-MRCI+Q(DK2) are lowered by 0.01 and

0.56 a3
0 with respect to IC-MRCI+Q, whereas σ for IC-MRCI+Q(DK2) is raised

by 0.57 a3
0 with respect to IC-MRCI+Q. There is no difference in the maximum

deviation from experiment upon inclusion of the DK2 correction to the IC-MRCI+Q

wave function.

2.9. Application to Molecular Calculations

2.9.1. Computational Procedure

The ROHF, UCCSD(T), CASSCF, IC-MRCI and IC-MRCI+Q methods

have been employed to determine equilibrium properties of MH2 (M = Li, Be, Na,
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Mg, K, Ca). These properties include Re, θe, De, and harmonic vibration fre-

quencies. Although this section discusses only the correlated methods listed above,

ROHF and CASSCF data are listed in Appendix B.

The CASSCF, UCCSD(T), IC-MRCI and IC-MRCI+Q methods each em-

ployed an optimised ROHF reference wave function. These methods have been

used in conjunction with the largest ANO-RCC contracted basis set for each metal

and the aug-cc-pVQZ basis set for hydrogen. The performance, with respect to

ground state metal hydride, helide and hydrohelide cations, of the hydrogen and

helium aug-cc-pVQZ basis sets has been established in a number of investigations

[4, 14, 34, 142, 151]. Relativistic effects have been accounted for in all calculations

using the DK2 correction to the one-electron Hamiltonian. All ground state wave

functions were constructed in the Cs symmetry framework, as were the 2Σ+
g excited

state wave functions of LiH2, NaH2 and KH2. For the 2B2 and 2B1 excited states of

LiH2, NaH2 and KH2, it was necessary that C2v symmetry be enforced on the molec-

ular wave functions (vide infra). The molecular CASSCF wave functions included

the 1s, 2s, 2p orbitals of H, 1− 3s, 2p, 3p orbitals of Li and Be, 1− 4s, 2− 4p, 3d

orbitals of Na and Mg and the 1− 4s, 2− 4p, 3d orbitals of K and Ca. Subsequent

CI calculations included all electrons for LiH2, BeH2, NaH2 and MgH2, whereas for

KH2 and CaH2, the 1s, 2s, 2p orbitals of K and Ca were excluded in the correlated

calculation. The effects of basis set superposition error (BSSE) with respect to the

equilibrium properties of BeH2, MgH2 and CaH2 have also been investigated. Where

possible, comparison has been made between the results of this work with previous

theoretical and experimental values.

In cases for which molecular hessians could not be constructed (viz. for multi-

reference and BSSE-corrected wave functions), harmonic frequencies were calculated

in the approximation of uncoupled normal modes. This entailed the construction of a
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discrete potential energy grid (typically consisting of 30-40 points within 0.2 a0 of the

equilibrium geometry), which was subsequently represented using a quadratic power

series [152] and embedded in the one-dimensional vibrational Schrödinger equation.

The Schrödinger equation was then solved numerically using an in-house Fortran

code, which employs a finite-element method and gaussian quadrature [66]. The

source code for all programs employed in this thesis are included in Appendix C.

Comparison between the harmonic frequencies obtained in this manner and those

generated using Molpro indicate an error generally no greater than 5-10 cm−1, a

value largely insignificant in the context of the present work.

2.9.2. Application to LiH2 NaH2 and KH2

Values of Re, θe and harmonic vibration frequencies ω1, ω2 and ω3 for the

lowest lying bound 2B2,
2B1 and 2Σ+

g states of MH2 (M = Li, Na, K) calculated

using UCCSD(T) are presented in Table 2.5. The relative energies of these states,

with respect to the [(2S1/2)M+(1Σ+
g )H2] asymptotic limit, are also given in Table

2.5. For the 2B2 states of MH2 (M = Li, Na, K), comparison between the results

of this work and previous theoretical values is given in Table 2.6. Complete lists of

ROHF, UCCSD(T), CASSCF, IC-MRCI and IC-MRCI+Q properties for the states

of MH2 (M = Li, Na, K) are given in Appendix B. Due to symmetry restrictions

upon the CASSCF/IC-MRCI wave function (as implemented in Molpro), harmonic

frequencies of the 2B2,
2B1 and 2Σ+

g states of MH2 (M = Li, Na, K) have not been

calculated.

The 2A1 PESs of LiH2, NaH2 and KH2 were found to be purely repulsive,

in agreement with previously established results [24]. This was also established for

the first excited 2Σ− state. The first excited 2B2 states of LiH2, NaH2 and KH2

were therefore the lowest bound states. These states are known to arise from an
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Table 2.5 Low-lying electronic states of MH2 (M = Li, Na, K) using UCCSD(T)a.

State Energyb Re(M-H) Re(H-H) θe Frequencies (/cm−1)
(/eV) (/Å) (/Å) (/◦) ω1 ω2 ω3

LiH2
2B2 1.0413 1.7127 0.8374 28.3 899 2732 1372
2B1 1.5150 1.9205 0.7516 22.6 591 4276 810
2Σ+

g 2.6117 1.7463 3.4926 180.0 909 325 1837
NaH2

2B2 1.5295 2.0810 0.7945 22.0 672 3313 1008
2B1 1.8033 2.2332 0.7484 19.3 469 4311 508
2Σ+

g 3.2167 2.0953 4.1906 180.0 838 131 1114
KH2

2B2 1.2399 2.5324 0.7736 17.6 454 3685 836
2B1 1.4065 2.7382 0.7459 15.7 319 4347 468
2Σ+

g 3.2825 2.5330 5.0659 180.0 677 130 907

aIn conjunction with the largest ANO-RCC basis set [141] for Li, Na, K and the aug-cc-pVQZ
basis set for H. All data include the DK2 correction and were calculated using Molpro [86].
bRelative to the (2S1/2)M+(1Σ+

g )H2 asymptotic limit, with Re(H2) = 0.7420 Å.

in-plane interaction between the np orbital of the metal and the H2 σu MO. An

analogous out-of-plane interaction leads to bound 2B1 excited states for LiH2, NaH2

and KH2. In particular, from Table 2.5 this interaction results in states 0.4737

(LiH2), 0.2738 (NaH2) and 0.1666 (KH2) eV higher in energy than the respective

2B2 states. The insertion of the metal into the H2 bond also results in bound species,

but is relatively unfavourable in an energetic sense. For example, the 2Σ+
g states of

LiH2, NaH2 and KH2 are 1.5704, 1.6872 and 2.0426 eV higher in energy than the

respective 2B2 states. In addition, ω2 values for LiH2, NaH2 and KH2 indicate that

the PES curvature in the symmetric bend mode co-ordinate is relatively small.

The Laplacian concentration of the 2B2,
2B1 and 2Σ+

g states of MH2 are

illustrated in Figure 2.1 for M = Li. For (2B2,
2B1)LiH2 the Laplacian concentrations,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.32)

are concomitant with the data in Table 2.5, with particular reference to the value
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Table 2.6 Ab initio properties of the 2B2 states of MH2 (M = Li, Na, K)a.

Energyb Re(M-H) Re(H-H) θe Frequencies (/cm−1)
(/eV) (/Å) (/Å) (/◦) ω1 ω2 ω3

LiH2

UCCSD(T) 1.0413 1.7127 0.8374 28.3 899 2732 1372
IC-MRCI 1.0217 1.6972 0.8399 28.7
IC-MRCI+Q 1.0186 1.6967 0.8407 28.7
HFc 1.9 0.79 24.0
Pseudo-MOd 1.9 0.74 25.1
MP2e 1.752 0.804 27.3
MCSCFf 2.0 0.79 22.8
DFT/B3LYPg 1.720
MRCIh 1.70 0.83 28.3

NaH2

UCCSD(T) 1.5295 2.0810 0.7945 22.0 672 3313 1008
IC-MRCI 1.6605 2.0954 0.7821 21.5
IC-MRCI+Q 1.5932 2.0842 0.7925 21.9
PNO-CEPAi 1.64 2.11 0.79 21.7
MCSCF/CIj 1.59 2.11 0.79 21.7
MP2k 1.700 2.11 0.79 21.7
MRCIDl 2.11 0.79 21.7 588

KH2

UCCSD(T) 1.2399 2.5324 0.7736 17.6 454 3685 836
IC-MRCI 1.1795 2.5992 0.7645 16.9
IC-MRCI+Q 1.2658 2.5663 0.7675 17.2

aUsing the largest ANO-RCC basis set [141] for Li, Na, K and the aug-cc-pVQZ basis set for H,
in conjunction with the DK2 correction. Harmonic frequencies were not determined using multi-
reference wave functions, due to symmetry considerations. All data calculated using Molpro

[86].
bRelative to the (2S1/2)M+(1Σ+

g )H2 asymptotic limit with Re(H2) = 0.7420 Å.
cRe(H-H) = 0.79 Å is assumed; see reference [153].
dPseudo-potential MO method. Re(H-H) = 0.74 Åis assumed; see reference [13].
eIn conjunction with a 6-311g(2d,2p) basis set; see reference [11].
fIn conjunction with a STO-3G basis set; see reference [154].
gIn conjunction with a 6-311++G** basis set; see reference [12].
hIn conjunction with [9s8p4d3f ] (Li) and [4s3p] (H) basis sets; see reference [5].
iIn conjunction with [12s7p3d] (Na) and [6s2p] (H) basis sets; see reference [24].
jIn conjunction with [8s6p1d] (Na) and [5s2p] (H) basis sets; see reference [23].
kAnalytical diabatic two-state fit to MP2 data, in conjunction with 2s2p2d augmented cc-pCVDZ

(Na) and 1s1p1d augmented cc-pCVTZ (H) basis sets; see reference [19].
lIn conjunction with [12s7p3d] (Na) and [6s2p] (H) basis sets; see reference [25].
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Figure 2.1 Laplacian concentrations for the 2A1,
2B2,

2B1 and 2Σ+
1 states of LiH2.

of Re(H-H). For example, the UCCSD(T) Re(H-H) values for these states are larger

than the UCCSD(T) Re(H2) value by 95.4 and 9.6 mÅ, respectively. Furthermore,

the UCCSD(T) ω2 values for (2B2)LiH2 and (2B1)LiH2, which essentially correspond

to the H - H stretch vibration, are 1667 and 123 cm−1 lower than the CCSD/aug-

cc-pVQZ ω(H2) value, the latter being 4399 cm−1. Similar observations are made

with respect to the 2B2,
2B1 states of NaH2 and KH2.

It is observed from Table 2.6 that for (2B2)LiH2 and (2B2)NaH2 the single-

and multi-reference methods employed in this work yield equilibrium structures in

good agreement. For instance, Re(Li-H) using UCCSD(T) is larger than the IC-

MRCI and IC-MRCI+Q values by 15.5 and 16.0 mÅ, respectively. The inclusion of

+Q corrections to the (2B2)NaH2 IC-MRCI wave function has a noticeable effect,

decreasing the Re(Na-H) value by 11.2 mÅ. There is concomitant agreement between

single- and multi-reference values of Re(H-H) and θe for both species. The MRCI

Re(Li-H) value of Sug Lee et al. [5] is larger than the IC-MRCI and IC-MRCI+Q

values by ca. 10 mÅ. Similarly, the MRCI θe value of Sug Lee et al. [5] is 0.4◦ smaller

than the IC-MRCI and IC-MRCI+Q values. The single- and multi-reference values

of Re(Na-H) of this work are significantly smaller than available published data,
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generally differing by ca. 20-30 mÅ.

No data concerning the equilibrium structure of the 2B2 state of KH2 has been

reported in the literature. Nevertheless, it is evident from Table 2.6 that UCCSD(T),

IC-MRCI and IC-MRCI+Q give reasonably consistent equilibrium structures. For

example, the value of Re(K-H) using UCCSD(T) is smaller than the IC-MRCI and

IC-MRCI+Q values by 66.8 and 33.9 mÅ, respectively. Conversely, the UCCSD(T)

value of Re(H-H) is larger than the IC-MRCI and IC-MRCI+Q values by 9.1 and

6.1 mÅ, respectively.

The differences between the UCCSD(T) and IC-MRCI results regarding the

equilibrium structures of (2B2)NaH2 and (2B2)KH2 may arise from several factors.

Firstly, the magnitude of the non-dynamical correlation, which is not accounted for

within the UCCSD(T) wave function, is expected to increase with increasing atomic

number. Secondly, the IC-MRCI method employed in this work is truncated at

second-order (viz. IC-MRCISD). Higher order expansion terms, which may prove

significant with respect to molecular geometries are therefore ignored. However,

approximation to these terms are made through the use of the (T) correction to the

UCCSD wave function and the +Q correction to the IC-MRCI wave function. The

UCCSD(T) and IC-MRCI+Q are therefore expected to yield better agreement with

respect to observables such as equilibrium structures and fundamental frequencies.

2.9.3. Application to BeH2 MgH2 and CaH2

Ab initio values of Re and harmonic vibration frequencies ω1, ω2 and ω3 for

(1Σ+
g )BeH2, (1Σ+

g )MgH2 and (1Σ+
g )CaH2 are presented in Table 2.7. The potential
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well-depths for the dissociative reactions,

(1Σ+
g )MH2 → (2Σ+)MH + (2S1/2)H (2.33)

(1Σ+
g )MH2 → (1S0)M + 2H (2.34)

(where M = Be, Mg, Ca) are also given in Table 2.7.

From Table 2.7 the correlated methods employed in this work yield

(1Σ+
g )BeH2 and (1Σ+

g )MgH2 equilibrium structures in excellent agreement with the

experimental gas-phase values [28, 36, 155]. For instance, the largest differences

between experiment and the values of this work are 0.7 and 4.32 mÅ, respectively,

both of which correspond to the IC-MRCI values. Moreover, the equilibrium bond

lengths of (1Σ+
g )MgH2 agree with the IC-MRCI CBS limit values of Li et al. [28] to

within 18.1 mÅ, and the IC-MRCI+Q/CBS values of Li and Le Roy [35] to within

4.0 mÅ. The differences between Re(MgH2) values of this work and the CCSDT and

CISDTQ values of Tschumper and Schaefer [33] are slightly larger, being at most

19.3 mÅ. No experimental equilibrium bond length for the ground state of CaH2

has been reported to date. It is evident however that compared to the CCSD(T)

value of Koput [40], the values of this work are larger by ca. 10 mÅ. As expected,

the ROHF and CASSCF equilibrium bond lengths were consistently larger than the

UCCSD(T) and IC-MRCI values for (1Σ+
g )BeH2, (1Σ+

g )MgH2 and (1Σ+
g )CaH2 (see

Appendix B). Similarly, the inclusion of +Q corrections to the IC-MRCI wave func-

tion consistently shortened the equilibrium bond length (with respect to IC-MRCI)

(1Σ+
g )BeH2, (1Σ+

g )MgH2 and (1Σ+
g )CaH2. The ground state of CaH2 is predicted

to be linear with all methods employed in this work. This is in agreement with

CASSCF [41] and CISD+Q [43] values. However, previous CCSD(T) [40], MP2

[42] and HF [44] calculations indicate a bent equilibrium CaH2 structure. This is
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Table 2.7 Ab initio properties of the 1Σ+
g ground states of MH2 (M = Be, Mg,

Ca).

Re De
a Frequencies

(/Å) (/kJmol−1) (/cm−1)
Method 1 2 ω1 ω2 ω3

BeH2

UCCSD(T)b 1.3267 406.20 616.31 2049 719 2258
IC-MRCIb 1.3271 406.82 616.04 1998 730 2241
IC-MRCI+Qb 1.3269 406.08 616.28 1997 731 2243
CCSD(T)c 1.3307 2052.22 717.18 2254.75
IC-MRCI+Qd 1.3307 406.32 1983.16 710.67 2169.83
FCI/cc-pVQZc 1.3310
Expt.e 1.3264 2178.87

MgH2

UCCSD(T)b 1.6954 304.47 436.58 1611 435 1631
IC-MRCIb 1.6915 301.28 435.16 1680 465 1868
IC-MRCI+Qb 1.6935 305.75 441.08 1607 455 1809
CCSD(T)f 1625.3 457.5 1651.7
CCSDTg 1.7108 1601.8 438.0 1628.4
CISDTQg 1.7108 1601.6 438.0 1628.2
IC-MRCI/CBSh 1.7096 305.66 445.43 1552.4 437.7 1575.6
IC-MRCI+Q/CBSi 1.69549 304.70 438.28 1627.07 437.43 1629.50
Expt.j 1.69582 437 1588.67

CaH2

UCCSD(T)b 2.0548 260.21 426.18 1258 111 1327
IC-MRCIb 2.0629 251.97 434.75 1438 128 1326
IC-MRCI+Qb 2.0566 257.14 432.34 1359 125 1285
CCSD(T)k 2.0452 1223 116.1 1298.5

aDe(1) and De(2) refer to equations (2.33) and (2.34), respectively.
bThis work, in conjunction with the largest ANO-RCC basis sets for Be, Mg and Ca, and the

aug-cc-pVQZ basis set for H. All calculations include DK2 correction and were calculated using
Molpro.
cCCSD(T) and FCI values calculated using the cc-pCV5Z and cc-pVQZ basis sets, respectively;

see reference [15].
dIn conjunction with the aug-cc-pV5Z basis set; see reference [16].
eSee reference [155].
fIn conjunction with the ECP10MWB effective core potential; see reference [156].
gIn conjunction with the cc-pVQZ basis set; see reference [33].
hSee reference [28].
iSee reference [35].
jUsing experimental B0 value [36] and theoretical αi value [28]. Experimental R0 value is 1.703327

Å; see reference [36].
kIn conjunction with cc-pCV5Z (Ca) and cc-pV5Z (H) basis sets; see reference [40]. The predicted

value of θe using this method is 164.37 ◦.
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in agreement with the experimentally measured structures [39, 45], which were de-

termined using cold rare-gas matrix isolation techniques. Koput [40] reported that

in the HCaH bend co-ordinate, the ground state CaH2 PES possesses a barrier to

linearity of only 6 cm−1.

For (1Σ+
g )BeH2, the single- and multi-reference potential well-depths for equa-

tion (2.33) are in agreement with previous ab initio values to within 0.5 kJmol−1.

The potential well-depths of (1Σ+
g )MgH2 calculated in this work are also in agree-

ment with previous ab initio data. For instance, for equations (2.33) and (2.34)

the values of this work are in agreement with the IC-MRCI/CBS values of Li et

al. [28] to within ca. 4 and 10 kJmol−1, respectively. There are no experimental

or correlated ab initio dissociation energy data available in the literature for the

ground state of CaH2. Nevertheless, the methods employed in this work predict the

potential well-depth to be ca. 69 - 76 kJmol−1 larger the CASSCF value of Fujii

and Iwata [41]. Similarly, these methods predict this potential well-depth to be ca.

100 - 110 kJmol−1 larger than the HF value of DeKock et al. [44].

There is excellent agreement between the (1Σ+
g )BeH2 CCSD(T) harmonic

frequencies of Koput [15] and those of this work. In particular, the UCCSD(T)

results in Table 2.7 differ from the former by no more than ca. 4 cm−1. Similarly,

for the multi-reference methods employed, there is good agreement with respect to

the IC-MRCI+Q data of Li and Le Roy[16]. For example, the differences between

these IC-MRCI+Q values for ω1 and ω2 are ca. 14 and 21 cm−1. For ω3 this

difference is larger, being ca. 73 cm−1. For (1Σ+
g )MgH2 the UCCSD(T) values of

ω1, ω2 and ω3 differ from the CC and CI values of Tschumper and Schaefer [33] by

at most ca. 9, 4 and 3 cm−1, respectively. It should be noted here that the latter

CCSDT and CISDTQ values are converged with respect to the level of excitation

employed. With respect to the multi-reference harmonic frequencies for (1Σ+
g )MgH2,
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the magnitude of the differences between the results of this work and prior theoretical

values can be understood in terms of the relative PES curvatures. For the ground

state of CaH2 there is generally good agreement between UCCSD(T) data and the

CCSD(T) values of Koput [40]. For instance, the largest differences for ω1, ω2 and

ω3 are ca. 25, 6 and 30 cm−1, respectively.

2.9.4. Basis Set Superposition Error

Increasing the number of basis functions or adding higher angular momentum

functions in molecular calculations may result in an erroneous improvement of the

basis set on one nucleus by that centred on neighbouring nuclei, a phenomenon

commonly known as BSSE. In particular, vacant orbitals on one atomic centre may

spuriously account for basis set deficiencies on a neighbouring atom [157]. The

‘apparent’ interaction energy will therefore contain an additive contribution to the

‘pure’ interaction energy. In this sense, BSSE is a measure of the completeness of a

particular basis set [151]. The BSSE may also be influenced by the inclusion of core

correlation in a valence only basis set [158]. Although BSSE is relatively unnoticeable

in covalently and ionically bonded molecules, the BSSE in van der Waals systems

(such as molecular helide ions) is often comparable to the total binding energy of the

system itself [74]. The counterpoise correction method [159] negates BSSE by the

calculation of fragment atomic/molecular energies in the combined molecular basis

set. Generalisations of this counterpoise scheme have been proposed [160, 161]. In

particular, the site-site function counterpoise (SSFC) method [160], which provides

a many-body extension to the counterpoise scheme, defines the corrected energy to

be,

∆ESSFC = E (IJK . . .)−
∑
I

E (IGJKL...) (2.35)
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where E (IJK . . .) is the molecular energy and E (IGJKL...) is the molecular energy

using the molecular basis set whilst ignoring nuclei JKL. . .. The SSFC correction

has been used to good effect on several van der Waals systems, such as He2 and He3

[160] BeHe+
2 [142, 162, 163], MH2, HMHe+ and MHe2+

2 where M = Be, Mg and Ca

[14, 34].

Equilibrium properties including Re, potential well-depths and harmonic vi-

bration frequencies of (1Σ+
g )BeH2, (1Σ+

g )MgH2 and (1Σ+
g )CaH2 have been calculated

using SSFC-corrected UCCSD(T), IC-MRCI and IC-MRCI+Q. These data are pre-

sented in Table 2.8, in terms of differences from the uncorrected values given in

Table 2.7. ROHF and CASSCF data have also been calculated, and are included in

Appendix B.

It is evident from Table 2.8 that the SSFC correction to the equilibrium

structure of (1Σ+
g )BeH2 is almost negligible, since each of the UCCSD(T), IC-MRCI

and IC-MRCI+Q values of Re change by less than 1 mÅ. The difference in these

respective energies upon inclusion of the SSFC correction is approximately of the

order of 0.1 - 1.0 mEh. These differences manifest themselves primarily in the

calculated potential well-depths for (1Σ+
g )BeH2. Similar observations are made with

respect to (1Σ+
g )MgH2. For instance, SSFC-corrected UCCSD(T), IC-MRCI and IC-

MRCI+Q energies are ca. 0.1 - 0.7 mEh higher than the uncorrected analogues. The

differences in Re using these corrected methods are slightly larger, being of the order

of 1 mÅ. The effects of the SSFC correction are more noticeable for (1Σ+
g )CaH2. In

particular, the Re values calculated using UCCSD(T), IC-MRCI and IC-MRCI+Q

are increased by 8.64, 5.31 and 5.92 mÅ, respectively. The SSFC-corrected energies

of (1Σ+
g )CaH2 using these methods are ca. 1 - 3 mEh larger than the uncorrected

energies. This is also reflected in the differences between corrected and uncorrected

potential well-depths. For example, the SSFC correction decreases the IC-MRCI and
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Table 2.8 BSSE corrections to equilibrium properties of (1Σ+
g )MH2 (M = Be, Mg,

Ca)a.

∆Energy ∆Re ∆De
b Frequencies

(/mEh) (/mÅ) (/kJmol−1) (/cm−1)
1 2 ∆ω1 ∆ω2 ∆ω3

BeH2

UCCSD(T) 0.11891 0.12 −0.30 −0.31 −80 22 −2
IC-MRCI 1.46648 0.16 −0.79 0.15 −26 23 17
IC-MRCI+Q -0.26161 0.12 −1.97 −1.73 −16 −9 −40

MgH2

UCCSD(T)c 0.70552 2.61 −0.87 −1.88 −20 −4 1
IC-MRCIc 0.17840 2.45 −0.68 −0.46 35 −50 −111
IC-MRCI+Qc 0.15750 2.47 −0.35 −6.38 32 −3 −135

CaH2

UCCSD(T)c 1.72443 8.64 1.59 2.32 −6 10 −23
IC-MRCIc 3.51676 5.31 6.53 −15.75 −129 −6 41
IC-MRCI+Qc 2.11513 5.92 4.16 −11.24 −88 −4 20

aBSSE was treated within the SSFC scheme [160]. All calculations include DK2 correction and
employ the largest ANO-RCC basis sets for Be, Mg and Ca, and the aug-cc-pVQZ basis set for H.
All calculations performed using Molpro.
bDe(1) and De(2) refer to equations (2.33) and (2.34), respectively.
cBSSE corrected data; see reference [34].

IC-MRCI+Q atomisation energy values of (1Σ+
g )CaH2 by 15.75 and 11.24 kJmol−1,

respectively.

The most noticeable effect of the SSFC correction for (1Σ+
g )BeH2, (1Σ+

g )MgH2

and (1Σ+
g )CaH2 occurs with respect to the respective PES curvatures. This is evident

from the values of ∆ω1, ∆ω2 and ∆ω3 given in Table 2.8. As expected, the effects of

BSSE are generally the largest for ω1 and ω3, which correspond to the fundamental

frequencies in the symmetric breathe and asymmetric stretch modes of vibration,

respectively. For example, using UCCSD(T) the value of ω1 for (1Σ+
g )BeH2 decreases

by ca. 80 cm−1 upon inclusion of the SSFC correction. Similarly, for (1Σ+
g )MgH2 the

SSFC-corrected IC-MRCI and IC-MRCI+Q values of ω3 are ca. 111 and 134 cm−1

lower than the uncorrected values. For (1Σ+
g )CaH2, the IC-MRCI and IC-MRCI+Q

values of ω1 are decreased by ca. 128 and 87 cm−1 using the SSFC correction,

respectively.
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2.10. Conclusion

The application of the Dirac and Schrödinger equations has been reviewed

with respect to atomic and molecular electronic structure. Exact solutions to both

the atomic and molecular Schrödinger equation are achievable for only the simplest

systems. Within the Born-Oppenheimer approximation, the molecular Schrödinger

equation is simplified greatly. The use of MO-based electronic structure methods

may also be employed to approximate the solutions to the Schrödinger equation.

However, for results of chemical accuracy the use of MO-based correlated methods

are required.

Both SCF and post-SCF methods have been applied to the ground states of

Li, Be, Na, Mg, K and Ca and the respective monocations. In particular, properties

including IE1, α and electronic transition frequencies have been calculated using

ROHF, UCCSD(T), UCCSDT, CASSCF, IC-MRCI and IC-MRCI+Q. The rela-

tivistic ANO-RCC basis sets [141] were found to provide a relatively efficient and

accurate description of the ground state electronic wave functions of these atoms.

The CG [58] and DK [59, 60] relativistic schemes have also been investigated with

respect to these properties. While the CG scheme was found to be unreliable, the

inclusion of the DK2 relativistic correction was shown to generally improve atomic

properties. Excitations greater than singles and doubles in the correlated methods

were found to be beneficial with respect to calculated atomic properties. For in-

stance, IE1 and α calculated using CC methods were found to have converged at

the SD(T) level of excitation. Similarly, the +Q correction to the IC-MRCI wave

function improved the values of IE1, α and the electronic transition frequencies

considered.

The structures and stabilities of MH2 (M = Li, Be, Na, Mg, K, Ca) have been

investigated using the methods listed previously. The DK2 correction was included
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in all molecular calculations. From a comparison of equilibrium molecular structures

using these correlated methods it was observed that excitations beyond singles and

doubles were necessary for reliable results. To this end, IC-MRCI+Q was generally

the most suitable method for the calculation of molecular properties. Nevertheless,

UCCSD(T) also provided accurate results which were often in excellent agreement

with the IC-MRCI+Q values.

The effects of BSSE on (1Σ+
g )BeH2, (1Σ+

g )MgH2 and (1Σ+
g )CaH2 were inves-

tigated by the use of the SSFC correction scheme [160]. The magnitude of the SSFC

correction to the molecular energy increased with increasing atomic number, as ex-

pected. A concomitant increase in the correction to the equilibrium bond lengths

and dissociative potential well-depths was also observed. The inclusion of the SSFC

correction produced a marked effect on the calculated molecular properties. In par-

ticular, corrected harmonic frequencies were observed to differ from the uncorrected

values by up to ca. 100 cm−1.

The correlated methods discussed in this Chapter have been subsequently

employed throughout the remainder of this thesis for MHn+
2 , HMHen+ and MHen+

2

(n = 1, 2, M = Li, Be, Na, Mg, K, Ca).
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CHAPTER 3

Ab Initio Property Surfaces of Triatomic

Molecules

3.1. Introduction

The calculation of ab initio rovibrational energies and radiative properties of

a molecule requires detailed knowledge of the molecular PES and DMS, respectively.

Moreover, functional forms of the molecular PES and DMS are required for rovi-

brational calculations. To this end, some parametrisation of the ab initio property

surface (in terms of the 3N -6(5) internal nuclear co-ordinates) must be performed.

One common approach is to employ a Taylor series expansion in a set of

chosen co-ordinates [1]. This is defined in terms of the derivatives of the molecular

property of interest. Such an approach is conceptually simple and therefore easily

implemented. Moreover, a Taylor series expansion is applicable to all molecules,

and is limited in accuracy by the order at which the expansion is truncated. The

topology of the molecular property surface also affects the accuracy of the Taylor

series expansion. The portion of the molecular property surface which is modelled

accurately is therefore often restricted. For example, the property surfaces of weakly

bound molecular systems (such as those under investigation in the present work)

are particularly difficult to describe using this method.

Alternatively, molecular property surfaces may be constructed by fitting an

explicit mathematical expression to a discrete grid of ab initio points. Such an

expression may either be an interpolative or analytical function [2]. For instance,
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Sutcliffe and Tennyson [3, 4] have employed interpolative Legendre polynomials,

whereas Carter and Handy [5–10] have employed Morse-type functions in order to

approximate the potential functions of triatomic molecules. Kraemer and Špirko

[11] have employed Legendre polynomials in the approximation of the potential

energy functions (PEFs) and dipole moment functions (DMFs) of LiH+
2 and HeH+

2 .

Malik et al. [12] have compared the use of Hermite and Lagrange interpolation with

that of cubic spline functions for approximating potential functions used in the one-

dimensional Schrödinger equation. The latter authors concluded that the efficacy

of any interpolative potential function depends largely on the quality and nature of

the discrete ab initio grid itself, regardless of the interpolation scheme employed.

It is therefore recommended that any interpolative potential function relies on an

extensive and dense ab initio grid [13]. This is illustrated by the work of Li and

Le Roy [14, 15], who constructed analytical PEFs of BeH2 and MgH2 using cubic

spline interpolation over non-uniform direct-product energy grids consisting of 6864

and 9030 symmetrically unique points, respectively.

Conversely, a molecular property surface may be represented analytically us-

ing a least-squares fitted function, such as a power series expansion or Padé approxi-

mant function. This approach has been used extensively by von Nagy-Felsobuki and

co-workers [13, 16] for the potential functions of triatomic molecules. Power series

expansions have also been employed with respect to molecular DMFs of triatomic

molecules. For instance, Carney and Porter [17, 18] and Wang et al. [16, 19–22]

have employed power series expansions of rectlinear normal co-ordinates to generate

analytical DMFs. Jensen [23] and Kadziora and Shavitt [24] have generated molec-

ular DMFs using power series expansions of internal co-ordinates and trigonometric

functions thereof. In a similar fashion, Gabriel et al. [25] constructed a DMF for
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H2O using power series expansions of internal displacement co-ordinates. Following

a systematic study of DMFs of H2O, Lynas-Gray et al. [26] concluded that the most

reliable DMF was that obtained using the scheme of Gabriel et al. [25]. A similar

conclusion was reached by Sudarko [27], who compared the use of power series ex-

pansions of rectilinear normal co-ordinates and internal displacement co-ordinates

for the DMF of the ground state of CHe3+
2 .

An advantage of both approaches outlined above is that the topology of

the molecular property surface is defined explicitly by the discrete grid of ab ini-

tio points. This allows a greater portion of the surface to be modelled accurately.

A global surface may therefore be achieved for a sufficiently large set of discrete

points, although this may be computationally prohibitive. Nevertheless, the con-

struction of a molecular property surface using a fitting scheme is not a ‘black box’

process. In addition, least-squares fitting methods are often numerically sensitive

with respect to the number and position of the discrete points on the hypersurface.

In an effort to alleviate this problem, von Nagy-Felsobuki and co-workers [2, 13, 28]

have employed singular value decomposition (SVD) [29, 30] in the optimisation of

the PEF and DMF parameters. Fitted molecular property surfaces also require

physical inspection in order to ensure that the surface concurs with the anticipated

physical properties of the system in question. Thus a more intensive effort is usually

necessary for their construction.

The present Chapter is concerned with the analytical representation of dis-

crete ab initio molecular property hypersurfaces of triatomic molecular systems

(i.e. stage (c) of Figure 1.1). Existing least-squares fitting algorithms [2] will be

employed in conjunction with power series and Padé approximant analytical func-

tions for the PEFs of (1A1)LiH+
2 [31] and (1A1)BeH2+

2 [32] and (1Σ+
g )BeHe2+

2 [33].
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The DMFs of these species will also be constructed using power series expansions

in the manner of Gabriel et al. [25]. The use of SVD analysis in the optimisation of

PEF coefficients will also be illustrated using (1A1)BeH+
2 [32].

The set of molecules considered in this Chapter followed two primary motiva-

tions. Firstly, (1A1)LiH+
2 and (1A1)BeH2+

2 are isoelectronic and therefore comparison

of the topologies of these ground state PESs is of interest. Secondly, comparison

between the PESs of (1A1)BeH2+
2 and (1Σ+

g )BeHe2+
2 will assist in highlighting the

differences exhibited by hydride and helide bonding with respect to the Be2+ cation.

The Fortran PES and DMS fitting/visualisation programs of Searles and

von Nagy-Felsobuki [2, 34, 35] (fit powpad, fit dipcs, g plot pes 1 and dms plot re-

spectively) have been modified in this work and employed to generate analytical

PEFs and DMFs of triatomic molecules. All plotting codes employ the Nag For-

tran plotting routines [36]. The source code for all programs employed in this

thesis is provided in Appendix C.

3.2. Potential Energy Surfaces and their Analytical Representation

3.2.1. Potential Energy Functions using Least-Squares Regression

The construction of an analytical PEF based on a discrete grid of ab ini-

tio points is generally approached so as to minimise the number of points on the

PES, without compromising the accuracy of the PEF. It is therefore desirable to

include points coincident with potential energy integral quadrature points in the

discrete PES. The numerical quadrature method used throughout this work is that

of Harris, Engerholm and Gwinn (HEG) [37] and employs up to 8000 quadrature

points in the diagonalisation of the rovibrational Hamiltonian. This ensures conver-
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gence in the lowest-lying vibrational eigenvectors and eigenvalues [13]. By using the

HEG quadrature scheme, generally only 50− 100 points are required in the discrete

ab initio PES. The initial distribution of discrete points are placed along each nor-

mal co-ordinate, thus ensuring that there is a concentration of points in the vicinity

of the PES minimum.

An analytical PEF is constructed employing the following criteria [2, 13]:

1. The PEF should have a quantum mechanical basis;

2. The PEF real plane convergence properties should suggest a physically rea-

sonable region of acceptability;

3. The PEF should accommodate several different types of experimental data;

4. The evaluation and analysis of the expansion coefficients should be systematic

and amenable to numerical regression procedures;

5. The error in the PEF should not exceed that associated with the ab ini-

tio method employed for the PES, and;

6. The PEF should be consistent with the anticipated physical properties of the

molecule in question (viz. be smooth throughout the domain of interest and

exhibit monotonically increasing dissociative barriers).

These criteria, in conjunction with the least-squares method of von Nagy-Felsobuki

and co-workers [2, 13, 28], will be employed in the generation of molecular PEFs

throughout this work.

The accuracy and physical quality of a molecular PEF depend on both the

expansion co-ordinate employed and the functional form of the PEF itself. The

expansion variables employed in the present work include the Simons-Parr-Finlan
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(SPF) [38], Ogilvie (OGL) [39] and Dunham (DUN) [40, 41] and the exponential

analogues thereof (denoted ESPF, EOGL and EDUN, respectively [13, 42]). These

expansion variables are defined as,

ρSPF
i =

ri − r0
i

ri
(3.1)

ρOGL
i =

2(ri − r0
i )

ri + r0
i

(3.2)

ρDUN
i =

ri − r0
i

r0
i

(3.3)

ρESPF
i = 1− exp(−ρSPF

i ) (3.4)

ρEOGL
i = 1− exp(−ρOGL

i ) (3.5)

ρEDUN
i = 1− exp(−ρDUN

i ) (3.6)

where ri and r0
i are the instantaneous and equilibrium bond lengths, respectively.

Consequently, these expansion variables have a quantum mechanical basis and there-

fore satisfy criterion one [2].

The power series expansion of the variables (3.1-3.6) is of form,

V (ρ1, ρ2, ρ3) = V0 +
3∑
i=1

C
(1)
i ρi +

3∑
i=1

3∑
j=1

C
(2)
ij ρiρj

+
3∑
i=1

3∑
j=1

3∑
k=1

C
(3)
ijkρiρjρk +

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

C
(4)
ijklρiρjρkρl + . . .

(3.7)

where the coefficients C
(1)
i , C

(2)
ij , C

(3)
ijk , C

(4)
ijkl, . . . are optimised variationally. The Padé

approximant expansion of these variables is defined in a similar fashion,

V (ρ1, ρ2, ρ3) = P (m,n) =

∑m
i,j,k=0 Cijkρ

i
1ρ
j
2ρ
k
3∑n

i′,j′,k′=0Ci′j′k′ρi
′

1 ρ
j′

2 ρ
k′
3

(3.8)
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where i+ j + k ≤ m and i′ + j′ + k′ ≤ n. As with the power series expansion (3.7),

the coefficients Cijk and Ci′j′k′ of equation (3.8) are optimised variationally. Padé

approximants have been found to be generally more accurate with respect to the

discrete ab initio PES [13]. As such, Padé approximants are expected to be more

likely to satisfy criterion five.

For a discrete PES grid consisting of N ab initio points, the least-squares

model for determining the coefficients of a PEF is defined as,

V fit
i ≈

N∑
i=1

βijCj (3.9)

where Vfit is a N × 1 matrix, β is a N ×M matrix (for which βij contains the jth

independent basis function at the ith point on the discrete PES) and Cj is a M × 1

matrix (for which Cj contains the jth coefficient of the PEF), such that M < N . It

is required that C minimises the value of (χ2)
1/2

,

(
χ2
)1/2

=

[
N∑
i=1

(
V fit
i − V ai

i

)2

]1/2

(3.10)

where Vai is a N × 1 matrix containing the ab initio points of the discrete PES.

3.2.2. Singular Value Decomposition Analysis

It is necessary, but not sufficient, that the coefficients C that define a PEF

provide a minimum value of (χ2)
1/2

. The coefficients C must also define a physically

acceptable PEF in the domain of interest, according to criterion six. Determining

such coefficients is notoriously difficult, particularly for higher order power series

and Padé expansions. Indeed, the near-rank deficiencies in least-squares fitting
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algorithms impact greatly on the suitability of a molecular PEF. This fact has

been illustrated by von Nagy-Felsobuki and co-workers [28] and Carney and Porter

[17, 43], with respect to the ground state of H+
3 . The optimisation of C may be

assisted by employing the matrix factorisation technique of SVD [13, 28–30].

Re-writing equation (3.9) in matrix notation gives,

Vfit ≈ βC (3.11)

The residuals χ2 are now of form,

χ2 =
(
Vai − βC

)T (
Vai − βC

)
(3.12)

Equation (3.11) is equivalent to the set of diagonal equations,

V′ ≈ SC′ (3.13)

where S = UTβW for orthogonalN×N andM×M matrices U and W, respectively.

The singular values of β, σj, are the diagonal entries of S and are such that σj ≥ 0

for j = 1, 2, . . . ,M . Provided that σj 6= 0 ∀j, the coefficients of the PEF using SVD

are defined as,

C ′j =
V ′j
σj

(3.14)

and the residuals may then be re-written,

χ2 = (c− Sd)T (c− Sd) (3.15)
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where c = UTVai and d = Wβ. The minimum residual is defined as,

χ2∗ =
N∑
i=1

c2
i (3.16)

which may be obtained using the solution vector,

β = WTd (3.17)

where,

di =
ci
σi

(3.18)

Those entries for which C ′j >> V ′j correspond to the jth column of VT , the

latter being a linear combination of parameters which is poorly determined by the

data. In such cases treating σj as zero results in an increase of χ2,

χ2 = χ2∗ + c2
j (3.19)

As such, the use of SVD analysis with respect to PEF coefficients C results in a

less precise fit. This is generally accompanied by a more acceptable PEF topology,

devoid of fitting ‘artefacts’ etc.

3.2.3. Potential Energy Surface of (1A1)LiH+
2

The LiH+
2 complex arises from the anisotropic interaction between the charge

of the Li+ ion and the H2 quadrupole moment [31, 44]. This fact is reflected in the

binding energies of the complex, being ca. 0.28 eV. In addition, the ground state

of LiH+
2 exhibits a C2v equilibrium structure with a bond angle of ca. 21◦ and
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bond lengths of ca. 2.0 Å. LiH+
2 is also an electron-sparse system (possessing only

4 electrons) and is therefore amenable to the most advanced ab initio methods

available. As such, many theoretical investigations have scrutinised the nature of

the the LiH+
2 PES [11, 31, 45–62].

For example, Lester [47, 48] constructed a 150-point ab initio HF PES us-

ing the basis sets of Huzinaga [63]. Similarly, Russek et al. [55] calculated a 120-

point HF PES for classical trajectory studies involving the LiD+
2 collision complex.

Kutzelnigg et al. [64] highlighted that the electron correlation within the H2 frag-

ment was not constant for collinear Li+-H2 collisions, inferring that the PESs of

Lester [47, 48] and Russek et al. [55] may be deficient in the corresponding regions

of the PES. Furthermore, Kutzelnigg et al. [64] incorporated electron correlation

using a paired natural orbital-independent electron pair approximation to construct

a 300-point PES. Kochanski [50] constructed a LiH+
2 PES which included electron

correlation via the use of an Epstein-Nesbet partition of the molecular Hamiltonian.

As neither of these methods employed by Kutzelnigg et al. [64] or Kochanski [50]

were variational, Searles and von Nagy-Felsobuki [44] constructed a 170-point CISD

PES. Gianturco and co-workers [58–61] employed multi-reference valence bond the-

ory and MRCI in the construction of a ground state LiH+
2 PES, to elucidate the

nature of the reaction dynamics present in the LiH+
2 collision complex. Bulychev et

al. [62] employed an MP2 PES for first reported calculation of LiH+
2 spectroscopic

properties. More recently, Kraemer and Špirko [11] employed MRCI and CCSD(T)

in the construction of a ground state LiH+
2 PES and DMS for a similar purpose.

Similarly, Page and von Nagy-Felsobuki [31] employed FCI to construct an 83-point

PES and 47-point DMS, for the calculation of rovibrational spectra of LiH+
2 .

Page and von Nagy-Felsobuki [31] have investigated the 1A1 ground state of
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LiH+
2 using full CI (FCI) (as implemented in Molpro [65]), in conjunction with the

CVTZ (Li) [66] and aug-cc-pVTZ (H) basis sets [67]. All electrons were correlated

in the FCI calculation. At this level of theory, θe and Re of the 1A1 ground state

of LiH+
2 were determined to be 21.4◦ and 2.027 Å, respectively. In addition, the

potential well-depth (De) for the [LiH+
2 → (1S0)Li+ + (1Σ+

g )H2] dissociation channel

was calculated to be 0.266 eV. This well-depth agreed favorably with the previously

calculated values of 0.263 eV (MP2) [62], 0.255 eV (CCSD) [56] and 0.258 eV (CISD)

[44]. With respect to experiment, D0 has been measured to be 0.282±0.199 eV [68].

Any comparison with the corresponding experimental De and these calculated values

would be futile, due to the magnitude of error in the experimental measurement.

The FCI PES of (1A1)LiH+
2 ultimately consisted of 83 discrete points, and is given

in Table 3.1.

In order to determine the most suitable analytical PEF for (1A1)LiH+
2 , both

power series and Padé approximant functions were fitted to the FCI PES grid given

in Table 3.1. All power series expansions were restricted to 7th order and all Padé

approximant functions were restricted to 6th order. As such, all constructed ana-

lytical PEFs were uniquely defined. The (χ2)
1/2

values of all power series and Padé

approximant PEFs for LiH+
2 are summarised in Table 3.2.

Page and von Nagy-Felsobuki [31] determined that the most suitable PEF

for (1A1)LiH+
2 was the P (5, 5) Padé approximant function of the OGL variable, with

the singular value σ67 set to zero using SVD analysis. This PEF exhibited a (χ2)
1/2

value of 2.41 × 10−5 Eh. The optimised coefficients of the P (5, 5) OGL PEF are

given in Table 3.3. Two-dimensional (2D) energy projections are shown in terms of

normal co-ordinates in Figure 3.1. The normal co-ordinates for both non-linear (t)

and linear (w) triatomic molecules are discussed at greater length in Chapter Four.
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Table 3.1 Discrete FCI PES grid of (1A1)LiH+
2 .

RH-Li RLi-H RH-H Energy RH-Li RLi-H RH-H Energy
(/a0) (/a0) (/a0) (/Eh) (/a0) (/a0) (/a0) (/Eh)

3.83100 3.83100 1.42145 -8.4592693576 4.69037 4.69037 0.67719 -8.1674063038
6.83897 6.83897 2.53752 -8.3703799204 4.28652 4.28652 0.59799 -8.0393733235
6.43839 6.43839 2.38889 -8.3835889480 2.80438 2.80438 0.68784 -8.1715878650
6.82991 6.82991 3.23186 -8.3243877113 2.43686 2.43686 0.69294 -8.1528838555
6.86663 6.86663 1.84317 -8.4297060444 5.10637 5.10637 0.61751 -8.0738740517
6.44126 6.44126 3.77758 -8.3034349629 5.29910 5.29910 0.76126 -8.2616495634
6.07765 6.07765 4.32329 -8.2922498430 3.73646 3.73646 0.82138 -8.3149684049
6.03782 6.03782 2.24026 -8.3975064955 2.44052 2.44052 0.62351 -8.0522017249
5.63724 5.63724 2.09163 -8.4118264159 3.65563 4.21159 0.55644 -7.9498197072
6.02999 6.02999 2.93460 -8.3439437712 4.21159 3.65563 0.55644 -7.9498197072
6.06671 6.06671 1.54591 -8.4497981595 3.54587 4.15530 1.13141 -8.4363299759
6.83952 6.83952 3.92621 -8.2982852563 4.31902 3.38259 1.32805 -8.4532116681
6.91267 6.91267 1.14883 -8.4344756003 3.03031 4.69315 3.24040 -8.3243874568
4.03129 4.03129 1.49576 -8.4581568426 4.50049 3.38671 3.81030 -8.3079311595
3.63071 3.63071 1.34713 -8.4579170014 3.51743 2.57620 1.45493 -8.4368263051
4.23158 4.23158 1.57008 -8.4552110789 4.39111 4.03734 1.60108 -8.4535426846
3.43043 3.43043 1.27282 -8.4532516555 5.78042 4.18201 2.41559 -8.3847724523
4.63215 4.63215 1.71870 -8.4456059386 4.31247 5.32283 2.04005 -8.4184731759
3.02985 3.02985 1.12419 -8.4289442190 3.22701 5.49285 2.73472 -8.3557206021
3.82597 3.82597 1.76862 -8.4446022239 2.53501 4.47731 2.29455 -8.3701143746
3.84434 3.84434 1.07427 -8.4266629293 2.65113 3.06939 1.13662 -8.4214242807
3.82927 3.82927 2.11579 -8.4166367030 3.75919 4.37255 1.98723 -8.4263675648
3.86589 3.86589 0.72710 -8.2301460081 4.02447 5.03048 3.20563 -8.3348073307
3.86074 3.86074 2.81014 -8.3608440940 3.70181 3.35006 0.90873 -8.3668529510
4.22827 4.22827 2.26442 -8.4035899716 3.70067 2.76659 2.51449 -8.3643969853
4.26492 4.26492 0.87573 -8.3493940661 4.13245 2.52052 4.87989 -8.2560043492
3.43064 3.43064 1.96716 -8.4261296902 4.26119 3.53112 0.81630 -8.3082411500
5.43331 5.43331 2.01596 -8.4191259348 2.22870 2.22870 0.82693 -8.2470905876
3.86074 3.86074 2.81014 -8.3608440940 6.23446 6.23446 2.31322 -8.3906018800
4.01934 4.01934 4.19883 -8.3017914790 4.29254 4.29254 5.58752 -8.2885498546
2.64897 2.64897 0.55895 -7.9396943209 5.97269 1.69394 4.40189 -8.1176177832
3.47427 4.18782 1.58197 -8.4530969326 1.69394 5.97269 4.40189 -8.1176177832
3.11767 4.54471 1.98720 -8.4184828720 2.68891 2.68891 2.36425 -8.3480641012
2.76122 4.90164 2.52181 -8.3613594122 2.60397 2.60397 2.98428 -8.2812949953
2.40502 5.25863 3.11999 -8.2969088683 2.92718 2.92718 3.75294 -8.2797763175
3.67827 1.18202 2.59194 -7.9263116291 3.65655 0.80496 2.89787 -7.3751162742
3.98482 6.48206 3.11061 -8.3343537876 5.37194 1.09505 4.33504 -7.7442257247
2.52848 2.52848 0.50231 -7.7811405279 3.04181 0.61825 2.45629 -6.8369494113
5.28775 5.28775 0.90013 -8.3601088553 3.23626 3.23626 0.63516 -8.1047786916
4.96904 4.96904 0.78123 -8.2802967056 2.64049 2.64049 0.69782 -8.1757216687
7.03561 7.03561 2.61048 -8.3642161707 3.05300 3.05300 0.63815 -8.1070594477
2.40053 2.40053 0.60865 -8.0219057248
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Table 3.2 (χ2)
1/2

values (/Eh) of least-squares fitted PEFs for (1A1)LiH+
2 .

m n Number of SPF OGL DUN ESPF EOGL EDUN
Coefficients

Power Series
3 13 5.97−02a 2.18−01 8.61−01 3.71−01 4.04−02 2.79−01
4 22 4.29−02 4.61−02 4.29−01 1.54−01 3.18−02 7.28−02
5 34 2.47−02 6.11−03 1.41−01 5.02−02 2.06−02 8.59−03
6 50 8.72−03 1.13−03 3.45−02 4.66−02 9.28−03 2.82−03
7 70 3.35−03 2.62−04 7.64−03 6.81+01 3.70−03 1.56−04

Padé Approximant
4 4 43 2.46−03 6.49−04 3.79−03 8.31−03 2.02−03 1.02−03
4 5 55 6.37−04 1.41−04 3.58−04 2.49−02 6.41−04 1.19−04
5 4 55 3.04−03 4.16−04 3.81−04 2.45−02 7.81−04 2.06−04
5 5 67 1.10−03 1.99−05 4.14−05 2.65−02 1.48−04 1.41−05
4 6 71 3.01−04 1.82−05 2.52−05 1.95−00 4.42−03 1.12−05
6 4 71 4.71−04 1.82−05 2.09−05 3.47−02 4.83−04 1.09−05
5 6 83 4.97−07 3.61−07 9.74−07 2.03−00 1.29−06 1.43−07
6 5 83 3.05−06 2.26−07 9.29−07 5.57−02 3.95−07 2.04−07

a5.97-02 denotes 5.97× 10−2.

Table 3.3 P (5, 5) FCI PEF of (1A1)LiH+
2 .

Expansion Expansion Coefficienta Expansion Expansion Coefficienta

Variable Numerator Denominator Variable Numerator
1 −8.45927 1.00000 ρ1ρ

3
3 + ρ2ρ

3
3 −0.48684 −0.04225

ρ1 + ρ2 −0.35389 −0.04182 ρ2
1ρ

2
2 −0.91369 −0.11575

ρ3 7.44789 0.88041 ρ2
1ρ

2
3 + ρ2

2ρ
2
3 0.68407 0.07702

ρ2
1 + ρ2

2 −0.32568 −0.05002 ρ2
1ρ2ρ3 + ρ1ρ

2
2ρ3 −0.35578 −0.04157

ρ2
3 −0.50382 −0.10126 ρ1ρ2ρ

2
3 −1.02203 −0.11737

ρ1ρ2 −0.61305 −0.06228 ρ5
1 + ρ5

2 0.35384 0.04218
ρ2ρ3 + ρ1ρ3 2.85792 0.33865 ρ5

3 −0.31153 −0.03004
ρ3

1 + ρ3
2 −0.91065 −0.09652 ρ4

1ρ2 + ρ1ρ
4
2 −1.60778 −0.18455

ρ3
3 −2.66822 −0.25257 ρ4

1ρ3 + ρ4
2ρ3 −0.09778 −0.00883

ρ2
1ρ2 + ρ1ρ

2
2 0.29928 0.03978 ρ1ρ

4
3 + ρ2ρ

4
3 0.28490 0.02592

ρ2
1ρ3 + ρ2

2ρ3 0.86255 0.11254 ρ3
1ρ

2
2 + ρ2

1ρ
3
2 0.85707 0.10306

ρ1ρ
2
3 + ρ2ρ

2
3 0.29797 0.03376 ρ3

1ρ
2
3 + ρ3

2ρ
2
3 −1.39617 −0.17138

ρ1ρ2ρ3 −2.20076 −0.28353 ρ2
1ρ

3
3 + ρ2

2ρ
3
3 0.78176 0.09533

ρ4
1 + ρ4

2 −0.86984 −0.11424 ρ3
1ρ2ρ3 + ρ1ρ

3
2ρ3 2.23376 0.26369

ρ4
3 0.50820 0.02310 ρ1ρ2ρ

3
3 −1.59244 −0.19373

ρ3
1ρ2 + ρ1ρ

2
3 2.48456 0.29230 ρ2

1ρ
2
2ρ3 −1.44861 −0.17276

ρ3
1ρ3 + ρ3

2ρ3 −0.99427 −0.11856 ρ2
1ρ2ρ

2
3 + ρ1ρ

2
2ρ

2
3 0.52514 0.06629

(χ2)
1/2

= 2.41× 10−5 Eh

aAll coefficients given in Eh.
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Figure 3.1 Two-dimensional projections of the (1A1)LiH+
2 P (5, 5) OGL PEF in

terms of normal co-ordinates: (a) t2 (x) versus t1 (y); (b) t3 (x) versus t1 (y); (c)
t3 (x) versus t2 (y). Contours spaced at 25 kJ mol−1.

3.2.4. Potential Energy Surface of (1A1)BeH2+
2

The BeH2+
2 complex shares several similarities with the isolelectronic

LiH+
2 collision complex. Most notably, BeH2+

2 is the result of the anisotropic in-

teraction between the Be2+ charge state and the H2 quadrupole moment [32]. The

physical properties of the ground state of BeH2+
2 therefore bear resemblance to those

of LiH+
2 . For example, the binding energy of BeH2+

2 is ca. 2.38 eV, whereas the C2v

equilibrium structure exhibits a bond angle and bond lengths of ca. 29◦ and 1.6 Å,

respectively. It is interesting then that fewer efforts to characterise the BeH2+
2 PES

have been reported in the literature. For example, Musaev and Charkin [69] con-
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structed a ground state PES employing MP3 and a 3-21G* basis set. Similarly, Val-

tazanos and Nicolaides [70] employed MRCISD in conjunction with an augmented

Dunning-Hay double-ζ basis set [71] to investigate the ground state PES of BeH2+
2 .

More recently, Page and von Nagy-Felsobuki [32], used IC-MRCI [32] and CCSD(T)

[72] combined with augmented quadruple-ζ basis sets to calculate a ground state

PES and DMS for BeH2+
2 (see Chapter 6).

Page and von Nagy-Felsobuki [32] have constructed a discrete PES of

(1A1)BeH2+
2 , employing IC-MRCI (as implemented in Molpro [65]) in conjunc-

tion with the aug-CVQZ (Be) [66, 73] and aug-cc-pVQZ (H) [67, 74] basis sets. The

SSFC method [75] was employed for all points on the discrete PES in order to ac-

count for BSSE. The IC-MRCI wave function included single and double excitations

from an optimised CASSCF wave function, and all electrons were included in the

correlated calculation. The CASSCF wave function spanned the 1s, 2s, 2p, 3s, 3p,

3d, 4s and 4p AOs of beryllium and the 1s, 2s, 2p and 3s AOs of hydrogen. The

CASSCF orbital set was based on a closed-shell HF determinant. The equilibrium

structure of the ground state of BeH2+
2 employing this method was shown to exhibit

a bond angle of 29.4◦ and a bond length of 1.609 Å. Ultimately, the IC-MRCI PES

grid consisted of 89 points, as is evident from Table 3.4. All points on the discrete

PES grid were within ±3.0 a0 from the equilibrium geometry.

The IC-MRCI discrete PES of Page and von Nagy-Felsobuki [32] given in

Table 3.4 has been fitted with several power series and Padé approximant expan-

sions in an effort to determine the most suitable analytical PEF. As for the ground

state of LiH+
2 , the highest power series and Padé approximant orders employed for

BeH2+
2 were 7th order and 6th order, respectively. The coefficients of each PEF were

therefore uniquely defined. The (χ2)
1/2

values of these power series and Padé ap-
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Table 3.4 Discrete IC-MRCI PES grid of (1A1)BeH2+
2 .

RH-Be RBe-H RH-H Energy RH-Li RLi-H RH-H Energy
(/a0) (/a0) (/a0) (/Eh) (/a0) (/a0) (/a0) (/Eh)

3.04011 3.04011 1.54159 -14.916075510 3.89199 1.79208 2.46735 -14.765305690
1.47698 1.47698 0.74895 -14.250605820 2.30926 3.10939 1.57149 -14.893646870
1.86776 1.86776 0.94711 -14.670265840 3.82138 3.48011 1.87962 -14.896326340
2.10223 2.10223 1.06601 -14.789572380 2.99280 4.02502 2.03340 -14.891642240
2.33670 2.33670 1.18490 -14.857698060 3.33676 2.76989 1.34691 -14.906682780
2.57117 2.57117 1.30380 -14.894437900 2.55441 3.57789 1.43545 -14.902684020
2.80564 2.80564 1.42269 -14.911510300 3.81689 2.30955 2.98521 -14.820350680
3.27458 3.27458 1.66049 -14.912682660 2.40822 3.67771 2.55216 -14.851276630
3.50905 3.50905 1.77938 -14.904239030 3.71074 3.71074 1.53663 -14.901975980
3.74352 3.74352 1.89828 -14.892681330 2.65469 2.65469 0.80756 -14.735966990
3.97799 3.97799 2.01717 -14.879316060 2.29923 2.29923 0.81955 -14.719883710
4.21246 4.21246 2.13607 -14.865041770 4.41219 4.41219 3.78795 -14.786788500
4.60325 4.60325 2.33423 -14.840851780 2.15478 2.15478 1.73684 -14.811055510
3.16118 3.16118 0.17469 -10.781028200 1.02399 3.27071 2.40411 -14.077840610
3.14192 3.14192 0.31138 -13.179738470 3.47026 1.78181 2.08950 -14.780391400
3.09340 3.09340 0.72145 -14.653377520 4.91086 2.96185 2.72738 -14.850913580
3.05930 3.05930 1.13152 -14.882316130 1.14517 2.59131 1.67326 -14.316566960
3.03611 3.03611 1.95166 -14.902247780 3.79618 2.36981 1.62454 -14.892985220
3.04735 3.04735 2.36173 -14.877312790 3.50512 2.75950 3.39342 -14.818784560
3.07367 3.07367 2.77181 -14.852499830 2.62420 3.77798 3.92803 -14.795461120
3.11470 3.11470 3.18188 -14.831414550 2.87993 2.87993 0.75574 -14.692310670
3.16984 3.16984 3.59195 -14.814876980 2.35624 2.35624 2.52837 -14.789492480
4.47418 1.60859 3.13851 -14.672244170 2.43192 2.43192 2.21710 -14.834779650
4.11557 1.96593 2.56524 -14.804123230 3.85698 1.60971 2.55250 -14.690872750
3.90043 2.18057 2.25101 -14.851528100 1.72143 4.58712 3.16704 -14.718836160
3.68530 2.39534 1.97229 -14.884326660 2.00966 3.45601 1.95518 -14.842464170
3.47021 2.61020 1.74618 -14.904593600 4.47117 1.60019 3.30501 -14.659819230
2.89678 3.18346 1.56564 -14.915175220 1.81570 4.30681 3.48912 -14.724483480
2.46695 3.61360 1.89005 -14.892425700 4.37686 1.74169 2.80058 -14.738974840
2.25215 3.82872 2.15344 -14.863925780 4.24623 4.24623 1.67659 -14.882738730
2.03746 4.04385 2.45736 -14.821818470 4.61836 4.61836 1.64155 -14.871352880
1.68000 4.40245 3.02019 -14.706319290 1.99256 1.99256 2.47493 -14.652814810
3.23079 3.23079 1.98240 -14.900683490 1.98261 1.98261 3.05526 -14.584536230
2.86003 2.86003 1.10078 -14.875710100 2.79310 3.11934 1.06792 -14.865907430
3.05634 3.41469 1.67588 -14.912221850 3.43657 2.88528 1.91154 -14.902895770
3.05975 2.62974 1.49967 -14.910756120 3.66474 2.89299 2.19395 -14.886481960
2.67685 3.39458 2.00349 -14.894897710 3.30207 0.44123 2.89322 -10.906211240
3.25738 2.90373 0.92368 -14.809846970 2.04374 4.64840 5.07472 -14.724912450
3.05472 3.48534 2.11077 -14.892704120 3.29114 3.29114 4.27540 -14.796205750
3.04597 2.34103 0.95009 -14.809426100 3.44571 3.44571 4.95885 -14.785011090
3.50481 3.50481 2.30978 -14.878249620 4.70064 2.15994 5.36578 -14.735202470
3.79539 3.79539 2.63013 -14.853117440 2.41566 4.82350 5.96405 -14.748454000
2.64587 2.64587 1.70407 -14.899621920 3.17080 6.03714 3.59477 -14.813337430
2.74103 2.74103 1.07412 -14.867087610 5.22111 5.22111 1.94802 -14.842490780
2.50874 2.50874 2.69250 -14.807831450
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proximant functions, in conjunction with the SPF, OGL, DUN expansion variables

(and their exponential analogues) are provided in Table 3.5.

The most suitable PEF was ultimately determined to be the P (6, 5) Padé

expansion of the OGL variable, setting σ65,67−69,71−83 = 0 with SVD analysis. This

PEF exhibited a (χ2)
1/2

value of 2.37×10−5 Eh. The coefficients of the P (6, 5) OGL

PEF are listed in Table 3.6, and 2D constant energy projections are shown in Figure

3.2. For the purposes of comparison, a P (6, 5) OGL function has been generated

without the assistance of SVD, and is also included in Figure 3.2. From Table 3.5

it is clear that the (χ2)1/2 value for the latter PEF is 3.71 × 10−6 Eh, and as such

exceeds the accuracy of the SVD P (6, 5) OGL defined in Table 3.6. However, the

irregularities exhibited by this non-SVD PEF observed in Figure 3.2 indicate that

this PEF is unsuitable for use in the numerical solution of the nuclear Schrödinger

eigenvalue problem.

Table 3.5 (χ2)
1/2

values (/Eh) of least-squares fitted PEFs for (1A1)BeH2+
2 .

m n Number of SPF OGL DUN ESPF EOGL EDUN
Coefficients

Power Series
3 13 1.35−01a 8.34−01 2.97−00 4.58−01 1.41−01 1.04−00
4 22 2.27−02 3.34−01 1.35−00 1.64−01 1.63−02 4.35−01
5 34 1.07−02 6.99−02 8.67−01 1.35+02 6.98−03 1.12−01
6 50 2.66−03 1.04−02 5.24−01 1.36+02 2.11−03 1.85−02
7 70 3.03−04 5.07−04 1.33−01 1.37+02 2.46−04 1.07−03

Padé Approximant
4 4 43 8.13−03 6.80−02 1.02−02 5.73−02 3.50−02 1.89−02
4 5 55 2.45−04 3.11−04 9.29−03 1.39+02 2.89−04 2.83−04
5 4 55 2.23−04 1.95−04 8.65−03 1.36+02 3.42−04 2.87−04
5 5 67 3.48−05 3.57−05 1.35−03 1.37+02 4.63−05 4.48−05
4 6 71 1.09−04 2.07−05 5.97−04 1.37+02 2.70−05 6.12−05
6 4 71 9.33−05 1.12−04 3.88−04 1.37+02 1.34−04 4.77−05
5 6 83 3.32−05 7.62−06 3.70−06 1.37+02 1.81−05 5.87−06
6 5 83 1.30−05 1.17−05 3.71−06 1.37+02 8.35−06 8.99−06

a1.35-01 denotes 1.35× 10−1.
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Table 3.6 P (6, 5) OGL PEF of (1A1)BeH2+
2 .

Expansion Expansion Coefficienta Expansion Expansion Coefficienta

Variable Numerator Denominator Variable Numerator Denominator
1 -14.91608 1.00000 ρ4

1ρ3 + ρ4
2ρ3 1.13607 0.09062

ρ1 + ρ2 -1.02216 -0.06851 ρ1ρ
4
3 + ρ2ρ

4
3 0.39635 0.02892

ρ3 9.42432 0.63179 ρ3
1ρ

2
2 + ρ2

1ρ
3
2 -0.99972 -0.06327

ρ2
1 + ρ2

2 -3.20434 -0.22909 ρ3
1ρ

2
3 + ρ3

2ρ
2
3 2.00360 0.12824

ρ2
3 2.52618 0.14997 ρ2

1ρ
3
3 + ρ2

2ρ
3
3 1.98883 0.12973

ρ1ρ2 2.28407 0.14949 ρ3
1ρ2ρ3 + ρ1ρ

3
2ρ3 -0.58792 -0.03691

ρ2ρ3 + ρ1ρ3 -2.46649 -0.16167 ρ1ρ2ρ
3
3 -5.00373 -0.32754

ρ3
1 + ρ3

2 -1.49899 -0.08402 ρ2
1ρ

2
2ρ3 1.21895 0.07156

ρ3
3 -4.70489 -0.29012 ρ2

1ρ2ρ
2
3 + ρ1ρ

2
2ρ

2
3 -0.11261 -0.00868

ρ2
1ρ2 + ρ1ρ

2
2 0.72998 0.05343 ρ6

1 + ρ6
2 0.10293

ρ2
1ρ3 + ρ2

2ρ3 -1.08487 -0.06287 ρ6
3 -0.01779

ρ1ρ
2
3 + ρ2ρ

2
3 0.18929 0.01186 ρ5

1ρ2 + ρ1ρ
5
2 -0.23762

ρ1ρ2ρ3 1.66527 0.09003 ρ5
1ρ3 + ρ5

2ρ3 -0.09470
ρ4

1 + ρ4
2 -0.92384 -0.07711 ρ1ρ

5
3 + ρ2ρ

5
3 -0.00615

ρ4
3 -0.10542 -0.01785 ρ4

1ρ
2
2 + ρ2

1ρ
4
2 0.05226

ρ3
1ρ2 + ρ1ρ

2
3 1.54007 0.10829 ρ4

1ρ
2
3 + ρ4

2ρ
2
3 0.02930

ρ3
1ρ3 + ρ3

2ρ3 4.71765 0.30947 ρ2
1ρ

4
3 + ρ2

2ρ
4
3 -0.01047

ρ1ρ
3
3 + ρ2ρ

3
3 0.59241 0.03577 ρ4

1ρ2ρ3 + ρ1ρ
4
2ρ3 0.13711

ρ2
1ρ

2
2 -0.21197 -0.02674 ρ1ρ2ρ

4
3 0.12887

ρ2
1ρ

2
3 + ρ2

2ρ
2
3 0.61249 0.03784 ρ3

1ρ
3
2 0.30481

ρ2
1ρ2ρ3 + ρ1ρ

2
2ρ3 -2.25794 -0.15816 ρ3

1ρ
3
3 + ρ3

2ρ
3
3 -0.10560

ρ1ρ2ρ
2
3 -1.86607 -0.10698 ρ3

1ρ
2
2ρ3 + ρ2

1ρ
3
2ρ3 -0.03784

ρ5
1 + ρ5

2 -1.34577 -0.08630 ρ3
1ρ2ρ

2
3 + ρ1ρ

3
2ρ

2
3 0.20543

ρ5
3 0.21380 0.01335 ρ2

1ρ2ρ
3
3 + ρ1ρ

2
2ρ

3
3 -0.01800

ρ4
1ρ2 + ρ1ρ

4
2 0.46964 0.03409 ρ2

1ρ
2
2ρ

2
3 -0.53313

(χ2)
1/2

= 2.37× 10−5 Eh

aAll coefficients given in Eh.

3.2.5. Potential Energy Surface of (1Σ+
g )BeHe2+

2

Small beryllium helide cations have been the focus of several ab initio inves-

tigations [33, 73, 76–85]. However, these investigations have dwelt upon the singly

and double charged diatomics, and hence studies of BeHe2+
2 are rare. For instance,

Harrison et al. [77] predicted BeHe2+
2 to be linear and bound by 74.04 kJ mol−1 (with

respect to dissociation into BeHe2+ + He), using HF. To date, the only study of

BeHe2+
2 reported using a correlated level of theory is that of Page et al. [33], who
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Figure 3.2 The removal of fitting artefacts using SVD for the (1A1)BeH2+
2 P (6, 5)

OGL PEF. Figures (a,b,c) and (d,e,f) were constructed with and without SVD,
respectively: (a,d) t2 (x) versus t1 (y); (b,e) t3 (x) versus t1 (y); (c,f) t3 (x) versus
t2 (y). Contours spaced at 10 kJ mol−1.
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employed both IC-MRCI and CCSD(T) in order to characterise the ground state

PES of BeHe2+
2 . This investigation is also the only published PES of the ground

state of BeHe2+
2 available.

Page et al. [33] have employed all-electron IC-MRCI to construct a PES of

the (1Σ+
g ) ground state of BeHe2+

2 . In a similar fashion to the IC-MRCI method for

BeH2+
2 , the IC-MRCI wave function was based upon an optimised CASSCF, which

spanned the beryllium 1s, 2s, 2p, 3s, 3p, 3d, 4s and 4p AOs of beryllium and the

1s, 2s, 2p and 3s AOs of helium, respectively. In addition, all He 1s AO density was

excluded from the CASSCF optimisation and included in the subsequent IC-MRCI

calculation. Employing this method yielded an equilibrium Be - He bond length

of 1.4372 Å, a value which was in excellent with the all-electron CCSD(T) value

of 1.4373 Å [33]. Similar consistency was observed with respect to the potential

well-depth for the [(1Σ+
g )BeHe2+

2 + (1Σ+)BeHe2+ + He] dissociation channel. For

example, the IC-MRCI well-depth was 85.01 kJ mol−1, a value 0.03 kJ mol−1 larger

than the corresponding CCSD(T) well-depth. The final PES grid reported by Page

et al. [33] consisted of 87 points, as is evident from Table 3.7.

Several power series and Padé approximant representations to the

(1Σ+
g )BeHe2+

2 IC-MRCI grid have been constructed in conjunction with expansion

variables (3.1-3.6). In all cases the number of coefficients did not exceed 87, and

so each PEF was uniquely defined. The (χ2)1/2 values for all constructed PEFs for

(1Σ+
g )BeHe2+

2 are detailed in Table 3.8. The (6,5) Padé expansion of the EOGL

variable with σ60,62−74 = 0 using SVD analysis was ultimately determined to be

the most appropriate representation of the (1Σ+
g )BeHe2+

2 IC-MRCI PES grid. The

(χ2)1/2 of this PEF was calculated to be 3.14 × 10−5 Eh. This PEF is shown in

Figure 3.3 (as 2D constant energy contour plots) and defined in Table 3.9.
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Table 3.7 Discrete IC-MRCI PES grid of (1Σ+
g )BeHe2+

2 .

RHe-Be RBe-He RHe-He Energy RHe-Be RBe-He RHe-He Energy
(/a0) (/a0) (/a0) (/Eh) (/a0) (/a0) (/a0) (/Eh)

2.71591 2.71591 5.43182 -19.52603671 1.68694 2.85333 4.54028 -19.37072327
2.79819 2.79819 5.59638 -19.52553894 3.14348 2.31371 5.43182 -19.51117754
2.63363 2.63363 5.26725 -19.52543837 3.24291 2.25985 5.43182 -19.50562774
2.88047 2.88047 5.76095 -19.52420944 3.07866 2.57598 5.43182 -19.52153072
2.55134 2.55134 5.10269 -19.52337011 3.62797 2.15922 5.43182 -19.48915187
2.96276 2.96276 5.92551 -19.52226392 3.73077 2.56531 5.43182 -19.50996624
2.46906 2.46906 4.93813 -19.51949227 2.64798 3.93849 5.43182 -19.50770917
2.71826 2.71826 5.43182 -19.52603918 2.60158 2.96486 5.43182 -19.52354042
2.72120 2.72120 5.43182 -19.52602406 2.63924 3.26210 5.43182 -19.51893547
2.72531 2.72531 5.43182 -19.52601887 2.54311 2.91370 5.43182 -19.52333586
2.73058 2.73058 5.43182 -19.52600819 2.37800 3.19110 5.43182 -19.51391549
2.73701 2.73701 5.43182 -19.52598805 2.35211 3.30786 5.43182 -19.51052594
2.74459 2.74459 5.43182 -19.52595811 2.35318 3.74665 5.43182 -19.50300304
2.82898 2.60284 5.43182 -19.52501346 2.56559 3.73097 5.43182 -19.50996757
2.94204 2.48977 5.43182 -19.52182636 2.64829 3.93871 5.43182 -19.50770768
3.05511 2.37671 5.43182 -19.51611174 3.01943 3.85290 5.75147 -19.50625160
2.66905 3.22912 5.84323 -19.51980750 3.07173 3.46608 4.92677 -19.51114662
2.88408 2.34087 5.02041 -19.51645909 4.59991 3.36283 7.29181 -19.49225245
2.68383 3.77822 6.25464 -19.51041507 3.97113 2.44197 6.26687 -19.50378765
2.96837 1.89736 4.60900 -19.45149460 3.71498 3.71498 7.07746 -19.49628924
2.75927 4.34963 6.66605 -19.50332278 3.17801 3.17801 6.25464 -19.51539412
2.89060 4.93561 7.07746 -19.49809476 1.86381 1.86381 2.96335 -19.35987805
3.53873 3.53873 7.07746 -19.50229912 2.94915 2.94915 3.78617 -19.51734956
2.94187 2.94187 5.43182 -19.52264652 4.36155 4.36155 8.72311 -19.47961465
1.58523 3.84658 5.43182 -19.29289278 4.77297 4.77297 9.54593 -19.47307931
1.89309 1.89309 3.78617 -19.37694776 2.15057 3.28125 5.43182 -19.49416286
3.06165 3.06165 5.43182 -19.51908469 1.01990 4.41192 5.43182 -18.26171837
3.84658 1.58523 5.43182 -19.29289278 1.89309 1.89309 3.78617 -19.37694777
3.95014 3.95014 7.90029 -19.48923086 0.76241 3.02376 3.78617 -16.81446823
3.20197 3.20197 5.43182 -19.51420267 5.49223 3.23088 8.72311 -19.49042738
3.36026 3.36026 5.43182 -19.50835492 1.99665 4.25799 6.25464 -19.45551912
3.29151 6.13449 7.90029 -19.48788590 2.37283 2.37283 4.60900 -19.51207840
3.53410 3.53410 5.43182 -19.50202247 2.20504 2.20504 3.78617 -19.48783987
3.91999 3.91999 5.43182 -19.48969238 3.64703 3.64703 4.60900 -19.49724202
4.05717 3.06119 5.43182 -19.50269265 4.21548 4.21548 6.25464 -19.48249670
3.77139 2.67089 5.43182 -19.51021565 4.67970 4.67970 8.72311 -19.47432464
4.54106 4.54106 8.72311 -19.47642575 4.29885 4.29885 7.90029 -19.48083729
2.03022 5.35614 5.43182 -19.45513297 1.86790 3.56391 5.43182 -19.43277909
3.30340 5.18816 7.07746 -19.49008305 4.00051 0.60849 4.60900 -15.11324227
5.04106 0.91969 5.43182 -17.81978975 1.32775 2.45842 3.78617 -19.03352481
3.40322 4.75413 8.15735 -19.49045734 2.66554 6.05757 8.72311 -19.49579411
2.71144 2.03474 4.74619 -19.48393244 3.69266 2.56198 6.25464 -19.51076846
3.05256 1.48772 4.54028 -19.22626577 2.35628 3.48695 5.84323 -19.50761709
2.18695 2.55924 4.74619 -19.50388349
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Table 3.8 (χ2)
1/2

values (/Eh) of least-squares fitted PEFs for (1Σ+
g )BeHe2+

2 .

m n Number of SPF OGL DUN ESPF EOGL EDUN
Coefficients

Power Series
3 13 9.40−02a 6.34−01 2.54−00 1.29−01 5.22−02 8.32−01
4 22 0.13−01 7.62−02 1.08−00 1.48−02 4.58−03 1.48−01
5 34 1.45−03 3.87−03 6.30−01 3.86−03 1.14−03 1.12−02
6 50 1.93−04 1.91−04 5.26−02 7.22−04 1.92−04 7.04−04
7 70 2.55−05 3.11−05 6.37−03 7.56−04 2.60−05 3.19−05

Padé Approximant
4 4 43 1.58−02 1.78−04 7.38−03 3.81−04 1.79−03 2.12−04
4 5 55 3.73−05 1.45−04 7.20−05 2.81−04 3.90−05 4.62−05
5 4 55 1.38−02 6.83−04 7.40−05 6.49−05 3.99−05 4.52−05
5 5 67 2.81−05 3.05−05 2.99−05 2.69−04 2.88−04 2.26−04
4 6 71 4.57−04 2.24−05 3.24−05 7.21−04 1.60−05 1.71−05
6 4 71 6.55−05 1.80−04 3.28−05 2.66−04 3.47−05 2.95−05
5 6 83 2.06−05 1.98−05 1.22−04 7.22−04 2.18−05 1.79−05
6 5 83 2.54−05 8.62−04 2.13−04 2.63−04 1.57−05 6.03−05

a9.40-01 denotes 9.40× 10−1.

Figure 3.3 Two-dimensional projections of the (1Σ+
g )BeHe2+

2 P (6, 5) EOGL PEF
in terms of normal co-ordinates: (a) w2 (x) versus w1 (y); (b) w4 (x) versus w1 (y);
(c) w4 (x) versus w2 (y). Contours spaced at 20 kJ mol−1.
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Table 3.9 P (6, 5) EOGL PEF of (1Σ+
g )BeHe2+

2 .

Expansion Expansion Coefficienta Expansion Expansion Coefficienta

Variable Numerator Denominator Variable Numerator Denominator
1 -19.52604 1.00000 ρ4

1ρ3 + ρ4
2ρ3 -7.18650 -0.43336

ρ1 + ρ2 -4.40797 -0.22578 ρ1ρ
4
3 + ρ2ρ

4
3 0.78428 -0.08608

ρ3 0.40751 0.02094 ρ3
1ρ

2
2 + ρ2

1ρ
3
2 -14.58210 -0.76239

ρ2
1 + ρ2

2 16.48308 0.82882 ρ3
1ρ

2
3 + ρ3

2ρ
2
3 12.68413 0.78984

ρ2
3 2.67425 0.13766 ρ2

1ρ
3
3 + ρ2

2ρ
3
3 3.68697 0.18136

ρ1ρ2 -3.59749 -0.18490 ρ3
1ρ2ρ3 + ρ1ρ

3
2ρ3 -0.40923 0.00284

ρ2ρ3 + ρ1ρ3 5.43041 0.27809 ρ1ρ2ρ
3
3 -4.04024 0.61158

ρ3
1 + ρ3

2 3.14949 0.17353 ρ2
1ρ

2
2ρ3 -7.23348 -0.15025

ρ3
3 1.21177 0.08483 ρ2

1ρ2ρ
2
3 + ρ1ρ

2
2ρ

2
3 -8.95313 -0.96199

ρ2
1ρ2 + ρ1ρ

2
2 -0.35043 -0.02135 ρ6

1 + ρ6
2 0.38433

ρ2
1ρ3 + ρ2

2ρ3 -1.31870 -0.06028 ρ6
3 2.69251

ρ1ρ
2
3 + ρ2ρ

2
3 1.81088 0.06559 ρ5

1ρ2 + ρ1ρ
5
2 0.49693

ρ1ρ2ρ3 2.22829 0.13046 ρ5
1ρ3 + ρ5

2ρ3 -0.06548
ρ4

1 + ρ4
2 -10.77248 -0.52919 ρ1ρ

5
3 + ρ2ρ

5
3 -4.58678

ρ4
3 0.38225 0.09426 ρ4

1ρ
2
2 + ρ2

1ρ
4
2 0.61811

ρ3
1ρ2 + ρ1ρ

2
3 -3.52795 -0.17849 ρ4

1ρ
2
3 + ρ4

2ρ
2
3 0.65711

ρ3
1ρ3 + ρ3

2ρ3 -11.24971 -0.58127 ρ2
1ρ

4
3 + ρ2

2ρ
4
3 -2.74239

ρ1ρ
3
3 + ρ2ρ

3
3 3.47149 0.03194 ρ4

1ρ2ρ3 + ρ1ρ
4
2ρ3 -3.09822

ρ2
1ρ

2
2 5.32976 0.30232 ρ1ρ2ρ

4
3 12.48466

ρ2
1ρ

2
3 + ρ2

2ρ
2
3 -2.67013 -0.05480 ρ3

1ρ
3
2 -0.03286

ρ2
1ρ2ρ3 + ρ1ρ

2
2ρ3 8.18626 0.35440 ρ3

1ρ
3
3 + ρ3

2ρ
3
3 2.49649

ρ1ρ2ρ
2
3 4.87906 0.46193 ρ3

1ρ
2
2ρ3 + ρ2

1ρ
3
2ρ3 2.11778

ρ5
1 + ρ5

2 -0.14747 -0.00926 ρ3
1ρ2ρ

2
3 + ρ1ρ

3
2ρ

2
3 1.49386

ρ5
3 3.63463 0.18002 ρ2

1ρ2ρ
3
3 + ρ1ρ

2
2ρ

3
3 0.38420

ρ4
1ρ2 + ρ1ρ

4
2 -0.51621 -0.01034 ρ2

1ρ
2
2ρ

2
3 -9.71455

(χ2)
1/2

= 3.14× 10−5 Eh

aAll coefficients given in Eh.

3.3. Dipole Moment Surfaces and their Analytical Representation

3.3.1. Dipole Moment Functions using Least-Squares Regression

As for discrete ab initio PESs, it is desirable to minimise the size of a discrete

ab initio DMS without jeopardising the accuracy and applicability of the final DMF.

The number and position of points comprising an ab initio DMS is therefore critical.

For this reason it is preferable to construct a discrete DMS in conjunction with an
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accompanying PES. This approach has been employed in the present work. It is

also recommended that extensive, preferably augmented, one-electron basis sets are

employed in the construction of the discrete ab initio DMS grid, since the error in

calculated dipole moments using HF has been determined to be of the magnitude

of 0.1 − 0.2 D [86–88]. Post HF methods generally yield dipole moments closer to

experiment.

In the manner of von Nagy-Felsobuki and co-workers [2, 89–92] ab ini-

tio DMSs are calculated in this work by decomposing the total molecular dipole

moment operator thus,

µ̂ = µxi + µyj + µzk (3.20)

By enforcing the Eckart frame upon the molecule (Figure 3.4), µz ≡ 0. Consequently,

µ̂ is defined entirely by the x and y components of the dipole moment.

Having constructed an ab initio DMS grid, the DMF is constructed in a

similar manner to the construction of a PEF, viz. by a least-squares fitting technique.

However, Sudarko et al. [89–91] have shown that by expressing the molecular dipole

moment in terms of internal displacement co-ordinates (ρ1 = R1−R0
1, ρ1 = R2−R0

2

and ρ1 = θ−θ0), as opposed to normal co-ordinates, the least-squares fitting process

is more tractable. As such, this approach will be employed in the present work. The

Figure 3.4 The Eckart framework for a Cs triatomic molecule, with the origin at
the centre-of-mass.



121

DMF is then defined as a power series,

µfit
α (ρ1, ρ2, ρ3) =

n∑
i,j,k

Cijk(ρ1)i(ρ2)j(ρ3)k (3.21)

where α is either x or y, and n is the order of the expansion. The (χ2)
1/2

value for

the fitted DMF is defined in an analogous manner to equation (3.10),

(
χ2
)1/2

α
=

[
M∑
i=1

(
µfit
α,i − µai

α,i

)2

]1/2

(3.22)

where M is the number of discrete points on the ab initio DMS, and µai
α,i is the ith

ab initio point on the α−component of the DMS. As for ab initio PEFs, a minimal

(χ2)
1/2

value is only one criterion by which the utility of a DMF is gauged. An

ab initio DMF must also predict physically realistic properties for the molecule

in question. For example, a DMF should be close to linearity in the vicinity of the

equilibrium geometry, as for most molecules the electrical anharmonicity is expected

to be small in this region.

3.3.2. Dipole Moment Surface of (1A1)LiH+
2

Page and von Nagy-Felsobuki [31] have employed the FCI method described

in Section 3.2.1 in order to calculate a 47-point discrete DMS for (1A1)LiH+
2 . This

DMS grid, provided in Table 3.10, included points within the domains 1.341 Å≤

R1 ≤ 3.161 Å, 0.327 Å≤ R2 ≤ 2.907 Å, and 5.396◦ ≤ θ ≤ 91.054◦.

The DMFs of (1A1)LiH+
2 have been constructed using least-squares fitted

power series expansions of ρ1, ρ2 and ρ3. For µx and µy the power series expansions

were restricted to 6th and 5th orders, respectively, thereby ensuring the uniqueness of
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Table 3.10 Discrete FCI DMS grid of (1A1)LiH+
2 .

RH-Li RLi-H θ µy µx RH-Li RLi-H θ µy µx
(/Å) (/Å) (/deg.) (/a.u.) (/a.u.) (/Å) (/Å) (/deg.) (/a.u.) (/a.u.)
2.027 2.027 21.383 -0.2262 0.0000 2.843 0.579 16.777 -0.2633 0.0566
2.133 2.133 21.383 -0.2424 0.0000 1.935 0.426 17.293 -0.3534 0.0485
1.921 1.921 21.383 -0.2110 0.0000 3.161 0.896 18.707 -0.1715 0.0431
2.239 2.239 21.383 -0.2595 0.0000 2.255 1.869 5.396 -0.2651 0.0058
1.815 1.815 21.383 -0.1969 0.0000 2.187 1.334 91.054 -0.0618 0.0806
2.451 2.451 21.383 -0.2959 0.0000 1.958 1.464 42.791 -0.1004 0.0724
1.603 1.603 21.383 -0.1726 0.0000 1.959 1.773 13.665 -0.2265 0.0076
2.025 2.025 26.728 -0.2034 0.0000 2.130 2.662 39.538 -0.1918 -0.0561
2.034 2.034 16.063 -0.2509 0.0000 1.989 2.314 26.961 -0.2053 -0.0315
2.026 2.026 32.075 -0.1837 0.0000 1.403 1.624 21.351 -0.1572 -0.0150
2.046 2.046 10.792 -0.2754 0.0000 1.341 2.369 20.892 -0.0650 -0.0654
2.043 2.043 42.684 -0.1560 0.0000 1.708 2.907 20.955 -0.1092 -0.0700
2.238 2.238 31.063 -0.2157 0.0000 2.282 2.817 21.317 -0.2775 -0.0387
2.257 2.257 11.786 -0.3096 0.0000 3.059 2.213 21.227 -0.2478 0.0572
1.815 1.815 33.322 -0.1584 0.0000 2.324 2.136 21.372 -0.2529 0.0138
2.875 2.875 21.383 -0.3745 0.0000 1.861 1.363 21.238 -0.1376 0.0342
2.043 2.043 42.684 -0.1560 0.0000 2.382 1.792 55.637 -0.1234 0.0622
2.127 2.127 62.977 -0.1433 0.0000 1.604 2.484 43.277 -0.0917 -0.0933
1.402 1.402 12.112 -0.1717 0.0000 2.286 1.790 14.152 -0.2171 0.0224
2.133 2.133 9.415 -0.2970 0.0000 1.876 2.199 14.266 -0.2408 -0.0143
2.272 2.272 81.210 -0.1512 0.0000 2.029 2.046 14.347 -0.2588 -0.0007
1.423 1.423 52.161 -0.1232 0.0000 2.783 1.273 20.432 -0.0262 0.0680
2.702 2.702 6.933 -0.4137 0.0000 2.594 1.461 20.883 -0.0676 0.0693
1.610 0.327 16.757 -0.4711 0.0281

each DMF. (χ2)
1/2

values of all constructed LiH+
2 DMFs are provided in Table 3.11.

The most satisfactory representations of the discrete µx and µy DMS components

were the 5th and 6th order power series, which exhibited (χ2)
1/2

values of 5.47×10−3

and 1.87×10−9 a.u., respectively [31]. No artefacts (such as singularities, etc.) were

visible in either component DMF, and so no SVD analysis was required. Expansion

coefficients of the µx and µy component DMFs are listed in Table 3.12 and 2D

projections (in terms of ρ1, ρ2 and ρ3) are shown in Figures 3.5 and 3.6.
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Table 3.11 (χ2)
1/2

values (/a.u.) of least-squares fitted µx and µy DMFs for (1A1)
LiH+

2 .

µx µy
Power Series Number of (χ2)

1/2
Number of (χ2)

1/2

Order Coefficients Coefficients
2 3 2.34−01a 7 9.22−01
3 7 8.04−02 13 5.83−01
4 13 1.40−02 22 6.35−02
5 22 3.58−03 34 5.47−03
6 34 1.87−09

a2.34-01 denotes 2.34× 10−1.

Table 3.12 Expansion coefficients (/a.u.) of the (1A1)LiH+
2 DMF.

µy µx
Term Coefficient Term Coefficient Term Coefficient Term Coefficient
C000 5.7601−01a C220 −9.4638−02 C100 1.8861−01 C302 −1.1685−02
C100 3.4804−05 C202 −1.6226−02 C200 2.0763−03 C311 −2.4483−03
C001 1.8903−01 C112 2.1411−01 C101 −4.7736−03 C212 −2.4611−02
C200 4.7607−01 C103 2.1319−03 C300 −5.2909−02 C203 2.7818−02
C110 4.9100−05 C004 9.5231−01 C210 −2.4306−02 C104 −2.7099−02
C101 5.3544−02 C500 8.2286−10 C201 1.6578−02 C600 1.6356−06
C002 −1.1176−02 C410 2.6332−07 C102 6.0459−02 C510 1.6919−04
C300 −5.9663−03 C401 −3.7635−05 C400 −1.3197−02 C501 −1.5990−03
C210 2.7333−04 C320 −2.9354−04 C310 −1.9791−02 C420 −1.1817−02
C201 1.5931−02 C302 −3.8223−02 C301 −1.4453−02 C402 6.6305−03
C111 6.1169−06 C311 −2.7398−04 C211 −1.1477−03 C411 −1.7546−03
C102 −6.0344−02 C203 −1.2935−04 C202 1.9869−02 C321 −1.1988−02
C003 −4.3103−01 C221 4.9197−02 C103 1.0788−02 C312 −5.0470−05
C400 −4.4142−06 C212 −1.0932−07 C500 2.9653−03 C303 1.8402−02
C310 2.4548−02 C113 −4.0974−01 C410 −1.0368−02 C204 −2.9648−02
C301 2.7332−02 C104 8.7353−03 C401 4.2567−03 C213 1.8880−02
C211 −1.2785−05 C005 −2.6951−03 C320 5.0693−03 C105 3.4407−02

(χ2)
1/2

5.47× 10−3 a.u. (χ2)
1/2

1.87× 10−9 a.u.

a5.7601-01 denotes 5.7601× 10−1.
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Figure 3.5 Two-dimensional constant dipole projections of µx for (1A1)LiH+
2 : (a)

ρ2 (x) versus ρ1 (y); (b) ρ3 (x) versus ρ1 (y). See text for definition of ρi.

Figure 3.6 Two-dimensional constant dipole projections of µy for (1A1)LiH+
2 : (a)

ρ2 (x) versus ρ1 (y); (b) ρ3 (x) versus ρ1 (y). See text for definition of ρi.

3.3.3. Dipole Moment Surface of (1A1)BeH2+
2

Page and von Nagy-Felsobuki [32] have constructed a 73-point DMS for

(1A1)BeH2+
2 , employing the IC-MRCI method described in Section 3.2.3. This dis-

crete DMS grid is shown in Table 3.13.

In order to obtain the most accurate analytical DMF, power series expansions

of up to 8th and 7th orders for µx and µy, respectively, were constructed. The (χ2)
1/2

of these DMFs are given in Table 3.14. It is evident from Table 3.14 that the most

accurate µx and µy DMFs, in terms of the values of (χ2)
1/2

, are the 7th and 6th order

power series expansions of ρ1, ρ2 and ρ3, respectively [32]. In both cases, no SVD

was required for physically acceptable DMFs. Contour projections of the 7th order
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Table 3.13 Discrete IC-MRCI DMS grid of (1A1)BeH2+
2 .

RH-Be RBe-H θ µy µx RH-Be RBe-H θ µy µx
(/Å) (/Å) (/deg.) (/a.u.) (/a.u.) (/Å) (/Å) (/deg.) (/a.u.) (/a.u.)
1.609 1.609 29.374 -0.1980 0.0000 2.008 2.008 40.546 0.1490 0.0000
0.782 0.782 29.374 -0.3340 0.0000 1.400 1.400 37.571 -0.1176 0.0000
0.988 0.988 29.374 -0.2822 0.0000 1.450 1.450 22.598 -0.3209 0.0000
1.237 1.237 29.374 -0.2380 0.0000 1.328 1.328 64.908 0.0125 0.0000
1.361 1.361 29.374 -0.2221 0.0000 2.060 0.948 28.394 0.8006 -0.4151
1.485 1.485 29.374 -0.2091 0.0000 1.950 1.268 29.082 0.2277 -0.3010
1.733 1.733 29.374 -0.1877 0.0000 2.022 1.842 29.361 -0.1366 -0.0882
1.857 1.857 29.374 -0.1765 0.0000 1.836 1.381 29.248 -0.0007 -0.2098
1.981 1.981 29.374 -0.1626 0.0000 1.766 1.466 23.185 -0.2298 -0.1067
2.105 2.105 29.374 -0.1434 0.0000 1.723 1.495 29.343 -0.1473 -0.1076
2.229 2.229 29.374 -0.1158 0.0000 2.020 1.222 51.434 0.6894 -0.5661
2.436 2.436 29.374 -0.0384 0.0000 1.619 1.392 29.339 -0.1569 -0.1054
1.619 1.619 21.314 -0.3714 0.0000 1.964 1.964 23.899 -0.3507 0.0000
1.607 1.607 37.496 -0.0557 0.0000 1.405 1.405 17.497 -0.3980 0.0000
1.613 1.613 45.599 0.0562 0.0000 1.217 1.217 20.533 -0.3266 0.0000
1.627 1.627 53.602 0.1411 0.0000 1.724 1.537 15.948 -0.4550 -0.0421
1.648 1.648 61.432 0.2035 0.0000 1.836 0.943 28.660 0.4411 -0.3449
1.677 1.677 69.024 0.2479 0.0000 2.599 1.567 28.970 0.7462 -0.4389
2.763 2.763 21.503 -0.5025 0.0000 1.612 1.239 13.700 -0.2902 -0.0695
1.742 1.742 81.013 0.2934 0.0000 2.009 1.254 14.895 0.1201 -0.1625
1.222 1.645 29.236 -0.0467 0.1886 1.855 1.460 64.312 0.3949 -0.3111
1.584 2.130 29.237 0.1034 0.2555 1.389 1.999 73.203 -0.3823 0.6972
1.352 1.893 19.164 -0.0916 0.1542 1.524 1.524 15.079 -0.4806 0.0000
1.533 1.685 29.361 -0.1753 0.0720 1.247 1.247 64.895 -0.0411 0.0000
1.419 1.798 29.287 -0.0594 0.1767 1.287 1.287 54.237 -0.0485 0.0000
1.305 1.912 29.146 0.1435 0.2722 2.041 0.852 28.113 0.8907 -0.4177
1.192 2.026 28.928 0.4186 0.3537 1.063 1.829 28.908 0.2977 0.3157
1.078 2.140 28.617 0.7568 0.4199 2.247 2.247 22.772 -0.4306 0.0000
1.710 1.710 35.733 -0.0567 0.0000 2.444 2.444 20.474 -0.5986 0.0000
1.513 1.513 22.191 -0.3358 0.0000 1.478 1.651 19.837 -0.3571 0.0501
1.617 1.807 29.355 -0.1539 0.0911 1.819 1.527 33.791 -0.0228 -0.1627
1.274 1.946 43.675 0.4282 0.4416 1.939 1.531 36.766 0.1203 -0.2458
1.417 1.796 36.150 0.0554 0.2234 1.747 0.233 20.602 -0.1964 -0.0574
0.542 1.731 27.036 0.5222 0.3243 1.443 2.354 28.997 0.5529 0.3957
1.616 1.844 36.920 0.0191 0.1411 2.178 1.040 28.489 0.8824 -0.4386
0.606 1.371 28.282 0.0386 0.2360 2.064 1.154 28.835 0.5251 -0.3777
1.855 1.855 38.479 0.0431 0.0000
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µx and 6th order µy component DMFs are shown (in terms of ρ1, ρ2 and ρ3) in

Figures 3.7 and 3.8. The expansion coefficients of these component DMFs are given

in Table 3.15. It is observed from these figures that both µx and µy component DMFs

exhibit little electrical anharmonicity near the equilibrium geometry and appear free

of fitting ‘artefacts’.

Table 3.14 (χ2)
1/2

values (/a.u.) of least-squares fitted µx and µy DMFs for
(1A1)BeH2+

2 .

µx µy
Power Series Number of (χ2)

1/2
Number of (χ2)

1/2

Order Coefficients Coefficients
3 7 9.69−02a 13 9.87−01
4 13 3.63−02 22 4.02−01
5 22 2.72−03 34 8.81−02
6 34 2.98−04 50 1.93−03
7 50 2.09−04 70 3.12−03
8 70 2.45−04

a9.69-02 denotes 9.69× 10−2.

Figure 3.7 Two-dimensional constant dipole projections of µx for (1A1)BeH2+
2 :

(a) ρ1 (x) versus ρ2 (y); (b) ρ3 (x) versus ρ1 (y). See text for definition of ρi.
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Figure 3.8 Two-dimensional constant dipole projections of µy for (1A1)BeH2+
2 :

(a) ρ1 (x) versus ρ2 (y); (b) ρ3 (x) versus ρ1 (y). See text for definition of ρi.

Table 3.15 Expansion coefficients (/a.u.) of the (1A1)BeH2+
2 DMF.

µy µx
Term Coefficient Term Coefficient Term Coefficient Term Coefficient
C000 −1.9785−01a C320 −7.6746−01 C100 −4.7669−01 C420 7.2177−02
C100 4.6987−02 C302 2.1220−07 C200 2.8722−02 C402 −9.5335−04
C001 4.2125−02 C311 −3.6687−01 C101 −3.9169−02 C411 −2.0170−02
C200 8.1544−04 C203 1.2003−07 C300 −4.9537−03 C321 5.6877−02
C110 −2.6161−01 C221 −5.0516−03 C210 −6.4700−02 C312 −4.1378−03
C101 1.2602−02 C212 9.1135−02 C201 −1.6734−02 C303 5.4358−05
C002 1.9629−02 C113 3.2781−02 C102 −2.3849−02 C204 2.9089−02
C300 1.2384−05 C104 −2.4155−04 C400 2.6845−02 C213 8.9626−02
C210 −3.1056−01 C005 1.5258−02 C310 −1.1085−02 C105 2.1205−02
C201 −1.7456−03 C600 1.3234−11 C301 8.6212−02 C700 −1.5940−08
C111 7.3568−01 C510 −1.8330−09 C211 −8.6367−02 C610 2.3260−05
C102 −1.3343−02 C501 −2.4411−06 C202 −1.1288−02 C601 −8.9100−04
C003 9.9008−01 C420 5.0314−04 C103 9.7242−02 C520 1.3414−02
C400 −1.7538−01 C402 4.7228−03 C500 3.8935−02 C502 −4.6429−02
C310 4.0481−02 C411 −5.2549−04 C410 2.3628−02 C511 1.7686−02
C301 −2.7936−05 C330 1.6460−01 C401 3.1176−02 C430 −5.0784−03
C211 −4.9042−02 C303 −2.2387−09 C320 1.2522−01 C403 −2.6465−07
C220 −1.4005−01 C321 7.3146−03 C302 −7.6399−03 C421 −7.0568−03
C202 −3.7047−06 C312 7.1429−01 C311 −4.6766−02 C412 −4.3735−02
C112 −8.9059−01 C222 5.3077−03 C212 3.6597−03 C322 −1.6238−02
C103 3.3709−02 C213 −2.1718−02 C203 4.9557−02 C313 −9.9257−02
C004 −2.0064−00 C204 9.3845−02 C104 −1.4223−01 C304 2.5777−03
C500 1.3103−06 C114 −2.7215−02 C600 −8.5364−04 C214 −8.5103−02
C410 −2.0794−02 C105 −2.2443−06 C510 9.4859−02 C205 3.7157−04
C401 4.5322−03 C006 −2.3833−04 C501 7.4018−02 C106 7.6394−05

(χ2)
1/2

1.93× 10−3 a.u. (χ2)
1/2

2.09× 10−4 a.u.

a-1.978543-01 denotes −1.978543× 10−1.
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3.3.4. Dipole Moment Surface of (1Σ+
g )BeHe2+

2

An ab initio DMS grid of (1Σ+
g )BeHe2+

2 has been constructed using the IC-

MRCI method of Page et al. [33] described in Section 3.2.5. This DMS grid was

constructed using a 57-point subset of the 87 points comprising the IC-MRCI PES

[33], and is given in Table 3.16.

Table 3.16 Discrete IC-MRCI DMS grid of (1Σ+
g )BeHe2+

2 .

RHe-Be RBe-He θ µy µx RH-Li RLi-H θ µy µx
(/Å) (/Å) (/deg.) (/a.u.) (/a.u.) (/Å) (/Å) (/deg.) (/a.u.) (/a.u.)
1.437 1.437 180.000 0.0000 0.0000 1.716 1.196 161.276 -0.2977 -0.4928
1.481 1.481 180.000 0.0000 0.0000 1.629 1.363 147.592 -0.5497 -0.2702
1.394 1.394 180.000 0.0000 0.0000 1.974 1.358 118.064 -1.0904 -0.7750
1.307 1.307 180.000 0.0000 0.0000 1.401 2.084 109.554 -1.2604 -0.9443
1.438 1.438 175.232 -0.0004 -0.0786 1.377 1.569 154.692 -0.4250 0.1892
1.440 1.440 172.853 0.0002 -0.1180 1.397 1.726 133.707 -0.8153 0.3661
1.442 1.442 170.481 -0.0002 -0.1574 1.346 1.542 169.003 -0.1808 0.1850
1.445 1.445 168.116 -0.0002 -0.1969 1.258 1.689 154.223 -0.4211 0.4202
1.448 1.448 165.762 0.0002 -0.2365 1.245 1.750 146.864 -0.5424 0.5091
1.452 1.452 163.420 0.0002 -0.2762 1.598 2.039 113.071 -1.3941 0.6203
1.497 1.377 180.000 -0.1120 0.0000 1.625 1.834 97.621 -1.5964 -0.3839
1.557 1.318 180.000 -0.2233 0.0000 2.101 1.292 154.742 -0.4695 -0.8522
1.617 1.258 180.000 -0.3335 0.0000 1.966 1.966 144.561 0.0000 -0.9069
1.412 1.709 164.275 -0.2859 0.2999 1.682 1.682 159.506 0.0002 -0.4213
1.526 1.239 147.651 -0.4900 -0.2706 2.308 2.308 180.000 0.0000 0.0000
1.420 1.999 150.452 -0.5836 0.6291 1.138 1.736 180.000 0.5479 0.0000
1.530 2.612 127.511 -1.1743 1.3115 0.540 2.335 180.000 1.4131 0.0000
1.620 1.620 125.016 -0.0002 -1.0357 0.403 1.600 180.000 0.5615 0.0000
1.694 1.694 116.033 0.0002 -1.2701 2.906 1.710 180.000 -1.2704 0.0000
1.778 1.778 107.849 -0.0002 -1.5172 0.784 0.784 180.000 0.0000 0.0000
1.870 1.870 100.436 -0.0002 -1.7764 1.256 1.256 152.433 0.0000 -0.3765
2.074 2.074 87.710 0.0002 2.3248 1.167 1.167 118.303 0.0001 -0.7375
2.147 1.620 98.504 -1.6497 -0.9175 0.988 1.886 180.000 0.8019 0.0000
1.074 2.834 81.258 -0.9218 -2.4210 2.117 0.322 180.000 -1.1084 0.0000
2.668 0.487 110.495 -0.5709 -2.0356 0.703 1.301 180.000 0.3152 0.0000
1.435 1.077 180.000 -0.2833 0.0000 1.411 3.206 180.000 1.8553 0.0000
1.157 1.354 180.000 0.1564 0.0000 1.954 1.356 180.000 -0.6143 0.0000
0.893 1.510 180.000 0.4515 0.0000 1.247 1.845 180.000 0.5854 0.0000
1.663 1.224 168.816 -0.1789 -0.4105
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Several power series representations of the (1Σ+
g )BeHe2+

2 IC-MRCI DMS grid

have been constructed. Due to symmetry considerations these DMFs have been

constructed under Cs symmetry. Subsequently, the maximum order of expansion

yielding uniquely defined coefficients is reduced. Listed in Table 3.17 are (χ2)
1/2

values of the µx and µy component DMFs of (1Σ+
g )BeHe2+

2 . It is immediate from this

table that the only representations of the (1Σ+
g )BeHe2+

2 DMS exhibiting sufficient

accuracy are the 5th order expansions for both the µx and µy component DMFs,

which are defined by 56 coefficients. These coefficients are given in Table 3.18.

Contour projections, in terms of the internal displacement co-ordinates, are shown

in Figures 3.9 and 3.10. From these figures it is evident that both component DMFs

exhibit satisfactory topological features over the domains featured. Therefore no

SVD analysis was required in this case.

Table 3.17 (χ2)
1/2

values (/a.u.) for µx and µy as a function of expansion order
for (1Σ+

g )BeHe2+
2 .

µx µy
Power Series Number of (χ2)

1/2
Number of (χ2)

1/2

Order Coefficients Coefficients
2 10 2.74+00a 10 4.34+00
3 20 2.03+00 20 2.66+00
4 35 1.11+00 35 1.42+00
5 56 9.20−04 56 1.16−03

a2.74+00 denotes 2.74× 100.
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Table 3.18 Expansion coefficients (/a.u.) of the (1Σ+
g )BeHe2+

2 DMF.

µy µx
Term Coefficient Term Coefficient Term Coefficient Term Coefficient
C000 6.7005−05a C031 1.4220+01 C000 −7.5307−05 C031 −1.3449+01
C100 −1.1974−05 C202 −3.6092−01 C100 −9.3582−01 C202 4.3278−01
C010 6.5906−04 C112 3.8472−01 C010 9.3514−01 C112 −3.3039−01
C001 1.8693−02 C022 6.6307−01 C001 −1.0951−03 C022 −6.8870−01
C200 −1.4779−02 C103 −4.9453−03 C200 −3.2516−01 C103 6.6304−03
C110 −1.7801−02 C013 7.9706−03 C110 2.4762−02 C013 −8.0641−03
C020 −5.4398−03 C004 1.0558−06 C020 3.4165−01 C004 −1.7122−06
C101 −2.7483−01 C500 4.1545−02 C101 6.7171−01 C500 2.6317−03
C011 6.1671−01 C410 1.2041−02 C011 −4.0488−01 C410 −2.3727−01
C002 8.4352−04 C320 6.4279−02 C002 −4.3769−04 C320 −2.2047−01
C300 −3.1207−02 C230 2.3811−01 C300 2.1137−01 C230 −8.5220−02
C210 −1.5410−01 C140 1.7511−01 C210 1.2182−01 C140 −5.4770−02
C120 −1.1984−01 C050 −4.2496−03 C120 1.8095−01 C050 2.8070−02
C030 −1.0192−02 C401 −1.3566+01 C030 −1.7464−01 C401 1.4290+01
C201 −1.5405+00 C311 3.7346+00 C201 2.2281+00 C311 −6.8836+00
C111 4.8706+00 C221 1.0820+01 C111 −4.1467+00 C221 −1.2489+01
C021 6.4530+00 C131 3.1377+00 C021 −6.6786+00 C131 −4.8713+00
C102 −6.6689−02 C041 4.1863+00 C102 1.1803−01 C041 −6.0614+00
C012 1.7462−01 C302 −6.0211−01 C012 −1.5842−01 C302 6.5737−01
C003 9.5540−05 C212 5.6611−02 C003 −7.5785−05 C212 −2.6847−02
C400 1.6071−02 C122 6.1245−01 C400 2.7393−02 C122 −6.3240−01
C310 −1.8248−01 C032 4.2464−01 C310 −5.3465−02 C032 −4.8495−01
C220 −3.6221−02 C203 −1.1992−02 C220 9.7394−02 C203 1.3855−02
C130 1.3458−01 C113 6.4767−03 C130 2.0900−02 C113 −5.8595−03
C040 2.0414−02 C023 1.2713−02 C040 −4.1516−02 C023 −1.4016−02
C301 −4.3266+00 C104 −8.6299−05 C301 5.0659+00 C104 1.0706−04
C211 5.0959+00 C014 1.0757−04 C211 −3.0716+00 C014 −1.1564−04
C121 1.0314+01 C005 1.5239−08 C121 −6.7779+00 C005 −2.3868−08

(χ2)
1/2

1.16× 10−3 a.u. (χ2)
1/2

9.20× 10−4 a.u.

a6.7005-05 denotes 6.7005× 10−5.
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Figure 3.9 Two-dimensional constant dipole projections of µx for (1Σ+
g )BeHe2+

2 :
(a) ρ1 (x) versus ρ2 (y); (b) ρ3 (x) versus ρ1 (y). See text for definition of ρi.

Figure 3.10 Two-dimensional constant dipole projections of µy for (1Σ+
g )BeHe2+

2 :
(a) ρ1 (x) versus ρ2 (y); (b) ρ3 (x) versus ρ1 (y). See text for definition of ρi.

3.4. Conclusion

The construction of molecular PEFs and DMFs employing least-squares fit-

ting methods has been reviewed. Particular emphasis has been placed upon the

approach employed by von Nagy-Felsobuki and co-workers [2, 13], which includes

the use of SVD analysis in alleviating the near-rank deficiencies in the optimisation

of PEF and DMF coefficients.

These methods were subsequently applied to the 1A1 ground states of the

isoelectronic species LiH+
2 and BeH2+

2 and the 1Σ+
g ground state of BeHe2+

2 , in or-
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der to generate accurate PEFs. Discrete PESs of these species were calculated,

consisting of 83 (FCI), 89 (IC-MRCI) and 87 (IC-MRCI) points, respectively. The

most appropriate analytical representation to the discrete (1A1)LiH+
2 FCI PES was

a P (5, 5) Padé approximant with the OGL expansion variable with σ67 = 0 using

SVD. This PEF yielded a (χ2)
1/2

value with respect to the FCI grid of 2.41× 10−5

Eh. The most appropriate PEF for the ground state of BeH2+
2 was the P (6, 5) Padé

approximant with the OGL expansion variable. More extensive SVD was required

in this case however, with σ65,67−69,71−83 = 0 giving a (χ2)
1/2

value of 2.37× 10−5 Eh

with respect to the calculated IC-MRCI PES grid. Neglecting SVD analysis in the

optimisation of this P (6, 5) OGL function gave a more accurate PEF in a statistical

sense. However, it was illustrated that the latter PEF was not appropriate, due to

the topology of the potential energy in the region of the equilibrium geometry. A

P (6, 5) Padé approximant with the EOGL expansion variable was determined to

be the most appropriate representation of the 1Σ+
g ground state of BeHe2+

2 . The

technique of SVD analysis was also applied to the latter PEF, with σ60,62−74 = 0

yielding a (χ2)1/2 value of 3.14 × 10−5 Eh.

Discrete 47-, 73- and 47-point DMS grids of (1A1)LiH+
2 , (1A1)BeH2+

2 and

(1Σ+
g )BeHe2+

2 were constructed using FCI, IC-MRCI and IC-MRCI, respectively. It

was subsequently determined that the 5th and 6th order power series expansions

of internal displacement co-ordinates were the most suitable for the µx and µy

DMS components of (1A1)LiH+
2 . Similarly, the most appropriate analytical DMFs

for (1A1)BeH2+
2 were found to be the 7th and 6th order expansions of internal

displacement co-ordinates, for µx and µy, respectively. Analytical representations

to µx and µy of (1Σ+
g )BeHe2+

2 were constructed under Cs symmetry, and so the

maximum power series expansion order was restricted to 5. It was subsequently
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determined that the most appropriate power series representation of both µx and

µy of (1Σ+
g )BeHe2+

2 was the 5th order expansion, which did not necessitate SVD

analysis in the optimisation of the DMF term coefficients. All component DMFs

constructed here exhibited statistical accuracies exceeding those of the respective

ab initio methods employed for the corresponding DMSs.
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CHAPTER 4

Ab Initio Vibrational and Rovibrational

Spectra of Triatomic Molecules

4.1. Introduction

Theoretical approximations of the vibrational and rovibrational spectra of

polyatomic molecules began with the BO approximation [1, 2]. By employing this

approximation the electronic energy is parametrically dependent on a particular

set of nuclear co-ordinates. Provided that the molecular PES is known, it is (in

principle) possible to calculate the complete spectrum of rovibrational eigenvalues

for a species within the BO approximation. Variational rovibrational Hamiltonians

for three- [3], four- [4–12], five- [13] and six-atom [14] molecular systems have been

reported in the literature. More recently, general N -atom molecular vibrational

Hamiltonians have been developed by Mátyus et al. [15], Yurchenko et al. [16] and

Pesonen [17].

Modern rovibrational calculations for polyatomic molecules generally have

their beginnings in the Hamiltonians of Eckart [18], Wilson and Howard [19], Darling

and Dennison [20] and Watson [21, 22]. The assumption that the nuclear motion

of polyatomic molecules consists of small amplitude vibrations coupled with near

rigid rotations about some well defined vibration-averaged equilibrium geometry is

implicit in these approaches. Amongst the first great successes of ab initio rovibra-

tional calculations of polyatomic molecules was the ground state of H+
3 [23–30]. In

1978 Carney et al. [23] reviewed model Hamiltonians with an emphasis on the con-

vergence of different solution methodologies with respect to the final rovibrational
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spectra. A number of other pertinent reviews can be found in the literature. These

include the works of Carter and Handy [31–35], Jensen and Bunker [36–38], Bačić

and Light [39], Searles and von Nagy-Felsobuki [40, 41], Sutcliffe [42], Tennyson and

co-workers [43–45], Hubac and Svrcek [46] and Schwenke [11, 47, 48].

The molecular rovibrational Hamiltonian is most conveniently classified in

terms of the co-ordinate system employed in its construction. One general class

of rovibrational Hamiltonians consists of those expressed in a subset of curvilinear

internal co-ordinates, such as internal/valence [25, 49–53], scattering [27, 54–60]

and Radau hyperspherical co-ordinates [61–63]. The ‘Morbid’ (Morse Oscillator-

Rigid Bender Internal Dynamics) Hamiltonian of Jensen and co-workers [64–67]

also lies in this category. Hamiltonians of this form provide an advantage in that

the complete eigenspectrum of any polyatomic molecule can be approximated in

principle. However, suitable choices of basis sets, matrix element computations and

diagonalisation techniques must be made for the problem to remain computationally

tractable. As such, a rovibrational Hamiltonian of this form is realistically suitable

only for small species, viz. tri- and tetra-atomic species [15].

Another broad class of rovibrational Hamiltonians follows from the work of

Watson [21, 22], who developed general non-linear and linear Hamiltonians using rec-

tilinear normal co-ordinates within the Eckart framework [18]. The main appeal of

the Eckart-Watson Hamiltonians is that they may be applied to an arbitrary molec-

ular structure or bonding arrangement. The need for molecule-specific co-ordinate

systems is therefore alleviated. In addition, the vibration-rotation coupling terms

in the Hamiltonian are minimised, due to the use of the Eckart framework. The

latter fact has ramifications for both the size of rovibrational basis set required for

converged solutions and the time required for the diagonalisation of the Hamiltonian

matrix. Nevertheless, Eckart-Watson Hamiltonians fail to describe large amplitude
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vibrational motions, due to the nature of the co-ordinates employed in their con-

struction.

Based on the work of Carney and Porter [23, 24, 68, 69] with respect to

D3h and C2v triatomic molecules, Searles and von Nagy-Felsobuki [70] and Wang

et al. [71] developed normal co-ordinate vibrational Hamiltonians for Cs and linear

triatomic molecules, respectively. The latter vibrational Hamiltonians are employed

throughout this work.

The remainder of this Chapter is dedicated to the discussion and implemen-

tation of the vibrational solution algorithm of von Nagy-Felsobuki and co-workers

[40], for both non-linear and linear triatomic molecules (i.e. stage (e) of Figure 1.1).

This algorithm requires both a detailed knowledge of the equilibrium structure and

an embedded analytical PEF and DMF. These have been discussed in Chapters Two

and Three, respectively. Aspects including the construction of one-dimensional (1D)

and 3D vibrational eigenvectors, the numerical quadrature scheme and the calcula-

tion of kinetic energy, angular momenta and potential energy matrix integrals will

be discussed in this Chapter. A method for calculating the vibration-averaged struc-

tures of triatomic molecules will also be developed. The calculation of transition

dipole moment integrals will be reviewed in the context of the calculation of ab ini-

tio vibrational spectra. The form of the rovibrational ‘super-matrix’ elements for

non-linear molecules will be discussed, as will rovibrational transition dipole moment

integrals [72]. All aspects of these algorithms will be illustrated using the 1A1 and

1Σ+
g ground states of BeH2+

2 and BeHe2+
2 , respectively.

4.2. Solution Algorithm: Overview

Throughout this thesis, the solutions of the vibrational and rovibrational

Schrödinger equation have been obtained using the solution algorithm of von Nagy-
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Felsobuki and co-workers (see Figure 4.1). The individual stages of this algorithm

are dealt with at greater length in subsequent sections of this Chapter, but are

outlined briefly at this point:

1. Ab initio property surfaces (viz. the PEF and DMF) of the species in question

are constructed using the linear regression techniques described in Chapter

Three;

2. The analytical PEF is embedded in the 1D Schrödinger equation, which is

solved variationally using a finite-element method (FEM) (see §4.3);

3. The eigenvectors of the 1D Schrödinger equation are employed as a configu-

rational basis for the 3D trial vibrational eigenvectors. The analytical PEF

is embedded in the ‘full’ vibrational Hamiltonian, which is then diagonalised

using the 3D trial wave functions (see §4.4, §4.4.1-3);

4. The analytical DMF is embedded in the 3D Schrödinger equation. Vibrational

dipole transition moment matrix elements are then determined as the expecta-

tion values of the dipole moment operator in the vibrational eigenvector basis

(see §4.4.6);

5. Elements of the rotational constant, centrifugal distortion and Coriolis cou-

pling matrices spanned by the optimised 3D eigenvectors are calculated (see

§4.5);

6. Trial rovibrational wave functions are constructed using the 3D eigenvectors

in conjunction with rotational basis functions. The latter are constructed

as ± combinations of symmetric-top eigenfunctions,
∣∣R±JKm〉. The rovibra-

tional ‘super-matrix’ is then constructed and diagonalised to yield rovibra-

tional eigenvalues (see §4.5.1), and;
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Figure 4.1 The rovibrational spectrum solution algorithm of von Nagy-Felsobuki
and co-workers.
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7. Rovibrational dipole transition moment matrix elements are calculated using

the embedded DMF. Radiative properties, such as rovibrational transition

probabilities and spectral line intensities are then calculated in the space-fixed

framework (see §4.5.2).

The latter three aspects of this algorithm are currently applicable only to non-linear

molecules. For all spectroscopic quantities reported in this thesis, cgs units will be

employed.

4.3. The One-Dimensional Vibrational Wave Function

Closed-form solutions to the nuclear Schrödinger equation can only be ob-

tained for contrived potential operators, such as the finite-square well, the harmonic

potential and the Morse potential [40]. In general however, the nuclear Schrödinger

equation cannot be solved analytically. To this end, the 1D FEM approach of von

Nagy-Felsobuki and co-workers [73], which employs the Ritz-Rayleigh method [74],

has been employed in this thesis.

The general 1D vibrational Schrödinger equation is of form,

{
∂2

∂q2
i

+ Û (3)
w (qi) + V̂ (qi)

}
ψj(qi) = λjψj(qi) (4.1)

where ∂
∂qi

, Û
(3)
w (qi) and V̂ (qi) are the kinetic energy, 3rd order Watson and potential

operators in the arbitrary normal co-ordinate qi, respectively, and ψj and λj are

the jth eigenfunction and eigenvalue, respectively. It is noted here that Ûw ≡ 0 for

linear molecules. In the cases of non-linear and linear molecules, q ≡ f and q ≡ w,

respectively. These two sets of normal co-ordinates are shown in Figures 4.2 and

4.3, respectively.

The FEM solves equation (4.1) variationally by dividing a specified domain
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Figure 4.2 The vibrational f co-ordinates of a Cs triatomic molecule [70].

Figure 4.3 The vibrational w co-ordinates of a linear triatomic molecule [75],
shown in the xz plane.

of V̂ (qi) into a number of ‘finite-elements’, over each of which the eigenvalue problem

is solved using a trial function Φj(qi), constructed as a combination of localised basis

functions. These basis functions, φ(qi), are identically zero for all elements other

than that being considered. As such, the eigenfunction ψj may be written as,

ψj(qi) ≈ Φj(qi) =
16∑
k=1

cjkφk(qi) (4.2)

Throughout this thesis, φ have been chosen as Hermite cubic polynomials. For an
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element of size h, the latter are defined as [73],

φh1 = 1− 3

(
Qh
i

h

)2

+ 2

(
Qh
i

h

)3

(4.3)

φh2 = Qh
i − 2

((
Qh
i

)2
h

)
+

((
Qh
i

)3
h2

)
(4.4)

φh3 = 3

(
Qh
i

h

)2

− 2

(
Qh
i

h

)3

(4.5)

φh4 = −

((
Qh
i

)2
h

)
+

((
Qh
i

)3
h2

)
(4.6)

Thus continuity of φ, Φ and the first derivatives thereof is imposed [40]. Substitution

of equation (4.2) into equation (4.1) yields a residual,

r(Φj) =

[
∂

∂qi
+ Û (3)

w (qi) + V̂ (qi)

]
Φj − λjΦj (4.7)

the value of which must be minimised. If Φj is such that the corresponding Rayleigh

quotient,

R(Φj) =

∫ (
Φ′j
)2
dqi +

∫
Φj

(
Û

(3)
w + V̂

)
Φjdqi∫

Φ2
jdqi

(4.8)

is minimised, then ψj is an eigenfunction of equation (4.1). It is convenient to

express Φj(qi) as a piece-wise continuous polynomial,

Φh
j (qi) =

16∑
k=1

chjkφ
h
k(qi) (4.9)

Equation (4.8) is defined over the finite-element qhi = [0, h] as,

R(Φj) =

∑16
k=1

∑16
l=1 c

h
jkc

h
jl

∫ h
0

(
(φ′k)

h(φ′l)
h + φhk

(
Û

(3)
w + V̂

)
φhl

)
dqhi∑16

k=1

∑16
l=1 c

h
jkc

h
jl

∫ h
0
φhkφ

l
ldq

h
i

(4.10)
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or equivalently,

Rh =
(Ch)TAhCh

(Ch)TMhCh
(4.11)

where (Ch)T = [Ch
1j, C

h
2j, C

h
3j, . . . , C

h
nj] is the transpose of the matrix containing the

expansion parameters defined on qhi and j refers to the jth eigenfunction. The matrix

Mh is the local mass matrix, the elements of which are defined as,

[
Mh

kl

]
=

∫ h

0

Φh
jΦ

h
kdq

h
i =

h

420



156 22h 54 −13h

22h 4h2 −3h −3h2

54 13h 156 −22h

−13h −3h2 −22h 4h2


(4.12)

The elements
[
Ahkl
]

of the matrix Ah are defined on qhi as,

[
Ahkl
]

=
[
Kh
kl

]
+
[
P h
kl

]
=

∫ h

0

[
(Φ′k)

h(Φ′l)
h + Φh

k

(
Û (3)
w + V̂

)
Φh
l

]
dqhi (4.13)

where,

[
Kh
kl

]
=

1

30h



36 22h 54 −13h

22h 4h2 13h −3h2

54 13h 156 −22h

−13h −3h2 −22h 4h2


(4.14)

and, [
P h
kl

]
=
[
P h
kl

]
=

[∫ h

0

Φh
k

(
Û (3)
w + V̂

)
Φh
l dq

h
i

]
(4.15)

respectively.

The elemental matrices Kh and Mh are evaluated successively on each in-

terval qhi and are combined to form sparse ‘global’ matrices K and M. The lat-

ter contain the appropriate overlapping contributions from adjacent finite-elements.
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The subsequent global Rayleigh quotient matrix R is solved using a diagonalisation

procedure developed by Doherty et al. [76]. It has been established [77, 78] that con-

vergence to within double-precision accuracy in the eigenfunctions and eigenvalues

of equation (4.1) is attained with the use of 1000 finite-elements. This convention

has therefore been employed in this thesis. Moreover, the decay of ψj(qi) (to at most

1 × 10−7 a
1/2
0 ) in the classically forbidden regions of the chosen 1D domains have

been ensured. All solutions to the 1D vibrational Schrödinger equation reported in

this thesis have been calculated using Fortran programs of von Nagy-Felsobuki

and co-workers (oneda pade cs, vib41 cc new) [79], given in Appendix C.

4.3.1. One-Dimensional Vibrational Eigenvectors of (1A1)BeH2+
2

The 1D vibrational states of (1A1)BeH2+
2 have been calculated using the FEM

procedure outlined in the previous section. The analytical PEF employed here is that

of Page and von Nagy-Felsobuki [80], described in Chapter 3. The domains employed

for the numerical integration procedure in the t1, t2 and t3 normal co-ordinates are

[-2.0 a0, 3.0 a0], [-0.9 a0, 3.5 a0] and [-2.25 a0, 2.25 a0], respectively. The vibrational

energies, Eti , of the lowest 20 t1, t2 and t3 normal modes of (1A1)BeH2+
2 are listed

in Table 4.1. The explicit form of the normal co-ordinates of non-linear molecules

are discussed at greater length in §4.4. To illustrate the appropriate decay of the 1D

vibrational eigenfunctions in the classically forbidden regions of the PEF, the five

lowest t1 eigenfunctions are given in Appendix D.

4.3.2. One-Dimensional Vibrational Eigenvectors of (1Σ+
g )BeHe2+

2

The 1D vibrational eigenfunctions and eigenvalues of the 1Σ+
g ground state of

BeHe2+
2 have been calculated using the FEM, in conjunction with the P (6, 5) EOGL
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Table 4.1 One-dimensional eigenvalues (/cm−1) of (1A1)BeH2+
2 relative to the

PEF minimuma.

v Ef1(v) Ef2(v) Ef3(v)
1 519.5 1152.5 219.6
2 1985.5 4074.9 903.0
3 3427.7 6827.7 1850.0
4 4846.4 9417.7 2886.9
5 6241.7 11858.0 3992.5
6 7613.8 14132.9 5146.0
7 8962.9 16269.2 6336.2
8 10289.0 18265.1 7556.1
9 11592.3 20126.3 8801.0
10 12872.8 21858.9 10067.8
11 14138.0 23469.6 11354.4
12 15366.1 24966.0 12659.6
13 16579.0 26356.7 13982.5
14 17769.4 27651.0 15322.5
15 18937.4 28858.6 16679.4
16 20082.9 29989.4 18053.1
17 21206.1 31056.7 19443.5
18 22307.5 32092.9 20857.0
19 23389.8 33162.7 22274.9
20 24464.0 34322.7 23716.2

aPEF minimum = -14.90871403 Eh.

PEF of the 1Σ+
g ground state of BeHe2+

2 . The latter was developed in Chapter 3.

The integration domains employed in the w1 and w3 vibrational normal co-ordinates

are [-1.25 a0, 4.0 a0] and [-1.5 a0, 1.5 a0], respectively, whereas in the w2 bend co-

ordinate domains of [-3.5 a0, 3.5 a0] are employed. These domains guaranteed all

1D eigenfunctions decayed appropriately. The lowest 20 1D vibrational eigenvalues

(Ewi
) of (1Σ+

g )BeHe2+
2 for each vibrational co-ordinate are given in Table 4.2. The

explicit form of the normal co-ordinates of linear molecules are discussed at greater

length in §4.4.
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Table 4.2 One-dimensional eigenvalues (/cm−1) of (1Σ+
g )BeHe2+

2 , relative to the
PEF minimuma.

v Ew1(v) Ew2/w3(v) Ew4(v)
1 363.5 52.6 505.0
2 1077.0 184.9 1530.0
3 1772.3 355.5 2584.5
4 2449.3 545.6 3667.1
5 3108.1 750.0 4776.7
6 3748.6 965.5 5912.1
7 4370.8 1189.6 7072.6
8 4974.7 1420.7 8257.3
9 5560.1 1657.5 9465.5
10 6127.0 1899.0 10696.5
11 6675.4 2144.3 11949.9
12 7205.1 2392.8 13224.9
13 7716.0 2643.8 14521.2
14 8208.0 2896.7 15838.3
15 8681.1 3151.2 17175.8
16 9135.1 3406.8 18533.2
17 9569.9 3663.1 19910.3
18 9985.4 3919.8 21306.6
19 10381.5 4176.7 22721.9
20 10758.2 4433.3 24155.8

aPEF minimum = -19.52603610 Eh.

4.4. Normal Co-ordinate Vibrational Hamiltonians for Triatomic Molecules

Using the BO approximation, the nuclear rovibrational quantum mechanical

Hamiltonian may be written as,

ĤRV = Ĥvib + Ĥrot + Ĥcor + V̂ (4.16)

where Ĥvib, Ĥrot and Ĥcor are the operators describing the vibration, rotation and

the vibration-rotation coupling of the nuclei, respectively. The electronic potential

for a given set of nuclear co-ordinates is denoted by V̂ . The use of a normal co-

ordinate Hamiltonian, such as that employed throughout this thesis, necessitates a
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two-stage approach to solving the nuclear Schrödinger equation,

ĤRVΨRV = ERVΨRV (4.17)

This two-stage approach entails firstly the partitioning of ĤRV in equation (4.17) into

operators corresponding to purely vibrational and rotational motion. The second

stage involves the combination of these separate solution sets and the subsequent so-

lution of equation (4.17) using the ‘full’ rovibrational Hamiltonian (equation (4.16)).

A detailed account of the use of this normal co-ordinate approach has been reported

by Searles and von Nagy-Felsobuki [40, 41].

4.4.1. The Non-Linear Case

For a non-linear triatomic molecule, the most general form of Ĥvib corre-

sponds to that for a molecule of Cs symmetry [70],

Ĥvib =
∑
α

T̂α + T̂l + Û (3)
w + V̂

= − }2

2µCs

{
3∑

k=1

∂2

∂f 2
k

+
µCs

I′(f1)

(
f2

∂

∂f3

− f3
∂

∂f2

)2
}
− }2

8

∑
α

µαα + V̂

(4.18)

Here, T̂α and T̂l correspond to the vibrational kinetic energy and vibrational angular

momentum operators, α runs over x, y and z co-ordinates and I′(f1) is the effective

inertial tensor,

I′(f1) =
m1m2m3µCsR

2
1

Mλ2
+

2R1µCs(m1m2m3)
1/2

M1/2λ
+ µCsf

2
1 (4.19)
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The Cs Hamiltonian of equation (4.18) is defined in terms of the rectilinear f co-

ordinates [70] (see Figure 4.2). In the case of a C2v species, equation (4.18) collapses

to the C2v t co-ordinate Hamiltonian of Carney et al. [25] and so f ≡ t. The Watson

operator may be expanded as a Taylor series [21],

µαα = Ie
−1

+ Ie
−1

awIe
−1

+
3

4
Ie
−1

awIe
−1

awIe
−1 − 1

2
Ie
−1

awIe
−1

awIe
−1

awIe−1 + . . .

(4.20)

such that [41],

Ie
−1

=
1

4(R1b+R2c)2a2λ2µCs


2µCs(µCs − α) −2µCsβ 0

−2µCsβ 2µCs(µCs − α) 0

0 0 µ2
Cs
− α2 − β2


(4.21)

The aw matrix is defined as,

aw = aw1 + aw2 + aw3 (4.22)

where,

aw1 = γR1(R1b+R2c)2γa


µCs − α β 0

β µCs − α 0

0 0 2µCs

 (4.23)

aw2 = 2λa


(R2

2−R2
1)a

R2
−(R1c+R2b) 0

−(R1c+R2b)
(R2

2−R2
1)a

R2
0

0 0 0

 (4.24)
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and,

aw3 = 2λa


R1c+R2b

(R2
2−R2

1)a

R2
0

(R2
2−R2

1)a

R2
−(R1c+R2b) 0

0 0 0

 (4.25)

Here, a, b, c, R1, R2, R3, µCs , α, β, γ and λ are mass and structural parameters derived

by Carney et al. [23] and von Nagy-Felsobuki and co-workers [40, 41]. These param-

eters, and therefore the form of Ĥvib, are symmetry dependent. The ‘collapsing’ of

the mass and structural parameters of Ĥvib is shown explicitly in Table 4.3.

4.4.2. The Linear Case

According to Amat and Henry [81], linear triatomic molecules possess four

normal vibrational co-ordinates, including a single doubly degenerate bending and

two non-degenerate stretching vibrational co-ordinates. For a linear triatomic

molecule, the vibrational motion is dependent only on two of the Euler angles which

are required to specify the direction of molecular axis in the space-fixed frame of ref-

erence. The absence of the third Euler angle means that the commutation relations

of the angular momenta operators developed for non-linear systems [21, 22, 82] no

longer hold. Additionally, the elements of I′ in the linear case may be such that I′−1

can become singular. From these considerations, an Eckart-Watson Hamiltonian for

linear triatomic molecules must be derived in a co-ordinate system which alleviates

these unique problems.

Wang et al. [71] derived a 4D Eckart-Watson vibrational Hamiltonian for

linear triatomic molecules analogous to equation (4.18) in normal co-ordinates w
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(see Figure 4.3). This Hamiltonian is defined as,

Ĥvib =
∑
α

T̂α + T̂l + V̂

= − }2

2µsymm.

{
4∑

k=1

∂2

∂w2
k

+
µ1

I′(w1)

[(
w2

∂

∂w4

− w4
∂

∂w2

)2

+

(
w3

∂

∂w4

− w4
∂

∂w3

)2
]}

+ V̂

(4.26)

where I′(w1) is defined as,

I′(w1) =
[(
I0
)1/2

+ µ
1/2
1 w1

]2
(4.27)

such that,

I0 =
m1m2R

2
1 +m2m3R

2
2 +m1m3R

2
3

M
(4.28)

and,

µsymm. =
m1m2m3MI0

m2
1m

2
2R

2
1 +m2

2m
2
3R

2
2 +m2

1m
2
3R

2
3

(4.29)

The lack of the Watson operator is noted in equation (4.26). The corresponding

1D vibrational Schrödinger equation (equation (4.1)) lacks this Watson operator

accordingly.

By constraining the vibrational motion of the molecule to a single plane

(viz. the xz plane) [82], Wang et al. [75] redefined the vibrational motion of the

system entirely by three of the four w co-ordinates (w1, w2 and w4). By setting

w3 ≡ 0 the number of rotational degrees of freedom is increased from two to three.

Consequently, the commutation relations of the angular momenta operators for non-
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linear molecules [21, 22, 82] now hold. Equation (4.26) is simplified accordingly,

Ĥvib =
∑
α

T̂α + T̂l + V̂

= − }2

2µsymm.

{
3∑

k=1

∂2

∂w2
k

+
µ1

I′(w1)

[(
w2

∂

∂w3

− w2
∂

∂w3

)2
]}

+ V̂

(4.30)

where w4 in equation (4.26) is replaced by w3 in equation (4.30) for simplicity of

notation.

4.4.3. The Vibrational Wave Function

Within the approach of von Nagy-Felsobuki and co-workers [40, 41], the

vibrational wave functions of both non-linear and linear triatomic molecules consist

of three dimensions. In particular, they are constructed as configuration products

of optimised 1D eigenfunctions,

Ψvib
v (ψi(q1), ψj(q2), ψk(q3)) =

n1∑
i=1

n2∑
j=1

n3∑
k=1

cijkψi(q1)ψj(q2)ψk(q3) (4.31)

where na denote the number of 1D basis functions employed in co-ordinate a, respec-

tively. The wave functions Ψvib
v correspond to non-linear and linear species for q = f

and q = w, respectively. For all molecules considered in this thesis, the expansion

of Ψvib
v in the solution of the vibrational Schrödinger equation is limited such that

n1 = n2 = n3 = 20. It follows that each vibrational eigenfunction consists of an

8000 term CI expansion. The convergence of the eigenvalues of Ψvib
v to within the

residual error of the analytical PEF has been established for a number of molecules

[77, 78, 83] using this algorithm.

The manner of the construction of Ψvib
v provides a convenient assignment
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scheme. The configuration weight of the jth configuration in the ith eigenfunction

of Ĥvib is defined as [41],

(%weight)ij =

[
C2
ij∑8000

k=1 C
2
ik

]1/2

× 100 (4.32)

Equation (4.32) allows the dominant character of a vibrational eigenfunction to be

gauged. Additionally, the corresponding configuration density is defined as [72],

(%density)ij =

[
|Cij|∑8000
k=1 C

2
ik

]1/2

× 100 (4.33)

This provides another metric by which the character of the optimised 3D vibrational

eigenvectors may be determined.

4.4.4. Numerical Evaluation of Matrix Integrals

The explicit form of the vibrational kinetic energy, angular momentum and

truncated Watson operator matrix elements may be given in terms of Ψvib
v . Defining∣∣Ψvib(ψi(q1), ψj(q2), ψk(q3)

〉
= |ijk〉, the kinetic energy matrix elements are of form,

3∑
α=1

[
− }2

µsymm

〈
ijk

∣∣∣∣ ∂2

∂q2
α

∣∣∣∣ lmn〉] (4.34)

which may be expressed in terms of the 1D basis functions,

− }2

µsymm

[
〈j|m〉 〈k|n〉

〈
i

∣∣∣∣ ∂2

∂q2
1

∣∣∣∣ l〉+ 〈i|l〉 〈k|n〉
〈
j

∣∣∣∣ ∂2

∂q2
2

∣∣∣∣m〉+ 〈i|l〉 〈j|m〉
〈
k

∣∣∣∣ ∂2

∂q2
3

∣∣∣∣n〉]
(4.35)

and by orthonormality the kinetic energy matrix elements are,

− }2

µsymm

[
δjmδkn

〈
i

∣∣∣∣ ∂2

∂q2
1

∣∣∣∣ l〉+ δilδkn

〈
j

∣∣∣∣ ∂2

∂q2
2

∣∣∣∣m〉+ δilδjm

〈
k

∣∣∣∣ ∂2

∂q2
3

∣∣∣∣n〉] (4.36)
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The vibrational angular momentum matrix elements may be expressed in

terms of |ijk〉 as,

− }2

µsymm

〈
ijk

∣∣∣∣∣ 1

I′(q1)

[
q2

∂

∂q3
− q3

∂

∂q2

]2
∣∣∣∣∣ lmn

〉
(4.37)

which is expanded to give,

〈
i

∣∣∣∣ 1

I′(q1)

∣∣∣∣ l〉[〈j ∣∣q2
2

∣∣m〉〈k ∣∣∣∣ ∂2

∂q2
3

∣∣∣∣n〉− δkn〈j ∣∣∣∣q2 ∂

∂q2

∣∣∣∣m〉− δjm〈k ∣∣∣∣q3 ∂

∂q3

∣∣∣∣n〉

− 2

〈
j

∣∣∣∣q2 ∂

∂q2

∣∣∣∣m〉〈k ∣∣∣∣q3 ∂

∂q3

∣∣∣∣n〉+
〈
k
∣∣q2

3

∣∣n〉〈j ∣∣∣∣ ∂2

∂q2
2

∣∣∣∣m〉]
(4.38)

In the non-linear case, the 3rd order truncation of the Watson operator, Û
(3)
w ,

has matrix elements of form,

− }2

8

〈
ijk
∣∣∣Û (3)

w

∣∣∣ lmn〉 (4.39)

where the truncation Û
(3)
w is completely defined by the mass and structural param-

eters of the molecule.

The potential energy matrix elements are evaluated using an adaptation of

the HEG quadrature scheme [40, 41, 84]. Assuming that the potential operator V̂

can be expanded as a power series in vibrational q co-ordinates, the potential energy

integral matrix truncated at first order is of form,

〈
ijk
∣∣∣V̂ ∣∣∣ lmn〉 ≈ 〈ijk |v0| lmn〉+ 〈ijk |v1q1| lmn〉+ 〈ijk |v2q2| lmn〉+ 〈ijk |v3q3| lmn〉

= v0δilδjmδkn + v1δjmδknXil(q1) + v2δilδknXjm(q2)

+v3δilδjmXkn(q3) (4.40)
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where the matrix X(qi) is constructed from the expectation values of the normal

co-ordinate qi,

Xab(qi) = 〈a |qi| b〉 (4.41)

If D(qi) is defined as the diagonalised form of X(qi) such that C(qi) are the corre-

sponding eigenvectors, then,

X(qi) = [C(qi)]
T D(qi)C(qi) (4.42)

The diagonal elements of D(qi) are the quadrature points in the qi co-ordinate.

Therefore the potential energy integrals may be written as,

〈
ijk
∣∣∣V̂ (X(q1),X(q2),X(q3))

∣∣∣ lmn〉
= C(q1)C(q2)C(q3)V̂ (D(q1),D(q2),D(q3)) [C(q1)]

T [C(q2)]
T [C(q3)]

T (4.43)

It remains to briefly discuss the process by which the 1D integrals

(e.g.
〈
a
∣∣∣X̂qi

∣∣∣ b〉, where X̂qi is an arbitrary operator acting on ψ(qi)) are evaluated.

This integral is defined on a finite-element qhi = [a, b] to be,

〈
a
∣∣∣X̂qi

∣∣∣ b〉 =

∫ b

a

ψha(qi)X̂qiψ
h
b (qi)dqi (4.44)

Throughout this thesis, such integrals have been calculated using a 16 point Gaussian

quadrature scheme. The previous integral is therefore evaluated as,

〈
a
∣∣∣X̂qi

∣∣∣ b〉 =

∫ b

a

ψha(qi)X̂qiψ
h
b (qi)dqi

= (b− a)

∫ 1

0

ψha(y)X̂yψ
h
b (y)dy

≈ (b− a)

ng∑
j=1

ωjψ
h
a(ρi)X̂ρi

ψhb (ρi) (4.45)
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where ρi are the quadrature points in co-ordinate qi defined on [0, 1] and ωj are

defined as,

ωj =

[
5∑

k=0

qk(yj)
2

]−1

, qng(y) =
√

(2n+ 1)P
(a,0)
16 (1− 2y) (4.46)

Here yj are defined in terms of the zeroes of polynomials and P
(a,0)
16 Jacobi poly-

nomials [85]. The global integral (on the domain [ga, gb]) is then obtained by the

summation of each finite-element integral (on the sub-domain of [hj−1, hj]),

〈
a
∣∣∣X̂qi

∣∣∣ b〉 =

∫ gb

ga

ψha(qi)X̂qiψ
h
b (qi)dqi

=
n∑
k=1

∫ hj

hj−1

ψka(qi)X̂qiψ
k
b (qi)dqi (4.47)

All calculations of 3D vibrational eigenfunctions reported in this thesis have

been performed using Fortran programs of von Nagy-Felsobuki and co-workers

(shqr pcsf, vib32 cc ajp, vib33 cc ajp, vib34 cc ajp) [86]. All code employed in this

thesis is provided in Appendix C.

4.4.5. Vibration-Averaged Structures

Page and von Nagy-Felsobuki [87] have reported a method by which the

vibration-averaged structures of a triatomic molecule can be calculated. By defining

the following matrix integrals,

〈q1〉 = δjmδkn

〈
i
∣∣∣Ĥvib

∣∣∣ l〉
〈q2〉 = δilδkn

〈
j
∣∣∣Ĥvib

∣∣∣m〉
〈q3〉 = δilδjm

〈
k
∣∣∣Ĥvib

∣∣∣n〉 (4.48)
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the expectation values of Ĥvib in the 1D vibrational eigenvector basis may be de-

termined. By use of the transformation matrices L : (f1, f2, f3) 7→ (r1, r2, r3) of

Searles and von Nagy-Felsobuki [70] and A : (w1, w2, w3) 7→ (r1, r2, r3) of Wang

et al. [71], the expectation values of the internal co-ordinates of the molecule may

subsequently be calculated. This procedure has been implemented in two Fortran

programs (vib struct, vib struct lin) [88], given in Appendix C.

4.4.6. Vibrational States of (1A1)BeH2+
2

Page and von Nagy-Felsobuki [80] have calculated the low-lying VBOs and

the corresponding vibration-averaged structures of the ground states of (1A1)BeH2+
2 ,

(1A′)BeHD2+ and (1A1)BeD2+
2 using the numerical procedures outlined in this sec-

tion. The PEF embedded in the nuclear Hamiltonian was that detailed in Chapter

3. These VBOs and vibration-averaged structures of (1A1)BeH2+
2 are listed in Table

4.4. Vibration-averaged structures and VBOs of the low-lying vibrational states of

(1A′)BeHD2+ and (1A1)BeD2+
2 are provided in Appendix D.

From Table 4.4 it is evident that the ten lowest vibrational states of

(1A1)BeH2+
2 can be assigned unequivocally using a single dominant configuration. It

is also evident from Table 4.4 that for (1A1)BeH2+
2 excitations in the symmetric bend

mode are seldom observed in the lowest ten vibrational states. This is consistent with

the reported vibrational states of the isoelectronic species (1A1)LiH+
2 [83] and the

isovalent species MgH2+
2 [87]. The fundamental frequencies of (1A1)BeH2+

2 presented

in Table 4.4 are also in reasonable agreement with the predicted trends regarding

harmonic vibrational frequencies. For example, using the CCSD(T) method of Page

and von Nagy-Felsobuki [80] the harmonic fundamental frequencies for the |100〉,

|010〉 and |001〉 modes are 1243.7, 3549.4 and 1035.8 cm−1, respectively. Similarly,

the CCSD(T) harmonic ZPE of (1A1)BeH2+
2 is 80.1 cm−1 higher than the IC-MRCI
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fully anharmonic value. The larger difference between |010〉 fundamental frequencies

can be understood in terms of the differences between CCSD(T) and IC-MRCI 1D

PES curvatures.

The lowest ten vibrational states of (1A′)BeHD2+ are more delocalised than

are those of either (1A1)BeH2+
2 or (1A1)BeD2+

2 . For example, the states with VBOs at

1505.7, 2167.3, 2270.5, 2577.7 and 2966.5 cm−1 are each principally composed from

two dominant configurations. As for (1A1)BeH2+
2 , excited quanta in the symmetric

bend mode of vibration are only observed in one of the lowest 10 vibrational states of

(1A′)BeHD2+, viz. the |010〉 fundamental vibration. The low-lying vibrational states

of (1A1)BeD2+
2 are assigned more definitively, as all excited vibrational states are

each assigned to a single dominant configuration. The exception is the a1 state with

VBO at 2231.6 cm−1. The latter state is predominantly composed from a mixture

of the |102〉 and |200〉 configurations, which accounted for 77% of the normalised

vibrational wave function.

The vibration-averaged structures included in Table 4.4 provide an indication

of the effects of configuration mixing in the vibrational wave function. For example,

for each of the lowest ten vibrational states of (1A1)BeH2+
2 , the vibration-averaged

structures exhibit longer bond lengths (by ca. 0.05-0.1 Å) than those corresponding

to the IC-MRCI PES minimum. Additionally, vibration-averaged bond angles range

from ca. -3.5◦ to +1.3◦ with respect to the equilibrium ab initio value for the low-

lying excited states. Hydrogenic isotopic substitution in (1A1)BeH2+
2 has a negligible

effect on the vibration-averaged structures. For instance, 〈RBe-H〉 for the ground

vibrational state of (1A′)BeHD2+ is 0.001 Å larger than that of (1A1)BeH2+
2 , while

〈RBe-D〉 for the ground vibrational state of (1A′)BeHD2+ is 0.001 Å smaller than

that of (1A1)BeD2+
2 . The expectation values 〈θ〉 for the ground vibrational states of

the three isotopomers are in exact agreement.



162

4.4.7. Vibrational States of (1Σ+
g )BeHe2+

2

The algorithms detailed in this section have been applied to the 1Σ+
g ground

state of BeHe2+
2 . The analytical PEF used in the computation of the potential energy

matrix integrals is that of Page et al. [89], and has been described in Chapter 3.

Low-lying l = 0 vibrational states of (1Σ+
g )BeHe2+

2 are listed in Table 4.5 in terms

of VBOs, symmetries, assignments and vibration-averaged structures. Only 〈RBe-H〉

have been considered here, since all 〈θ〉 values are 180◦ due to the symmetry of the

PEF in the w2 co-ordinate.

The low-lying vibrational states of (1Σ+
g )BeHe2+

2 are observed to be closely

spaced, indicative of the generally flat topology of the molecular PEF in the neigh-

bourhood of the geometric minimum. This property of the vibrational spectrum

appears to be typical of helide ions of form XHe2+
2 , and has been observed previously

for X = C, Si, N, O [72, 90–92]. It is evident that these low-lying vibrational states

are also dominated by excitations in the w2 vibrational mode. For example, vibra-

tional states with VBOs at 115.1, 286.2, 510.7, 784.9, 835.2 and 1014.7 cm−1 have

each been assigned a primary configuration which includes a non-zero w2 quantum.

This is anticipated, due to the relative 1D PEF curvatures in the w1, w2 and w3 co-

ordinates, respectively. Nevertheless, each of the lowest 10 l = 0 vibrational states

of (1Σ+
g )BeHe2+

2 may be described using one or two primary configurations.

States with significant w2 character are observed to be generally more multi-

configurational than those consisting of w1 and/or w3 excitations. For example, the

vibrational states with VBOs at 115.1 and 286.2 cm−1 are assigned predominantly

to the |020〉 configuration term. Nevertheless, these states exhibit significant contri-

bution from the |040〉 and |160〉 configuration terms, respectively. A similar trend

is observed with respect to the states with VBOs at 510.7 and 784.9 cm−1, both

of which primarily exhibit |040〉 character. Conversely, the w1 and w3 fundamen-



163

Table 4.5 Low-lying VBOs, w expectation values and vibration-averaged bond
lengths of (1Σ+

g )BeHe2+
2 for l = 0.

Assign. Symmetry Weighta VBO 〈w1〉 〈w2〉 〈w3〉 〈RBe-He〉
(/cm−1) (a0) (a0) (a0) (Å)

|000〉 σ+
g 0.93 0.0b −0.010 4.976−09 1.426−12 1.433

|020〉,|040〉 σ+
g 0.57,0.33 115.1 −0.144 1.028−08 5.159−13 1.394

|020〉,|160〉 σ+
g 0.65,0.21 286.2 −0.188 −4.867−07 2.646−13 1.355

|040〉,|140〉 σ+
g 0.59,0.20 510.7 −0.197 1.522−06 1.020−13 1.351

|100〉 σ+
g 0.92 699.2 0.045 7.180−08 4.024−13 1.457

|040〉,|060〉 σ+
g 0.55,0.35 784.9 −0.205 1.249−04 1.979−12 1.348

|120〉,|060〉 σ+
g 0.53,0.37 835.2 −0.083 −2.102−07 −5.006−13 1.401

|001〉 σ+
u 0.85 920.1 0.023 5.610−07 −4.396−12 1.447

|001〉,|021〉 σ+
u 0.43,0.41 1004.0 −0.123 5.945−06 −1.951−13 1.383

|120〉,|080〉 σ+
g 0.54,0.23 1014.7 −0.139 1.261−04 2.909−12 1.376

aCalculated using equation (4.32).
bZPE = 870.1 cm−1.

tal modes are observed to consist of the |100〉 and |001〉 terms with configuration

weights of 0.92 and 0.85, respectively. All l = 0 vibrational states are such that

strictly even (or zero) excited quanta are observed in the w2 mode. Consequently,

such states may freely mix in the 3D configuration expansion.

The relative 1D PEF curvatures in the w1, w2 and w3 co-ordinates are also

illustrated by the respective 〈w〉 expectation value. For example, the vibration-

averaged bond lengths of each state listed in Table 4.5 are dominated by the con-

tribution from 〈w1〉. Nevertheless, the effect of vibration-averaging for the ground

state is relatively subtle, decreasing the Be-He separation by ca. 4.2 mÅ relative to

the ab initio Re value [89]. For all states dominated by w2 excitations a decrease

in 〈RBe-He〉 relative to the vibrational ground state value is observed. Conversely,

for the w1 and w3 fundamental modes, 〈RBe-He〉 are 1.457 and 1.447 Å, respectively.

Additionally the |120〉 σ+
g state with VBO at 835.2 cm−1exhibits a 〈RBe-He〉 value of

1.401 Å.
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4.4.8. Vibrational Radiative Properties

The vibrational transition moment integrals for states 〈a| and |b〉 in the 3D

vibrational eigenfunction basis are of form [93],

µα(a, b) = 〈ijk |µα(ρ1, ρ2, ρ3)| lmn〉 (4.49)

Throughout this thesis, the integrals of equation (4.49) have been calculated using

the novel adapted HEG quadrature scheme developed by Sudarko et al. [72]. This

procedure essentially entails the truncation of a convergent power series expansion

of µα(ρ1, ρ2, ρ3) at 1st order so that,

〈ijk |µα(ρ1, ρ2, ρ3)| lmn〉 ≈ 〈ijk |c0| lmn〉+ 〈ijk |c1q1| lmn〉

+ 〈ijk |c2q2| lmn〉+ 〈ijk |c3q3| lmn〉

(4.50)

from which an expression for the transition moment analogous to equation (4.43) is

obtained, with the exception that the potential operator is replaced by µα(ρ1, ρ2, ρ3).

Thus, the vibrational transition moment integrals and potential energy matrix inte-

grals are evaluated on a common quadrature grid. Since the Eckart frame is imposed

on the molecule, the square dipole moment matrix integral may subsequently be cal-

culated,

µ2
a,b = µ2(a, b) = µ2

x + µ2
y (4.51)

Equation (4.51) is used in order to calculate the Einstein coefficients of in-

duced absorption (Bab) and spontaneous emission (Aab) [40],

Bab =
8π3

3h2
µ2
a,b (4.52)



165

At thermal equilibrium, Bab and Aab are related according to,

NaBbaρvab
= Nb (Aab +Babρvab

) ,
Na

Nb

=
(Aba +Bbaρvab

)

Babρvab

(4.53)

The spectral density of the external radiation field for a black radiating system, ρvab

satisfies Planck’s law,

ρvab
=

8πhv3
ab

c3
1

(ehcvab/kT − 1)
(4.54)

where vab is the frequency of the transition (/cm−1) between states 〈a| and |b〉, and c,

k and T are the speed of light, Boltzmann’s constant and temperature, respectively.

The radiative lifetime of flourescence, τ fb , due to spontaneous emission in the absence

of an external field is defined as,

τ fb =
1∑

a<bAba
(4.55)

Upon the addition of an external field, this expression becomes,

τ fb =
1∑

aAba +
∑

aBbaρvab
+
∑

b′Bbb′ρvab

(4.56)

since induced transitions (i.e. absorptions) are now allowed. The vibrational band

intensity (/cm molecule−1) is defined as,

Sab =
}vab
c

NA

Qv

1.012510× 106

RT
Bbae

−hcv0a/kT
(
1− e−hcvab/kT

)
(4.57)

where R is the universal gas constant, NA is Avagadro’s number and Qv is the

vibrational partition function.

The vibrational radiative properties of non-linear molecules reported in this

thesis have been calculated using an existing Fortran program of von Nagy-
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Felsobuki and co-workers (vibint timef djw) [94]. This program has been adapted

in this work for the calculation of vibrational radiative properties of linear molecules

(vibint timef linear) [95]. Both programs are given in Appendix C.

4.4.9. Vibrational Spectrum of (1A1)BeH2+
2

Page and von Nagy-Felsobuki [80] have calculated vibrational radiative prop-

erties including square dipole matrix elements, Einstein coefficients, band strengths

and radiative lifetimes of (1A1)BeH2+
2 , (1A′)BeHD2+ (1A1)BeH2+

2 using the meth-

ods detailed in this section, in conjunction with the analytical DMF described in

Chapter 3. These properties are given in Table 4.6 for the lowest 10 vibrational

states of (1A1)BeH2+
2 . Analogous data for (1A′)BeHD2+ and (1A1)BeD2+

2 are given

in Appendix D.

It can be seen that for the ground state of (1A1)BeH2+
2 , the |201〉 ← |000〉

transition possess the greatest band strength, with S = 1.63×10−12 cm molecule−1.

However, both the |003〉 ← |000〉 and |010〉 ← |000〉 transitions were of similar

intensities, possessing band strengths of S = 1.59× 10−12 and S = 1.15× 10−12 cm

molecule−1, respectively. For (1A′)BeHD2+ the existence of several vibrational states

Table 4.6 Vibrational Radiative Properties of (1A1)BeH2+
2 at 296 K.

i VBO R2 A0i B0i S0i τi
(/cm−1) (/a.u.2) (/s−1) (1016cm3erg−1s2) (/cm molecule−1) (/s)

1 948.3 4.26−01a 1.14+02 8.03+01 1.67−16 8.04−05
2 1169.9 1.10+00 5.51+02 2.06+02 5.32−16 1.26−04
3 1909.5 1.05+01 2.28+04 1.97+03 8.31−15 8.80−07
4 2107.9 8.84+02 2.60+06 1.67+05 7.76−13 3.60−07
5 2328.0 2.75−01 1.09+03 5.18+01 2.67−16 9.20−06
6 2907.8 1.32+03 1.02+07 2.48+05 1.59−12 6.00−08
7 3098.4 1.27+00 1.18+04 2.39+02 1.64−15 3.10−07
8 3287.2 1.19+01 1.33+05 2.25+03 1.63−12 2.10−07
9 3323.6 8.31+00 9.57+04 1.57+03 1.15−12 7.64−06

a4.26-01 denotes 4.26× 10−1.
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with similar band strengths is predicted. For example, the |002〉, (|101〉 , |001〉),

(|101〉 , |201〉), (|003〉 , |201〉) and (|002〉 , |102〉) states of (1A′)BeHD2+ each possess

band strengths (with respect to transition to the ground vibrational state) of the

order of 10−13 cm molecule−1. For (1A1)BeD2+
2 the vibrational transitions |101〉 ←

|000〉 and |101〉 ← |000〉 have the greatest spectral band intensities, possessing band

strengths of 1.66× 10−12 and 1.72× 10−13 cm molecule−1, respectively.

4.4.10. Vibrational Spectrum of (1Σ+
g )BeHe2+

2

Radiative properties of the low-lying l = 0 vibrational states, including square

dipole matrix elements, Einstein coefficients, band strengths and radiative lifetimes

have been calculated using methods developed in this section and are listed in Table

4.7. The embedded DMF is that of Page and von Nagy-Felsobuki [89] detailed in

Chapter 3.

It is evident from Table 4.7 that the vibrational states in question exhibit

band strengths of ca. 10−11 − 10−12 cm molecule−1. However, states with non-

zero w1 quanta are observed to exhibit slightly larger band strengths. For in-

stance, the largest S value (8.77 × 10−11 cm molecule−1) in Table 4.7 corresponds

Table 4.7 Vibrational Radiative Properties of (1Σ+
g )BeHe2+

2 at 296 K.

i VBO R2 A0i B0i S0i τi
(/cm−1) (/a.u.2) (/s−1) (1016 cm3 erg−1 s2) (/cm molecule−1) (/s)

1 115.1 7.42+05a 3.55+05 1.40+08 4.47−12 8.49−08
2 286.2 9.15+05 6.72+06 1.72+08 2.40−11 4.64−08
3 510.7 2.65+05 1.11+07 4.99+07 1.51−11 2.49−08
4 699.2 1.06+06 1.14+08 2.00+08 8.77−11 7.07−09
5 784.9 7.12+04 1.08+07 1.34+07 6.67−12 1.26−08
6 835.2 2.45+05 4.48+07 4.62+07 2.46−11 4.37−09
7 920.1 7.87+05 1.92+08 1.48+08 8.74−11 4.68−09
8 1004.0 6.33+04 2.01+07 1.19+07 7.70−12 1.35−08
9 1014.7 1.07+04 3.50+06 2.01+06 1.31−12 3.61−09

a7.42+05 denotes 7.42× 105.
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to the |100〉 ← |000〉 band. Similarly, the (0.53× |120〉+ 0.37× |060〉) state with

VBO at 920.1 cm−1 exhibits a S value of 8.74 × 10−11 cm molecule−1, with re-

spect to transition to the ground vibrational state. Other states with similar band

strengths (i.e. of the order of 10−11 cm molecule−1), although dominated by config-

uration terms including excited w2 quanta, also exhibit significant w1 character. For

instance, the (0.65× |020〉+ 0.21× |160〉) and (0.59× |040〉+ 0.20× |140〉) states

with VBOs at 286.2 and 510.7 cm−1 exhibit respective band strengths of 2.40×10−11

and 1.51×10−11 cm molecule−1, with respect to transition to the ground vibrational

state.

4.5. A Rovibrational Hamiltonian for Non-linear Triatomic Molecules

The form of the pure molecular rotation operator of equation (4.16), Ĥrot,

may be conveniently written in matrix notation. The elements of Ĥrot spanned by

the 3D vibrational eigenvectors 〈Ψi| and |Ψj〉 are of form [23],

Ĥrot
ij =

1

2
〈A〉ij Π̂2

x +
1

2
〈B〉ij Π̂2

y +
1

2
〈C〉ij Π̂2

z +
1

2
〈D〉ij

(
Π̂xΠ̂y + Π̂yΠ̂x

)
(4.58)

where [24, 25, 29, 70, 96–98],

〈A〉ij = 〈Ψi|µxx |Ψj〉 〈B〉ij = 〈Ψi|µyy |Ψj〉

〈C〉ij = 〈Ψi|µzz |Ψj〉 〈D〉ij = 〈Ψi|µxy |Ψj〉 (4.59)

are the ijth elements of the rotational constant matrices. The components of the

angular momentum operators, Π̂α (α = x, y, z) are defined in the molecule-fixed
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frame of reference and of form [99],

Π̂x = −i cosχ

(
cot θ

∂

∂χ
− 1

sin θ

∂

∂φ

)
− i sinχ

∂

∂θ
(4.60)

Π̂x = −i sinχ

(
cot θ

∂

∂χ
− 1

sin θ

∂

∂φ

)
− i cosχ

∂

∂θ
(4.61)

Π̂z = −i ∂
∂χ

(4.62)

where θ, φ and χ are the associated Euler angles of the n-unit vectors.

The Coriolis coupling operator of equation (4.16), Ĥcor, may also be written

in matrix notation. The matrix element Ĥcor
ij in the 3D vibrational eigenvector basis

is of form [41],

Ĥcor
ij =

i

}
〈F 〉ij Π̂z (4.63)

Here the elements of F are parametrised in the vibrational f co-ordinates such that,

〈F 〉ij =

〈
Ψi

∣∣∣∣ }2

I′(f1)

(
f3

∂

∂f2

− f2
∂

∂f3

)∣∣∣∣Ψj

〉
(4.64)

The ‘full’ normal co-ordinate rovibrational Hamiltonian for an arbitrary non-

linear triatomic molecule may therefore be assembled [41],

ĤRV
ij = Ei 〈S〉ij +

1

2
〈A〉ij Π̂2

x +
1

2
〈B〉ij Π̂2

y

+
1

2
〈C〉ij Π̂2

z +
1

2
〈D〉ij

(
Π̂xΠ̂y + Π̂yΠ̂x

)
+
i

}
〈F 〉ij Π̂z (4.65)

Here, Ei is the energy of the ith vibrational state and 〈S〉ij is the ijth element of the

vibrational overlap matrix S. The solution of the nuclear rovibrational Schrödinger

equation (4.17) therefore equates to the diagonalisation of the Hamiltonian matrix

defined in equation (4.65).
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4.5.1. The Rovibrational Wave Function

The rovibrational eigenfunctions ΨRV of equation (4.17) are constructed from

the product of the vibrational eigenfunctions Ψvib
v and the symmetric-top eigenfunc-

tions, ϕJKm. Hence,

ΨRV
v,JKm =

∑
n,K

CnKJΨvib
n ϕJKm (4.66)

The form of the symmetric-top eigenfunctions in rotational co-ordinates are,

ϕJKm = |JKm〉 = ΘJKm(θ)eimφeiKχ (4.67)

where ΘJKm(θ) are defined by Shaffer [100] and K and m are (2J+1)-fold degenerate

(i.e. K,m = −J,−J + 1, . . . , J − 1, J) and describe the rotational angular momenta

in the laboratory and molecule fixed frames of reference, respectively. Equivalently,

ϕJKm =

[
2J + 1

8π2

]1/2

DJ
Km (4.68)

where DJ
Km are the Wigner rotation matrices [99]. Due to orthonormality,

〈JKm|J ′K ′m′〉 = δJJ ′δKK′δmm′ (4.69)

Rovibrational eigenfunctions ΨRV of equation (4.17) are obtained by con-

structing the rovibrational ‘super-matrix’ in the ΨRV basis,
〈

ΨRV
∣∣∣ĤRV

∣∣∣ΨRV
〉

. In

order to ensure all elements of this matrix remain real, ϕJKm are transformed to ±

combinations, such that,

∣∣R+
JKm

〉
=

1√
2

(|JKm〉+ |J(−K)m〉) (4.70)
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∣∣R+
JKm

〉
=

1√
2i

(|JKm〉 − |J(−K)m〉) (4.71)

where K ≥ 0. This is achieved by use of the Wang transformation [75],



R−JKm

...

R−J2m

R−J1m

J0m

R+
J1m

R+
J2m

...

R+
JKm



=
1√
2



i 0 · · · 0 −i

0
. . . . . . 0

i −i
... · · · 0

√
2 0 · · · ...

1 0 1

0 . . . . . . 0

1 0 · · · 0 1





ϕJ(−K)m

...

ϕJ(−2)m

ϕJ(−1)m

ϕJ0m

ϕJ1m

ϕJ2m

...

ϕJKm



(4.72)

The basis functions
∣∣R±JKm〉 are orthonormal by construction. Substitution of equa-

tions (4.70 - 4.71) into equation (4.66) yields,

ΨRV
v,JKm =

∑
n,K

CnKJΨvib
n

∣∣R±JKm〉 (4.73)

The non-zero elements of the angular momenta matrices in the
∣∣R±JKm〉 basis

have been determined by Carney et al. [23] to be,

〈
R∓JKm

∣∣∣Π̂z

∣∣∣R±JKm〉 = ±iK (4.74)

〈
R±JKm

∣∣∣Π̂2
z

∣∣∣R±JKm〉 = K2 (4.75)

〈
R±JKm

∣∣∣Π̂2
∣∣∣R±JKm〉 = J(J + 1) (4.76)
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〈
R±J(K+2)m

∣∣∣Π̂2
x − Π̂2

y

∣∣∣R±JKm〉 =
1

2
[(J −K − 1)(J −K)(J +K + 1)(J +K + 2)]1/2

(4.77)〈
R±J(K−2)m

∣∣∣Π̂2
x − Π̂2

y

∣∣∣R±JKm〉 =
1

2
[(J +K − 1)(J +K)(J −K + 1)(J −K + 2)]1/2

(4.78)

〈
R±J(K+2)m

∣∣∣Π̂xΠ̂y + Π̂yΠ̂x

∣∣∣R±JKm〉 = ∓1

2
[(J −K − 1)(J −K)

(J +K + 1)(J +K + 2) ]1/2 (4.79)〈
R±J(K−2)m

∣∣∣Π̂xΠ̂y + Π̂yΠ̂x

∣∣∣R±JKm〉 = ±1

2
[(J +K − 1)(J +K)

(J −K + 1)(J −K + 2) ]1/2 (4.80)

Equations (4.74 - 4.80) are all independent of m, since the matrix elements are

defined in the molecular frame of reference in the absence of external fields. The

order of the rovibrational super-matrix is [vmax × (2Jmax + 1)]2, where vmax and Jmax

denote the number of vibrational and rotational states employed. Diagonalisation

of the super-matrix yields the rovibrational eigenvalues and eigenfunctions, the lat-

ter of which may be assigned using a configuration weight scheme analogous to

equation (4.32). These assignments may subsequently be labelled using the JKaKc

Mulliken convention [101], where Ka and Kc are the asymmetric signatures of the

limiting prolate and oblate rotors, respectively. Both Ka and Kc may take the values

0, 1, 1, 2, 2, . . . , J . For molecules of C2v and Cs symmetry, the asymmetric rotors are

functions of J , whereas for molecules of D3h symmetry the asymmetric rotors are

functions of |K|.

All calculations of the rovibrational states of non-linear triatomic molecules

reported in this thesis have been made using a Fortran program of von Nagy-

Felsobuki and co-workers (hrovibfau assignsw1) [102], which is given in Appendix

C.
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4.5.2. Rovibrational Radiative Properties

The probability of transition between two rovibrational states 〈a| ≡

ΨRV
v1,J1K1m1

and |b〉ΨRV
v2,J2K2m2

may be calculated using the µ2
a,b matrix,

R2 =
∑
m1

∑
m2

∣∣〈ΨRV
v1,J1K1m1

|µsf|ΨRV
v2,J2K2m2

〉∣∣2 (4.81)

where µsf here is the DMF transformed to the space-fixed frame of reference, as

outlined by Zare [99]. Sudarko et al. [72] have derived the explicit form of equation

(4.81) to be,

R2 =
3

8

»
2J1 + 1

8π2

– »
2J2 + 1

8π2

–X
m1

X
m2

˛̨̨̨
˛
*X

v1

"
K1=1X

K1=J1

Cv1,J1K1m1Ψvib
v1 (i (|J1K1m1〉 − |J1(−K1)m1〉)) +

√
2Cv1,J101m1Ψvib

v1 DJ1
m10 +

K1=J1X
K1=1

Cv1,J1K1m1Ψvib
v1

“
DJ1

m1K1
+ DJ1

m1(−K1)

”#

˛̨
µx

`
D1

0(−1) −D1
01

´
− iµy

`
D1

0(−1) −D1
01

´˛̨X
v1

"
K1=1X

K1=J1

Cv1,J1K1m1Ψvib
v1 (i (|J1K1m1〉 − |J1(−K1)m1〉)) +

√
2Cv1,J101m1Ψvib

v1 DJ1
m10 +

K1=J1X
K1=1

Cv1,J1K1m1Ψvib
v1

“
DJ1

m1K1
+ DJ1

m1(−K1)

”#+˛̨̨̨˛
2

The associated spectral intensity (/cm molecule−1) may then be calculated,

S2
ab =

8π3

3hc

CANA

QVQR

gnsi

RT
vab
[
e−hcEa/kT − e−hcEb/kT

]
R2
ab (4.82)

where CA is the isotopic abundance, gnsi is the nuclear statistical weight of the initial

state, QR is the rotational partition function and Ea and Eb are the energies of states

〈a| and |b〉, respectively.

The rovibrational transition probabilities and associated spectral intensities

reported in this thesis have been calculated using an existing Fortran program of

von Nagy-Felsobuki and co-workers (rovint xym3) [103], which is given in Appendix

C.
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4.5.3. Rovibrational Spectrum of (1A1)BeH2+
2

The predicted rovibrational spectrum of (1A1)BeH2+
2 is given in Figure 4.4,

which includes all transitions with v ≤ 10, J ≤ 5 provided that the spectral line

intensity, Sab is greater than 1.0 × 10−20 cm molecule−1. The inset of Figure 4.4

clearly shows the rotational branch structure of the spectrum.

Rovibrational energies, JKaKc assignments and corresponding configuration

weights of the low-lying vibrational states of (1A1)BeH2+
2 for J ≤ 4 are listed in

Table 4.8. It is evident from this table that for all rovibrational states for which

J ≤ 3, JKaKc assignments may be made unequivocally. For the J = 4 rovibrational

states however, this is not always the case. For example, the 422 states of the five

lowest vibrational states each possess leading configuration weights less than 0.5.

Nevertheless, manual inspection shows that these assignments constitute the main

Figure 4.4 Rovibrational spectrum (at 296 K) of (1A1)BeH2+
2 for v ≤ 10, J ≤ 5

and Sab ≥ 1.0× 10−20. Transition frequencies and spectral intensities given in
cm−1 and cm molecule−1, respectively.
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character of the rovibrational wave function.

4.6. Conclusion

Vibrational and rovibrational Hamiltonians for polyatomic molecules have

been reviewed, with particular emphasis placed on those for triatomic molecules.

The solution algorithm developed by von Nagy-Felsobuki and co-workers [40] for

the calculation of vibrational/rovibrational spectra of triatomic molecules has been

employed throughout this work. The normal co-ordinate vibrational Hamiltonians

of von Nagy-Felsobuki and co-workers were therefore described in detail for both

non-linear [70] and linear [71] triatomic species. Technical details relevant to these

Hamiltonians, such as the quadrature algorithms used to calculate 1D vibrational

eigenvectors and kinetic/potential/dipole moment matrix integrals were also dis-

cussed. A method for evaluating vibration-averaged structures was also given. The

rovibrational Hamiltonian matrix elements for a non-linear molecule [25] were de-

tailed, as were the rovibrational transition dipole matrix elements [72]. Vibrational

and rovibrational wave functions have been assigned using a configuration weight

schemes in terms of normal co-ordinates q and JKaKc , respectively [40].

The vibrational spectra of (1A1)BeH2+
2 and (1Σ+

g )BeHe2+
2 were subsequently

reported. Analytical PEFs and DMFs of these species which were embedded in the

respective nuclear Hamiltonians were developed in Chapter 3. The 3D vibrational

states of both species were constructed using 20 vibrational basis functions in each

of the qi normal co-ordinates. Consequently, each 3D vibrational eigenfunction

consisted of an 8000 term configuration expansion. The rovibrational spectrum of

(1A1)BeH2+
2 was reported for v ≤ 10, J ≤ 5 and Sab ≥ 1.0 × 10−20 cm molecule−1.

For J ≥ 4 significant configuration mixing in the rovibrational wave function of

(1A1)BeH2+
2 was observed. As such, the assignments of these rovibrational states
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could not be made without recourse to a manual inspection of the appropriate

rovibrational eigenvector.
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CHAPTER 5

Ab Initio Investigation of Alkali Metal

Hydride and Helide Ions

5.1. Introduction

A systematic study of the structures, stabilities and energetics of MH+
2 ,

HMHe+ and MHe+
2 for M = Li, Na and K is presented in this Chapter. The ab

initio methods developed and benchmarked in Chapter 2 will be employed here for

all electronic structure calculations. Particular emphasis will be placed upon the

efficacy of isovalent arguments with respect to these species. Where possible, these

data will be presented in and discussed relative to available theoretical [1–35] and

experimental [35–38] data. These data have been reviewed in Chapter One. The

ab initio study of the structures and energetics of these species will allow suitable

candidates for rovibrational calculations to be gauged (see Figure 1.1). In partic-

ular, the investigation of the dissociative energetics and PES topologies of MH+
2 ,

HMHe+ and MHe+
2 using ab initio methods will provide an indication as to the

most suitable candidates for a full rovibrational analysis. Ab initio rovibrational

spectra of suitable species (viz. (1A1)LiH+
2 and (1A1)NaH+

2 ) will therefore be sub-

sequently presented. All aspects of these ab initio rovibrational spectra have been

calculated using methods and algorithms described in Chapters Three and Four.

Data presented in this Chapter serve as an extension to the work of Page et al. [39–

42], who have previously elucidated the structural and energetic trends of neutral

alkali-metal hydrides and alkaline-earth metal hydrohelide/helide cations.

There has recently been a number of theoretical investigations dealing with
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the spectroscopy of the ground state of LiH+
2 (see references [21, 23] and references

therein). Of all the molecular ions investigated in this thesis, (1A1)LiH+
2 is the only

one for which a rotationally-resolved spectrum has been identified experimentally

thus far [36, 37]. Nevertheless, rovibrational spectra of a number of ion-quadrupole

complexes similar in nature to LiH+
2 have recently been reported [36, 37, 43]. Ad-

ditionally, Page and von Nagy-Felsobuki have constructed ab initio rovibrational

spectra of (1A1)LiH+
2 [23] and (1A1)NaH+

2 [34]. It is anticipated therefore that spec-

troscopic characterisation of alkali metal hydride and hydrohelide ions may occur

in the near future. Theoretical prediction of vibrational/rovibrational properties of

these species at this moment may therefore provide timely assistance for the char-

acterisation of these ions. Molecular PESs and DMSs, vibrational/rovibrational

transition frequencies, vibration-averaged structures and vibrational/rovibrational

radiative data (i.e. band/line strengths) of (1A1)LiH+
2 and (1A1)NaH+

2 will be pre-

sented in Sections 5.6 and 5.7, respectively.

5.2. Computational Procedure

The UCCSD(T), IC-MRCI and IC-MRCI+Q methods and atomic basis sets

employed presently are essentially those described in Chapter 2. In cases where

helium was present, helium 1s electron density was excluded from the CASSCF

optimisation. Thus a correct description of the electronic wave function in the

asymptotic limit (in which the He 1s configuration is identically doubly occupied)

was obtained. Conversely, hydrogen 1s electron density was included in all CASSCF

active spaces. It is also noted that all ab initio results calculated in this work include

BSSE and relativistic (DK2) correction and have been calculated using Molpro

[44], unless states otherwise.
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5.3. Alkali Metal Dihydride Cations: MH+
2 (M = Li, Na, K)

Values of Re, θe, De, ω1, ω2 and ω3 of (1A1)MH+
2 (M = Li, Na, K) calculated in

this work are compared to previous theoretical and experimental data in Tables 5.1,

5.2 and 5.3, respectively. Several dissociative mechanisms have been considered for

(1A1)MH+
2 , due to the nature of the bonding present in these ground state systems.

In particular, potential well-depths corresponding to the dissociative reactions,

De(1) : (1A1)MH+
2 → (1S0)M

+ + (1Σ+
g )H2 (5.1)

De(2) : (1A1)MH+
2 → (2Σ+)MH+ + (2S1/2)H (5.2)

De(3) : (1A1)MH+
2 → (1S0)M

+ + 2(2S1/2)H (5.3)

have been calculated for each species. Due to the number of reports concerning

(1A1)LiH+
2 , comparison between the results of this work and previous ab initio results

is limited to those which employed correlated methods.

From Table 5.1 it is evident that Re calculated using UCCSD(T), IC-MRCI

and IC-MRCI+Q are in excellent agreement, differing at most by 0.1 mÅ. The single-

and multi-reference θe values calculated in this work are also in exact agreement.

Furthermore, there is generally good agreement between UCCSD(T), IC-MRCI and

IC-MRCI+Q equilibrium structures and those from previous theoretical investiga-

tions. For example, compared to the CCSD value of Davy et al. [9], the UCCSD(T)

Re value is ca. 14 mÅ smaller. Similarly, IC-MRCI and IC-MRCI+Q yield values

of Re are 2.9 mÅ smaller than the recent MRVB calculation of Kraemer and Špirko

[21]. There is also good agreement between both single- and multi-reference values

of Re of this work with the FCI value of Page and von Nagy-Felsobuki [23] (see

Chapter 3). The latter was calculated using CVTZ (Li) [45] and aug-cc-pVTZ (H)

[46] basis sets, and is ca. 7 mÅ larger than the values of this work. Values of θe
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Table 5.1 Ab initio equilibrium parameters of (1A1)LiH+
2 .

Re θe De
a Frequencies

Method (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 3 ω1 ω2 ω3

UCCSD(T)b 2.0194 21.4 25.95 469.3 482.7 521 4087 864
IC-MRCIb 2.0192 21.4 25.97 469.3 482.7 521 4090 864
IC-MRCI+Qb 2.0192 21.4 24.51 469.3 482.7 506 4092 838
MP2c 2.1262 21.7 4178.77
MP2d 2.1076 21.9 25.38
MP2e 2.144 21.5 24.8
MP2f 2.14 21.5 24.3
CISDg 2.042 21.2
CCSDh 2.034 21.5 24.6 502 4300 701
MRVBi 2.0221 21.5 25.80
FCIj 2.027 21.4 25.67 487.9 738.8
Experimentk 27.21± 19.0

aDe(1), De(2) and De(3) correspond to dissociative reactions (5.1), (5.2) and (5.3), respectively.
bThis work.
cIncludes BSSE correction, in conjunction with [10s] (H) [6s4p] (Li) basis sets; see reference [24].
dIn conjunction with 6-311G basis sets; see reference [22].
eIn conjunction with 6-311G(d,p) basis sets; see reference [29]. De value calculated using MP4.
fIncludes BSSE correction, in conjunction with aug-cc-pVQZ basis sets; see reference [30].
gIn conjunction with [6s3p1d] basis sets; see reference [1].
iIn conjunction with [8s4p3d] (H) and [14s9p4d3f ] (Li) basis sets; see reference [21].
jIn conjunction with aug-cc-pVTZ (H) and CVTZ (Li) basis sets, respectively. Fundamental

frequencies are fully anharmonic values; see reference [23].
kSee reference [38].

calculated deviate from CCSD [9], MRVB [21] and FCI [23] values by 0.1◦, regard-

less of the method employed. With respect to previously reported MP2 equilibrium

structures, the Re and θe values of this work are generally 90-130 mÅ and 0.1-0.4◦

smaller, respectively.

It is observed that UCCSD(T), IC-MRCI and IC-MRCI+Q yield deeper

potential well-depths, relative to all reported values of De calculated using MP2

[22, 24, 29, 30]. The same observation is made with respect to the CCSD De

value reported by Davy et al. [9]. The well-depths reported by Kraemer and Špirko

(MRVB) [21] and Page and von Nagy-Felsobuki (FCI) [23] are closer to those of

this work. For instance, the former De(1) value differs by -0.15, -0.17 and 0.29

kJ mol−1 relative to UCCSD(T), IC-MRCI and IC-MRCI+Q values, respectively.



186

Similarly, the FCI De(1) value differs from UCCSD(T), IC-MRCI and IC-MRCI+Q

values by -0.28, -0.03 and 0.16 kJ mol−1, respectively. Wu [38] reported the only

experimental D0(1) value of (1A1)LiH+
2 available in the literature. The error re-

ported in this measurement is of a similar magnitude to the value of D0(1) itself,

and therefore renders any comparison meaningless. Nevertheless, a D0(1) value of

20.72 kJ mol−1 has been reported [36] using the MRVB PES of Kraemer and Špirko

[21]. This value compares well to the ZPE-corrected UCCSD(T), IC-MRCI and

IC-MRCI+Q De values of 19.52, 19.52 and 18.32 kJ mol−1, respectively. Similarly,

the FCI PES of Page and von Nagy-Felsobuki [23] yields a D0(1) value of 19.92

kJ mol−1.

The results of this work indicate that the minimum-energy structure of

(1A1)NaH+
2 is of C2v symmetry, in concurrence with previously reported data. The

equilibrium structure of (1A1)NaH+
2 calculated using UCCSD(T), IC-MRCI and IC-

MRCI+Q are also in excellent agreement. For instance, the largest difference in Re

and θe calculated using these methods is 2.6 mÅ and 0.1◦, respectively. Nevertheless,

the single- and multi-reference methods employed presently predict an equilibrium

structure disparate to those from previous investigations in a quantitative sense. For

example, the Re values of this work are ca. 1-150 mÅ smaller than all previously

reported HF and MP2 values, with the exception of the SCF MO result of Switalski

et al. [28]. The latter approach employed a model core potential and yielded an

Re value of 2.38 Å. There is better agreement between the description of θe pro-

vided here and those reported previously. For example, UCCSD(T), IC-MRCI and

IC-MRCI+Q θe values differ from reported MP2 values [29, 30, 35] by -0.2-0.5◦.

Similarly, the correlated methods of this work give θe values ca. 0.5-1.2◦ larger than

HF values [11, 26, 27].

The [(1A1)NaH+
2 → (1S0)Na+ + (1Σ+

g )H2(v = 0)] dissociation energy
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Table 5.2 Ab initio equilibrium parameters of (1A1)NaH+
2 .

Re θe De
a Frequencies

Method (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 3 ω1 ω2 ω3

UCCSD(T)b 2.4208 17.8 14.66 463.9 471.4 364 4215 458
IC-MRCIb 2.4182 17.7 16.48 460.3 467.7 399 4232 420
IC-MRCI+Qb 2.4195 17.8 14.72 465.8 473.3 393 4162 414
SCF MOc 2.38 18.0
HFd 2.541 16.6 13.6 260 4577 439
HFe 2.458 17.4 12.0 306 4518 558
HFf 2.475 17.3 13 286 4522 502
MP2g 2.5081 17.9 14 4218.78
MP2h 2.427 17.7 12.3
MP2i 2.463 17.3 10.31 304 4458 533
MP2j 2.45 17.5 12.6
Experimentj 10.3± 0.8

aDe(1), De(2) and De(3) correspond to dissociative reactions (5.1), (5.2) and (5.3), respectively.
bThis work.
cIn conjunction with a model core potential; see reference [28].
dIn conjunction with 6-31G(d) basis sets; see reference [26].
eIn conjunction with [3s2p] (H) and [6s5p1d] (Na) basis sets; see reference [11].
fIn conjunction with [5s3p1d] (H) and 6-311G* (Na) basis sets; see reference [27].
gIncludes BSSE correction, in conjunction with [10s] (H) [6s4p] (Li) basis sets; see reference [24].
hIn conjunction with 6-311G(d,p) basis sets; see reference [29]. De value calculated using MP4

result.
iIn conjunction with 6-311+G(3df ,2p) basis sets; see reference [35]. Experimental result is D0

value.
jIncludes BSSE correction, in conjunction with aug-cc-pVQZ basis sets; see reference [30].

(i.e. D0(1)) has been measured experimentally by Bushnell et al. [35] to be 10.3±0.8

kJ mol−1. Using a fully anharmonic UCCSD(T) PES/vibrational wave function (see

§5.7), D0(1) is calculated to be 10.3 kJ mol−1, a value that is in excellent with ex-

periment [35]. By comparing harmonic/anharmonic D0(1) values, a quantitative

measure of the effects of anharmonicity on the molecular PES may be gauged.

For example, UCCSD(T) harmonic frequencies listed in Table 5.2 yield a D0(1)

value of 10.83 kJ mol−1. Similarly, the IC-MRCI and IC-MRCI+Q D0(1) values

are calculated to be 12.58 and 11.30 kJ mol−1, respectively. The latter data il-

lustrate the effect of size-extensivity on the PES curvature in the locality of the

geometric minimum. Curtiss and Pople [26] previously reported D0 to be 10.3
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kJ mol−1 using HF/6-31G(d). This method neglected the effects of correlation in

both (1A1)NaH+
2 and the dissociation products however, and so it is likely that this

agreement is fortuitous. There is reasonable agreement between the MP2 D0 values

reported by Barbatti et al. [29] (MP2/6-311G(d,p)) and Vitillo et al. [30] (MP2/6-

311+G(3df ,2p)) and the CCSD(T) value of this work, with these values agreeing to

within ca. 1 kJ mol−1. From consideration of the data presented in Table 5.2 it is

concluded that a reasonable description of the molecular wave function is attained

using UCCSD(T). That is, little is gained with respect to molecular equilibrium

parameters when multi-reference effects are taken into account.

The data in Table 5.2 concerning the harmonic fundamental frequencies of

(1A1)NaH+
2 suggest that the 1A1 PES is particularly sensitive with respect to the

ab initio wave function employed. This is particularly evident upon comparison of

correlated and non-correlated ω2 fundamental frequencies. This fundamental mode

essentially corresponds to ωe in the H2 subunit. It is evident that the CCSD(T)

ω2 value is generally 200-250 cm−1 smaller than previously reported HF values, and

ca. 140 cm−1 smaller than the MP2/6-311+G(3df ,2p) value reported by Bushnell

et al. [35]. For comparison, ωe(H2) calculated using CCSD/aug-cc-pVQZ is 4399

cm−1. This implies that the anisotropy of the Na+-H2 interaction is less pronounced

than those of the Li+-H2 [23] and Mg2+-H2 [47] interactions. For these isovalent and

isoelectronic series ω2 were calculated to be 4277 and 3951 cm−1, respectively, using

an equivalent CCSD(T) method.

Equilibrium parameters of the 1A1 ground state of KH+
2 are compared to

previously reported theoretical and experimental data in Table 5.3. The method

employed presently yield (1A1)KH+
2 equilibrium parameters which are in good agree-

ment. For example, the largest discrepancies observed for Re and θe values are 15.9

mÅ and 0.1◦ and occur using UCCSD(T) and IC-MRCI. It is observed that there
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Table 5.3 Ab initio equilibrium parameters of (1A1)KH+
2 .

Re θe De
a Frequencies

Method (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 3 ω1 ω2 ω3

UCCSD(T)b 2.8935 14.8 8.734 461.1 465.5 320 4259 416
IC-MRCIb 2.9094 14.7 8.359 459.1 477.6 320 4323 421
IC-MRCI+Qb 2.8974 14.8 8.637 463.4 470.9 313 4243 412
MP2c 3.186 13.8 4.90
MP2d 3.06 13.9 6.1
Experimente 6.07± 0.8

aDe(1), De(2) and De(3) correspond to dissociative reactions (5.1), (5.2) and (5.3), respectively.
bThis work.
cIn conjunction with 6-311G(d,p) basis sets; see reference [29]. De value calculated using MP4

result.
dIncludes BSSE correction, in conjunction with aug-cc-pVQZ basis sets; see reference [30].
eIn conjunction with 6-311+G(3df ,2p) basis sets; see reference [35]. Experimental result is D0

value.

are only two previously published ab initio equilibrium structures available, both

of which were calculated with MP2. For example, Curtiss and Pople [26] employed

MP2/6-311G(d,p) to report Re and θe to be 3.186 Å and 13.8◦, respectively. Sim-

ilarly, Vitillo et al. [30] employed MP2/aug-cc-pVQZ to report Re and θe to be

3.06 Å and 13.9◦. The single- and multi-reference methods employed in this work

predict that the 1A1 ground state is significantly more tightly bound than do ei-

ther of the previous MP2 methods. For example, Re calculated using UCCSD(T),

IC-MRCI and IC-MRCI+Q is ca. 160-290 mÅ smaller than those calculated using

MP2/6-311G(d,p) and MP2/aug-cc-pVQZ.

Comparison of the potential well-depth for equation (5.1) also leads to this

conclusion. For example, using UCCSD(T), IC-MRCI and IC-MRCI+Q De(1) is

8.734, 8.359 and 8.637 kJ mol−1, respectively. As such, IC-MRCI underestimates

De(1) by 0.375 and 0.278 kJ mol−1, relative to UCCSD(T) and IC-MRCI+Q. Never-

theless, these values are ca. 3.4-3.8 kJ mol−1 larger than the MP2/6-311G(d,p) value

[26] and ca. 2.2-2.6 kJ mol−1 larger than the MP2/aug-cc-pVQZ value [30]. Bushnell

et al. [35] have reported an experimental D0(1) for the [(1A1)KH+
2 → (1S0)K

+ +
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(1Σ+
g )H2(v = 0)] dissociation channel of 6.07± 0.8 kJ mol−1. Vitillo et al. [30] have

reported D0 to be 5.5 kJ mol−1, a result within the limits of experimental error.

Using UCCSD(T), IC-MRCI and IC-MRCI+Q, D0(1) was calculated to be 5.157,

4.375 and 5.228 kJ mol−1, respectively. As such, these methods yield D0(1) values

ca. -0.11, -0.89 and -0.04 kJ mol−1 outside the limits of experimental error. The

relative magnitudes of the D0(1) values of this work and that of Vitillo et al. [30]

are therefore indicative of the relative magnitudes of the ZPE corrections.

Comparison of successive binding energies corresponding to the dehydrogena-

tion of (1A1)LiH+
2 , (1A1)NaH+

2 and (1A1)KH+
2 (i.e. equations (5.2) and (5.3), respec-

tively) yields further insight into the dissociative natures of these complexes. Such

a comparison is made in Table 5.4. If it is assumed that the two M-H bonds in these

species are identical, then the energy binding a single hydrogen to the metal ion is

half the value of De(3). The difference, ∆, between this energy and De(2) therefore

gives an indication of the relative binding strengths of the two hydrogens. It is

inferred from Table 5.4 that for the 1A1 ground states of LiH+
2 , NaH+

2 and KH+
2 the

binding of the second hydrogen is substantially weaker than the first. For instance,

∆̄ using UCCSD(T), IC-MRCI and IC-MRCI+Q for these species are ca. -455.8,

-455.7 and -451.1 kJ mol−1, respectively. It is also inferred from this comparison

that the relative binding strengths of M-H1 and M-H2 are relatively constant for M

= Li, Na and K. That is, the binding energy of the two M-H bonds in each of these

Table 5.4 Binding energies (/kJ mol−1) for successive hydrogenation of M+ ions
(M = Li, Na, K).

(2A1)LiH+
2 (2A1)NaH+

2 (2A1)KH+
2

Method De(2) De(3) ∆a De(2) De(3) ∆a De(2) De(3) ∆a

UCCSD(T) 469.3 482.7 -455.8 463.9 471.4 -456.3 461.1 465.5 -456.8
IC-MRCI 469.3 482.7 -455.8 460.3 467.7 -453.0 459.1 477.6 -440.5
IC-MRCI+Q 469.3 482.7 -455.9 465.8 473.3 -458.3 463.4 470.9 -456.0

a∆ = De(3) − 2De(2). De(2) and De(3) correspond to dissociative reactions (5.2) and (5.3),
respectively. It is assumed that both M-H bonds are identical.
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species is relatively independent of atomic number M.

5.4. Alkali Metal Hydrohelide Cations: HMHe+ (M = Li, Na, K)

Equilibrium structures and energetics of the ground state hydrohelide species

HMHe+ (M = Li, Na, K) have been considered in this work. Equilibrium parame-

ters including Re, θe and dissociative potential well-depths De have been calculated

using UCCSD(T), IC-MRCI and IC-MRCI+Q, and are given in Table 5.5. The

values of IE1 for Li, Na and K are less than that of IE1 for He. Consequently, the

dissociative products resulting from alkali metal hydrohelide species will invariably

include neutral He. Similarly, dissociation of HMHe+ (M = Li, Na, K) into [M+ +

HeH] is also not a probable reaction. This is due primarily to the relative abilities of

M+ and H to chemically bind helium, which in turn are determined by the relative

polarisabilities of M+ and H. Following these considerations, the only dissociative

reactions considered in this work for HMHe+ are,

De(1) : HMHe+ → (2Σ+)MH+ + (1S0)He (5.4)

De(2) : HMHe+ → (1S0)M
+ + (2S1/2)H + (1S0)He (5.5)

No theoretical or experimental data of an alkali metal hydrodelide cation has been

reported in the literature to date.

From Table 5.5 it is evident that the single- and multi-reference methods

employed in this work yield quantitatively consistent equilibrium structures for the

2Σ+ ground state of HLiHe+. For example, UCCSD(T), IC-MRCI and IC-MRCI+Q

each predict this species to be linear at equilibrium, with Re(M-H) being 2.1942,

2.1944 and 2.1941 Å, respectively. TheRe(Li-He) values calculated using these meth-

ods are also in excellent agreement, differing by at most 0.4 mÅ. The ground state
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Table 5.5 Ab initio equilibrium parameters of HMHe+, M = Li, Na, K.

Re (M-H) Re (M-He) θe De
a

Method (/Å) (/Å) (/◦) (/kJmol−1)
1 2

(2Σ+)HLiHe+

UCCSD(T) 2.1942 1.9036 180.0 7.464 20.87
IC-MRCI 2.1944 1.9036 180.0 7.483 20.90
IC-MRCI+Q 2.1941 1.9032 180.0 6.741 20.15

(2Σ+)HNaHe+

UCCSD(T) 2.5911 2.3322 180.0 3.814 11.35
IC-MRCI 2.5941 2.3343 180.0 3.720 12.92
IC-MRCI+Q 2.5916 2.3330 180.0 3.799 11.30

(2A′)HKHe+

UCCSD(T) 3.0592 2.8506 80.3 2.098 6.433
IC-MRCI 3.0926 2.8764 81.3 3.656 7.335
IC-MRCI+Q 3.0682 2.8560 80.5 1.934 6.420

aDe(1) and De(2) correspond to dissociation reactions (5.4) and (5.5), respectively.

of HNaHe+ has also been determined to be of C∞v symmetry. The Re values with

respect to both M-H and M-He bonds calculated using UCCSD(T), IC-MRCI and

IC-MRCI+Q are also in excellent agreement. For instance, the largest discrepancy

between these methods with respect to Re(M-H) is 3 mÅ, observed using UCCSD(T)

and IC-MRCI. These methods also yield the largest difference for Re(M-He), being

only 2.1 mÅ. The ground state of HKHe+ arises from an identical metal ion con-

figuration to those of (2Σ+)HLiHe+ and (2Σ+)HNaHe+. Nevertheless, the lowest

energy point on the HKHe+ PES corresponds to a Cs equilibrium structure. This

conclusion has been reached using both single- and multi-reference wave functions.

For example, θe for (2A′)HKHe+ using UCCSD(T), IC-MRCI and IC-MRCI+Q are

80.3, 81.3 and 80.5◦, respectively, and as such are in excellent agreement. There is

greater discrepancy in the calculated equilibrium K-H and K-He bond lengths. For

instance, Re(M-H) calculated using these methods are 3.0592, 3.0926 and 3.0682 Å,

and so exhibit a maximum deviation of 33.4 mÅ. This deviation is of a similar order

of magnitude with respect to Re(M-He), with a value of 25.8 mÅ. In both cases, the
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maximum deviation occurs between UCCSD(T) and IC-MRCI data.

The current consensus is that HMHe+ (for main-group elements M) essen-

tially exist as a HM+-He complex, with the H and He bound covalently and elec-

trostatically to the metal, respectively [40, 41]. This trend is not observed for the

ground states of HMHe+ (M = Li, Na, K). Indeed, comparison of the Re(M-H) and

Re(M-He) values for these species suggests that He is more tightly bound to the

central M+ ion relative to H, contrary to established trends in the main-group hy-

drodelide ions [40, 41]. Nevertheless, the bonding observed in (2Σ+)HMHe+ is not

reflected in the respective diatomic hydride fragments. For example, the equilibrium

bond length of (2Σ+)MH (M = Li, Na, K) are calculated to be 1.5980, 1.8899 and

2.2501 Å, respectively, using UCCSD(T). The converse is the case for the diatomic

helide fragment ions (1Σ+)MHe+, for which Re are 1.8977, 2.3272 and 2.8492 Å,

respectively.

Opposing trends are also observed with respect to potential well-depths for

equations (5.4) and (5.5). If the difference between De(1) and De(2) is interpreted

as the binding energy of the M-H bond, then data in Table 5.5 suggest that the

M-H bond is stronger than the M-He bond. For instance, De(1) and De(2) for

(2Σ+)HLiHe+ are ca. 7 and 20 kJ mol−1, respectively. Similarly, these data for

(2Σ+)HNaHe+ are ca. 3.8 and 12 kJ mol−1, whereas for (2Σ+)HKHe+ values of ca. 2

and 7 kJ mol−1 are observed. Dissociative potential well-depth data therefore imply

that the M-H bond is of greater strength compared to the M-He bond. These data

complement those of Page and co-workers [40, 41] with respect to ground state

HMHe+ (M = Be, Mg, Ca). Such a conclusion is however contradictory to that

obtained from consideration of the equilibrium structures alone.

In order to further elucidate these trends observed in the structures and

stabilities of (2Σ+)HMHe+, constrained angle optimisations have been performed in
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the manner of Page and von Nagy-Felsobuki [41]. In particular, Re(M-H) and Re(M-

He) have been determined over the range 60◦ ≤ θ ≤ 180◦ using increments in θ of

10◦. These minimum energy paths (MEPs) and corresponding Re(M-H) and Re(M-

He) values are given in Figure 5.1. This figure illustrates succinctly the nature of

the bonding in these ground state ions to be extremely fluxional. For instance, while

the MEP for (2Σ+)HLiHe+ exhibits a minimum energy structure corresponding to

θ = 180◦, it is evident that the topology of the MEP is such that a large change

in bond angle brings about an almost negligible change in energy. For example, at

room temperature θ may fluctuate by as much as ca. 105◦. An analogous observation

is made with respect to the ground state of HNaHe+, which also exhibits a linear

minimum energy structure. In this case, θ may fluctuate by as much as ca. 120◦.

The ground state of HKHe+ exhibits a non-linear minimum energy structure, as

shown in Figure 5.1. Nevertheless, the 2A′-2Σ+ barrier height is 1.70 and 1.53

cm−1 using UCCSD(T) and IC-MRCI+Q, respectively. As such (2A′)HKHe+ is

unable to support a bound vibrational state in the bond angle co-ordinate. It is also

inferred from Figure 5.1 that both Re(M-H) and Re(M-He) are extremely variable

for (2Σ+)HLiHe+ and (2Σ+)HNaHe+. For example, for 60◦ ≤ θ ≤ 180◦ the optimal

M-H and M-He values may vary by up to ca. 0.13 and 1.09 Å (HLiHe+) and 0.10 and

0.17 Å (HNaHe+), relative to the minimum energy structure, respectively. Similarly,

for the ground state of HKHe+, Re(M-H) and Re(M-He) may vary by up to 0.03

and 0.04 Å, respectively.

It is concluded that the ground state PESs of HMHe+ (M = Li, Na, K) are

extremely flat, particularly in the H-M-He bond angle co-ordinate. The UCCSD(T),

IC-MRCI and IC-MRCI+Q approaches employed in this work provided consistent

descriptions of the structures and energetics of these species. It is also concluded

that multi-reference effects, with respect to Re, θe and De, are only appreciable for
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Figure 5.1 Optimised molecular energies (/cm−1) of: (a) HLiHe+; (b) HNaHe+,
and; (c) HKHe+ as a function of bond angle (/◦) using UCCSD(T) (diamonds)
and IC-MRCI+Q (squares). Optimised M-H (full lines) and M-He (dashed lines)
bond lengths (/Å) of each species are also presented.
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the ground state of HKHe+. Nevertheless, an agreement of less than 1 cm−1 was

observed in the 2A′-2Σ+ barrier height for this molecule. From this analysis of the

ground state PESs of HMHe+ it is concluded that these species would not be suitable

for a normal co-ordinate vibrational analysis.

5.5. Alkali Metal Dihelide Cations: MHe+
2 (M = Li, Na, K)

Equilibrium parameters, including Re, θe and De have been calculated for

the ground states of LiHe+
2 , NaHe+

2 and KHe+
2 . These data are given in Table 5.6.

Binding energies have been calculated for two dissociative processes, viz.

MHe+
2 → (2Σ+)MHe+ + (1S0)He (5.6)

MHe+
2 → (1S0)M

+ + 2(1S0)He (5.7)

for M = Li, Na and K.

From Table 5.6 it is evident that single- and multi-reference methods of this

work yield Re values in good agreement with previously reported ab initio data.

For example, compared to the MP2/6-311+G(3df ,3pd) Re value of Sapse et al. [32],

values of this work generally differ by ca. 2 mÅ. Compared to the CCSD(T)/cc-

pV5Z value of Marinetti et al. [33], this agreement is better than 1 mÅ. Results

of this work indicate that the minimum energy structure of the ground state of

LiHe+
2 is of D∞h symmetry. This is contrary to the calculations of Sapse et al. [32]

and Marinetti et al. [33], who reported a 1A1 minimum energy state for LiHe+
2 ,

with θe being 112.62◦ and 106◦, respectively. Nevertheless, Marinetti et al. [33]

also located a D∞h structure energetically very close to the C2v structure. These

workers ultimately concluded that the ‘true’ ground state structure could not be

decided using their chosen methods, due to the extremely flat curvature of PES
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Table 5.6 Ab initio equilibrium parameters of MHe+
2 , M = Li, Na, K.

Re θe De
a

Method (/Å) (/◦) (/kJmol−1)
1 2

LiHe+
2

UCCSD(T)b 1.9001 180.0 7.552 15.347
IC-MRCIb 1.9004 180.0 7.580 14.921
IC-MRCI+Qb 1.8997 180.0 6.890 15.580
MP2c 1.902 112.62 7.385 14.77
CCSD(T)d 1.9 106

NaHe+
2

UCCSD(T)b 2.3283 87.4 3.852 7.797
IC-MRCIb 2.3360 92.0 3.719 8.377
IC-MRCI+Qe 2.3318 91.0 3.764 7.793
MP2c 2.343 122.79 4.565 9.129
CCSD(T)d 2.32 180.0 7.893

KHe+
2

UCCSD(T)b 2.8471 64.7 2.148 4.270
IC-MRCIb 2.8719 65.6 2.021 4.039
IC-MRCI+Qb 2.8466 65.0 1.873 4.109
CCSD(T)d 2.831 180.0 4.399

aDe(1) and De(2) correspond to dissociation reactions (5.6) and (5.7), respectively.
bThis work.
cIn conjunction with 6-311+G(3df ,3pd) basis sets; see reference [32].
dInclude BSSE correction, in conjunction with cc-pV5Z (LiHe+

2 , NaHe+
2 ) and aug-cc-pV5Z

(KHe+
2 ) basis sets; see reference [33].

with respect to the bond angle co-ordinate. This conclusion has also been reached

in this work. For example, using UCCSD(T) and IC-MRCI+Q respectively, it is

observed that a fluctuation in θ of ca. ±70◦ results in a change of only 1 cm−1 in

the energy of LiHe+
2 .

Discrepancies in calculated θe values are also observed for the ground state

of NaHe+
2 . For example, UCCSD(T), IC-MRCI and IC-MRCI+Q predict θe to be

87.4, 92.0 and 91.0◦, and so are in good agreement. However, Sapse et al. [32] calcu-

lated θe to be 122.79◦ using MP2/6-311+G(3df ,3pd). Similarly, Marinetti et al. [33]

employed CCSD(T)/cc-pV5Z, giving a θe value of 180◦. The latter authors also

acknowledged the existence of a non-linear structure energetically adjacent to that

of the 1Σ+
g structure. It is therefore anticipated that the PES curvature with respect
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to the He-Na-He bond angle co-ordinate will be particularly flat. Nevertheless, all

methods employed in this work predict the 1A1 state to be the lowest in energy.

In addition, the 1A1-
1Σ+

g barrier height has been calculated using UCCSD(T) and

IC-MRCI+Q to be 1.33 and 1.28 cm−1, respectively. As such, neither the 1A1 or

1Σ+
g states of NaHe+

2 are able to support a bound vibrational state in the He-M-He

bond angle co-ordinate.

Despite these differences in ab initio θe values for NaHe+
2 , good agreement is

achieved with respect to Re. For example, UCCSD(T), IC-MRCI and IC-MRCI+Q

values differ by at most 7.7 mÅ. These results agree with the values of Sapse et

al. [32] and Marinetti et al. [33] to within 14.7 and 16 mÅ, respectively. Similarly,

the binding energies for reactions (5.6) and (5.7) calculated in this work are also

in good agreement with those calculated previously. For example, Sapse et al. [32]

predicted De(1) to be 0.713, 0.846 and 0.801 kJ mol−1 larger than UCCSD(T), IC-

MRCI and IC-MRCI+Q values, respectively. Better agreement is achieved between

the results of this work and the CCSD(T)/cc-pV5Z value of Marinetti et al. [33] for

this binding energy. For example, the latter value differs from UCCSD(T), IC-MRCI

and IC-MRCI+Q data by 0.096, -0.484 and 0.100 kJ mol−1, respectively.

For the ground state of KHe+
2 the results of this work may only be com-

pared to the CCSD(T)/aug-cc-pV5Z values of Marinetti et al. [33]. It is evident

from Table 5.6 that UCCSD(T) and IC-MRCI+Q yield Re values larger than this

CCSD(T)/aug-cc-pV5Z value by ca. 10 mÅ. This difference for IC-MRCI is ca. 30

mÅ. As such, the inclusion of the +Q corrections to the IC-MRCI energy has a

marked effect with respect to Re. This was not observed for the ground states

of LiHe+
2 and NaHe+

2 . Nevertheless, θe values calculated in this work are in good

agreement, differing by at most 0.9◦. No binding energy for equation (5.6) has been

reported in the literature to date. Good agreement is found between the methods
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employed in this work with respect to this binding energy. For example, De(1) cal-

culated using IC-MRCI differs from the UCCSD(T) value by -0.127 kJ mol−1. The

inclusion of the size-extensivity correction decreases this IC-MRCI value by another

0.148 kJ mol−1. A similar agreement is observed for De(2) - IC-MRCI and IC-

MRCI+Q values are 0.231 and 0.161 kJ mol−1 smaller than the UCCSD(T) value.

The latter is in good agreement with the CCSD(T)/aug-cc-pV5Z value of Marinetti

et al. [33], differing by only -0.129 kJ mol−1.

Both single- and multi-reference wave functions employed presently predict

the ground electronic state of KHe+
2 to be of C2v symmetry. Conversely, Marinetti

et al. [33] predicted a linear minimum energy structure. The 1A1-
1Σ+

g barrier height

of the ground state of KHe+
2 has been calculated to be 5.14 and 5.54 cm−1 using

UCCSD(T) and IC-MRCI+Q, respectively. There is therefore a distinct resemblance

to the (1A1)NaHe+
2 PES in the bond angle co-ordinate. The data of this work are

therefore consistent with that of Marinetti et al. [33] concerning the curvature of the

ground state PESs of MHe+
2 (M = Li, Na, K).

A comparison of the relative energies required for the successive addition of

helium atoms to the Li+, Na+ and K+ ions is pertinent to the present discussion.

As such, comparison of ∆ for the ground states of LiHe+
2 , NaHe+

2 and KHe+
2 is

made in Table 5.7. The assumption that the two M-He bonds in each species are

identical is therefore implicit in this comparison. It is obvious from Table 5.7 that ∆

is sensitive to the ab initio method used in its calculation. For instance, for LiHe+
2 ,

∆(UCCSD(T)) and ∆(IC-MRCI) are 0.242 and -0.239 kJ mol−1, respectively. The

quantitative similarity between binding energies for equations (5.6) and (5.7) is also

noticeable. Using UCCSD(T), IC-MRCI and IC-MRCI+Q ∆̄ of LiHe+
2 , NaHe+

2 and

KHe+
2 are 0.601, 0.432 and 0.111 kJ mol−1, respectively. Two conclusions may be

drawn from this data. Firstly, for each species in question the binding energy of
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Table 5.7 Binding energies (/kJ mol−1) for successive helium addition of M+ ions
(M = Li, Na, K).

LiHe+
2 NaHe+

2 KHe+
2

Method De(2) De(3) ∆a De(2) De(3) ∆a De(2) De(3) ∆a

UCCSD(T) 7.552 15.347 0.242 3.852 7.797 0.093 2.148 4.270 -0.027
IC-MRCI 7.580 14.921 -0.239 3.719 8.377 0.939 2.021 4.039 -0.002
IC-MRCI+Q 6.890 15.580 1.800 3.764 7.793 0.264 1.873 4.109 0.363

aDe(1) and De(2) correspond to dissociative reactions (5.6) and (5.7), respectively. ∆ De values
are defined as De(2)− 2De(1) and it is assumed both M-He bonds are identical.

the second helium atom is greater than that of the first helium atom. Secondly, the

magnitude of this difference is dependent on the polarisability of the M+ ion. In

particular, the strength of the M-He2 bond compared to the M-He1 bond decreases

with increasing M+ polarisability.

From this discussion of the structures and stabilities of the MHe+
2 (M = Li,

Na and K), it is evident that these ground state PESs are extremely sensitive to

the ab initio method employed. That is, the symmetry of the lowest energy state is

determined largely by the ab initio method and basis set used. This conclusion reca-

pitulates that reached by Marinetti et al. [33] in their investigation of these species.

It is noted however that the ground state PESs of MHe+
2 would be amenable to a

scattering co-ordinate vibrational analysis. However, good agreement (particularly

with respect to Re, θe and 1A1-
1Σ+

g barrier heights) was observed between single-

and multi-reference wave functions employed in the present work for each species.

It is also inferred from the previous discussion that multi-reference effects appear

to have a generally minimal impact on the structures and dissociative energetics of

these ground state dihelide ions.
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5.6. Ab Initio Property Surfaces and Rovibrational Spectrum of (1A1)LiH+
2

Page and von Nagy-Felsobuki [23] employed all-electron FCI in conjunction

with triple-ζ basis sets to calculate analytical property surfaces and subsequently

rovibrational spectra of (1A1)LiH+
2 , (1A′)LiHD+ and (1A1)LiD+

2 . The discrete PES

and DMS of (1A1)LiH+
2 , and their respective analytical representations have been

presented and discussed in Chapter Three. The P (5, 5) OGL PEF was employed

in order to compute the 1D vibrational eigenfunctions of each species. The corre-

sponding eigenvalues are included in Appendix E. A total of 1000 finite-elements

were employed over integration domains of [−1.76a0, 5.0a0] (t1), [−0.648a0, 4.0a0]

(t2) and [−4.0a0, 4.0a0] (t3) for the numerical solution of each nuclear Schrödinger

equation. All 1D eigenvectors included in the configurational basis set decayed ap-

propriately in the classical forbidden region of the potential.

Low-lying vibrational states of (1A1)LiH+
2 , (1A′)LiHD+ and (1A1)LiD+

2 are

detailed in Table 5.8 in terms of the VBOs, assignments and vibration-averaged

structures. In the case of (1A1)LiH+
2 , each of the lowest 10 vibrational states could

be assigned unequivocally using the configuration weight scheme detailed in Chapter

Four. It is therefore concluded that a more definitive description of the character

of the vibrational wave function is realised using the configuration weight scheme

rather than using the configuration density description employed by Page and von

Nagy-Felsobuki [23]. For example, Page and von Nagy-Felsobuki reported that the

a1 vibrational states with VBOs at 1550.9 and 2124.8 cm−1 were primarily com-

posed of [0.26× |200〉+ 0.15× |100〉] and [0.28× |300〉+ 0.09× |400〉+ 0.09 |600〉]

configurations, respectively, using the configuration densities assignment scheme in-

troduced in Chapter Four. As anticipated from the 1D vibrational calculations

of (1A1)LiH+
2 , low-lying bound vibrational states are composed mainly from linear

combinations of 1D eigenfunctions in the t1 and t3 excited normal modes.
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Table 5.8 Structural properties of low-lying vibrational states of (1A1)LiH+
2 ,

(1A′)LiHD+ and (1A1)LiD+
2 .

i VBO Assign Sym. Weighta RLi-H RLi-D 〈θ〉
(/cm−1) |t1t2t3〉 (/Å) (/Å) (/◦)

(1A1)LiH+
2

0 0.0 |000〉 a1 0.89 2.089 23.4
1 487.9 |100〉 a1 0.72 2.053 24.0
2 738.8 |001〉 b2 0.82 2.093 24.6
3 1003.7 |200〉 a1 0.54 1.956 24.5
4 1305.9 |101〉 b2 0.70 2.063 24.9
5 1550.9 |200〉 a1 0.51 2.200 24.6
6 1586.1 |002〉 a1 0.69 2.090 25.1
7 1891.3 |201〉 b2 0.58 1.925 25.4
8 2124.8 |300〉 a1 0.52 2.122 25.0
9 2234.0 |102〉 a1 0.65 2.098 25.4

(1A′)LiHD+

0 0.0 |000〉 a′ 0.89 2.100 2.097 20.6
1 390.9 |100〉 a′ 0.68 2.147 2.156 20.1
2 640.9 |001〉 a′′ 0.76 2.116 2.113 19.4
3 805.1 |200〉,|100〉 a′ 0.47,0.29 2.179 2.180 19.9
4 1067.1 |101〉 a′′ 0.58 2.141 2.138 19.2
5 1248.3 |200〉 a′ 0.54 2.203 2.195 19.9
6 1367.2 |002〉 a′ 0.63 2.093 2.125 18.9
7 1532.3 |201〉,|101〉 a′′ 0.43,0.28 2.163 2.151 19.2
8 1714.1 |300〉 a′ 0.53 2.224 2.211 19.8
9 1837.1 |102〉,|112〉 a′ 0.47,0.24 2.115 2.131 18.9

(1A1)LiD+
2

0 0.0 |000〉 a1 0.89 2.094 20.6
1 357.6 |100〉 a1 0.68 2.158 20.1
2 486.4 |001〉 b2 0.79 2.113 19.4
3 722.0 |100〉 a1 0.51 2.194 19.8
4 880.3 |101〉 b2 0.61 2.152 19.3
5 1007.7 |002〉 a1 0.67 2.105 18.8
6 1108.0 |200〉 a1 0.57 2.213 19.7
7 1285.3 |101〉 b2 0.51 2.177 19.2
8 1455.6 |102〉 a1 0.57 2.139 18.8
9 1515.8 |300〉 a1 0.54 2.227 19.7

aSee text.
b(1A1)LiH+

2 ZPE = 2679.4 cm−1.
c(1A′)LiHD+ ZPE = 2324.8 cm−1.
d(1A1)LiD+

2 ZPE = 1918.0 cm−1.
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Use of the configuration weight scheme generally yields a more definitive

description of the low-lying vibrational states of (1A′)LiHD+ and (1A1)LiD+
2 . In

particular, each of the vibrational states of (1A1)LiD+
2 listed in Table 5.8 are at-

tributed to a single dominant configuration term. In contrast, Page and von Nagy-

Felsobuki [23] reported that the vibrational states of (1A1)LiD+
2 with VBOs at

357.6, 880.3, 1107.7, 1285.3 and 1455.6 cm−1 were composed primarily from two

configurations. These workers also reported that the states of (1A1)LiD+
2 with

VBOs at 722.0 and 1515.8 and 1591.3 cm−1 were further delocalised, the ma-

jor terms in these configurations being [0.26× |100〉+ 0.20× |200〉+ 0.03× |400〉]

and [0.30× |300〉+ 0.09× |400〉+ 0.09× |510〉], respectively. Nevertheless, for

(1A′)LiHD+ the states with VBOs at 805.1, 1532.3 and 1837.1 cm−1 necessitated

the use of two configuration terms for a satisfactory description of the wave function

to be obtained.

Using the multi-reference PES of Martinazzo et al. [5], Bieske and co-

workers [37] recently calculated the intermolecular stretch and bend frequencies of

(1A1)LiD+
2 to be 365 and 503 cm−1, respectively. The corresponding values calcu-

lated in the present work are comparable with these values, differing by ca. -7 and -17

cm−1, respectively. For comparison, these same frequencies calculated by Bulychev

et al. [22] were 329.8 and 447.2 cm−1. Comparison of the lowest excited vibrational

energies of (1A1)LiH+
2 calculated here with those calculated by Bulychev et al. [22]

shows a similar trend. For instance, the energy of the lowest excited a1 vibrational

state of (1A1)LiH+
2 calculated in this work is ca. 88 cm−1 higher, whilst the energy

of the lowest excited b2 state calculated here is ca. 150 cm−1 higher. For the ground

state of (1A1)LiD+
2 , the vibration-averaged D-D bond length was calculated to be

0.775 Å. This value is in good agreement with the D-D bond length calculated on

the MRCI PES of Martinazzo et al. [5], the latter being 0.751 Å.
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The vibration-averaged H-H bond length in the LiH+
2 vibrational ground

state is 0.847 Å, and so is slightly larger than that for LiD+
2 . Emmeluth et al. [36]

reported an experimental RH-H value of 0.90 Å using the assumption of zero inertial

defect. This experimental value is substantially larger than both the value of this

work and the accepted RH-H for the free H2 molecule, and has been attributed to

the influence of the large amplitude bending/hindered rotations of the molecule on

the effective molecular B and C constants. The vibration-averaged bond angle of

the (1A1)LiH+
2 ground state is 1.9◦ larger than the FCI optimised value [23]. This is

ascribed to the presence of the a1 bend mode of vibration in the overall vibrational

configuration interaction. Isotopic substitution in the H-H molecular subunit had

only a minor effect with respect to vibration-averaged equilibrium structures.

It is to be expected that elements of F would be small using an Eckart-

Watson Hamiltonian. This is generally the case for the three isotopomers considered

in this work. For instance, the Coriolis matrix elements are generally of the order of

10−11−10−17, 10−14−10−16, and 10−11−10−17 cm−1 for (1A1)LiH+
2 , (1A′)LiHD+ and

(1A1)LiD+
2 , respectively. Also, the diagonal elements of F are at least one order of

magnitude smaller relative to those off the diagonal in all cases. The values of the

ground state rotational constants for (1A1)LiH+
2 , (1A′)LiHD+ and (1A1)LiD+

2 are

also as expected for a near-prolate top (i.e. 〈A〉ii >> 〈B〉ii ≈ 〈C〉ii). These

values manifest themselves in the asymmetry parameter (κ) values of (1A1)LiH+
2 ,

(1A′)LiHD+ and (1A1)LiD+
2 , which are -0.996, -0.987 and -0.994, respectively. The

rotational constants 〈A〉11, 〈B〉11 and 〈C〉11 of (1A1)LiD+
2 calculated in the present

work also compare favourably with those corresponding to the equilibrium structure

of Martinazzo et al. [5], differing by 1.4, -0.2 and -0.2 cm−1, respectively.

Bieske and co-workers et al. [36, 37] have observed several rovibrational tran-

sition frequencies of (1A1)LiH+
2 and (1A1)LiD+

2 in the H-H/D-D stretch bands. Com-
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parison between these data and results of this work is therefore possible. Table 5.9

gives comparisons between experimental and theoretical transition frequencies of

(1A1)LiH+
2 for the K = 0, 1, 2 and 3 manifolds for J ≤ 5. More extensive listings

(J ≤ 10) for (1A1)LiH+
2 and comparisons for (1A1)LiD+

2 (K = 0, 1, 2 and J ≤ 10)

are provided in Appendix E. It is observed that for (1A1)LiH+
2 , the FCI PEF of

this work yields rovibrational transition frequencies which are in good agreement

with experiment. For (1A1)LiH+
2 the maximum discrepancy between experiment

and theoretical values is ca. 10, 10, 8 and 7 cm−1 for K = 0, 1, 2 and 3, respectively.

A similar level of accuracy is attained for (1A1)LiD+
2 , with the largest differences

for the K = 0 and 1 manifolds being ca. 5 cm−1. For K = 2 the largest discrep-

ancy is ca. 7 cm−1. The FCI PEF therefore yields transition frequencies accurate to

within ca. 0.1-0.2% of experimental values. It is also possible to directly compare

the performance of the FCI PEF via the rovibrational level spacings. All rovibra-

tional levels in the D-D stretching band of (1A1)LiD+
2 for K = 0, 1, 2 and J ≤ 10

are in excellent agreement with experimental data. To summarise this comparison,

the largest differences in the K = 0 manifold for the R and P branches are 0.7

and 0.5 cm−1, respectively. The largest differences here arise from the highest J val-

ues considered viz. the ∆ (90,9 ← 80,8, 100,10 ← 90,9) and ∆ (80,8 ← 90,9, 90,9 ← 100,10)

spacings. Similar differences are observed in the comparison of the level spacings for

K = 1. For the K = 1 R, P and Q branches, the largest deviations in rovibrational

level spacings from experiment are 0.7, 0.5 and 0.2 cm−1, respectively. Within the

K = 2 manifold, the largest difference in the R branch level spacings is 1.0 cm−1,

while for the P branch the largest difference is 0.6 cm−1.

The vibrational band origins, square dipole matrix elements, Einstein A

and B coefficients, band strengths and radiative lifetimes of the LiH+
2 , LiHD+ and

LiD+
2 electronic ground states are presented in Table 5.10. Rovibrational transition
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Table 5.10 Radiative properties of low-lying vibrational states of (1A1)LiH+
2 ,

(1A′)LiHD+ and (1A1)LiD+
2 .

i VBO µ2 A0i B0i S0i τ
(/cm−1) (/au2) (/s−1) (/10−16 cm3 erg−1 s2) (/cm molecule−1) (/s)

(1A1)LiH+
2

1 487.9 2.34+01 8.54+02 4.42+03 3.87−15 6.42−04
2 738.8 3.59+01 4.54+03 6.76+03 9.61−15 1.91−04
3 1003.7 2.33+00 7.39+02 4.39+02 8.66−16 2.00−04
4 1305.9 1.73+01 1.21+04 3.25+03 8.39−15 3.55−05
5 1550.9 3.49−01 4.09+02 6.58+01 2.02−16 7.70−05
6 1586.1 2.73+00 3.42+03 5.14+02 1.61−15 4.40−05
7 1891.3 1.30+00 2.75+03 2.45+02 9.15−16 1.37−05
8 2124.8 4.54−02 1.37+02 8.56+00 3.60−17 3.66−05
9 2234.0 8.59−01 3.00+03 1.62+02 7.15−16 1.11−05

(1A′)LiHD+

1 390.9 1.88+01 3.52+02 3.54+03 2.15−15 1.02−03
2 640.9 3.15+01 2.61+03 5.94+03 6.66−15 3.03−04
3 805.1 3.80+00 6.22+02 7.15+02 1.03−15 3.18−04
4 1067.1 7.89+00 3.01+03 1.49+03 2.89−15 9.39−05
5 1248.3 4.10−01 2.50+02 7.72+01 1.76−16 1.25−04
6 1367.2 6.77+00 5.42+03 1.27+03 3.18−15 5.21−05
7 1532.3 5.78−01 6.52+02 1.09+02 3.05−16 3.61−05
8 1714.1 4.20−02 6.63+01 7.91+00 2.48−17 6.11−05
9 1837.1 3.34−01 6.50+02 6.29+01 2.12−16 2.44−05

(1A1)LiD+
2

1 357.6 1.76+01 2.532+02 3.32+03 1.65−15 1.17−03
2 486.4 2.41+01 8.686+02 4.53+03 3.36−15 6.75−04
3 722.0 1.36+00 1.608+02 2.57+02 3.03−16 4.63−04
4 880.3 1.07+01 2.295+03 2.02+03 2.95−15 1.45−04
5 1007.7 1.90+00 6.102+02 3.58+02 6.03−16 1.82−04
6 1108.0 1.29−03 5.489−01 2.42−01 4.50−19 2.19−04
7 1285.3 4.60−01 3.060+02 8.66+01 1.87−16 5.97−05
8 1455.6 3.70−01 3.581+02 6.97+01 1.71−16 4.72−05
9 1515.8 2.25−04 2.457−01 4.24−02 1.08−19 1.13−04

frequencies, spectral line intensities and their respective assignments of the LiH+
2 ,

LiHD+ and LiD+
2 electronic ground states were calculated for v ≤ 4 and J ≤ 4

and T = 296 K. It should be noted that the J selection rules can be disregarded

here, since values of R2
ab have been calculated exactly (that is, using the ‘full rovi-

brational wave function and the spatially transformed DMF). These rovibrational

transitions and line strengths are shown in Figure 5.2, using a line intensity thresh-

old of 1.0× 10−30 cm molecule−1. For (1A1)LiH+
2 , (1A′)LiHD+ and (1A1)LiD+

2 305,
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Figure 5.2 Ab initio rovibrational spectra for v ≤ 4, J ≤ 4 and Sab ≥ 1.0× 10−30

at 296 K: (a) (1A1)LiH+
2 , 305 lines; (b) (1A′)LiHD+, 514 lines, and; (c) (1A1)LiD+

2 ,
233 lines. Transition frequencies and intensities given in cm−1 and cm molecule−1,
respectively.
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514 and 233 transitions are shown, respectively. It is evident that (1A1)LiH+
2 pos-

sessed the most intense rovibrational transitions, the most intense of which has

been assigned to the 20,2 ← 30,3 transition of the |001〉 band (v = 754.1 cm−1,

Sab = 2.12 × 10−17 cm molecule−1). The LiHD+ and LiD+
2 ground states also ex-

hibit their most intense bands for the 20,2 ← 30,3 rotational transition in the |001〉

band. These transitions occur at 651.8 and 495.4 cm−1, with spectral line intensities

of 1.47× 10−20 and 3.72× 10−23 cm molecule−1, respectively. The most prominent

rovibrational transitions for (1A1)LiH+
2 , (1A′)LiHD+ and (1A1)LiD+

2 are listed more

extensively in Appendix E.

5.7. Ab Initio Property Surfaces and Rovibrational Spectrum of (1A1)NaH+
2

Page and von Nagy-Felsobuki [34] have employed the CCSD(T) method

developed in this work in the construction of ab initio rovibrational spectra of

(1A1)NaH+
2 , (1A′)NaHD+ and (1A1)NaD+

2 . These spectra were calculated using

discrete PES and DMS grids consisting of 118 and 90 CCSD(T) points, respectively.

The discrete PES was represented analytically via a P (6, 6) Padé expansion of the

OGL variable with σ85−88,91−99 = 0 using SVD. The µy and µx component DMSs

were fitted using 7th order internal displacement co-ordinate power series expansions.

Each analytical function was constructed using methods described in Chapter Three.

The discrete property surfaces are given in Appendix E, as are the respective ana-

lytical representations (Fortran format). Two-dimensional contour projections of

the (1A1)NaH+
2 PEF and DMF are also given in Appendix E.

The 1D vibrational eigenfunctions of (1A1)NaH+
2 , (1A′)NaHD+ and

(1A1)NaD+
2 were calculated using a FEM grid consisting of 1000 elements over the

t1, t2 and t3 mode domains. These domains were [−3.0a0, 4.5a0], [−0.75a0, 5.0a0]

and [−2.5a0, 2.5a0], respectively. It was therefore ensured that all 1D basis func-
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tions decayed appropriately in the classically forbidden regions of the PES. More-

over, it was ensured that all corresponding eigenvalues were converged to within the

residual error of the PES. One-dimensional vibrational eigenvalues of (1A1)NaH+
2 ,

(1A′)NaHD+ and (1A1)NaD+
2 are listed in Appendix E.

The low-lying VBOs of (1A1)NaH+
2 are detailed in Table 5.11, as are the

respective assignments and vibration-averaged structures. Each state listed in this

table has been assigned using a single dominant configuration, excepting the state

with VBO at 1096.9 cm−1. The latter vibrational state is predominantly composed

of the |200〉 and |300〉 configurations. For the fundamental |100〉 and |001〉 modes,

configuration mixing in the vibrational wave function is limited. For example, the

weights of the |100〉 and |001〉 terms in these states are 0.71 and 0.82, respectively.

Similarly, the |010〉 term in the a2 bend fundamental (with VBO at 4114.2 cm−1)

exhibited a configuration weight of 0.77. There is more configuration mixing in the

low-lying overtone bands (as expected). For instance, the a1 with VBOs at 705.8

and 1508.8 cm−1 correspond to the |200〉 and |300〉 bands, respectively. These states

are more delocalised, with the predominant terms having configuration weights of

0.52 and 0.56, respectively.

The effects of vibration-averaging on the equilibrium Na-H bond length is

quite noticeable in the vibrational ground state of (1A1)NaH+
2 . Comparison of data

from Tables 5.2 and 5.11 indicate that 〈R〉 is ca. 0.1 Å larger than Re, which corre-

sponds to the PES minimum. The change in H-Na-H bond angle is more tempered,

with 〈θ〉 being 0.7◦ smaller than θe. For the a1 breathe and b2 asymmetric stretch fun-

damental modes, 〈R〉 values are 2.563 and 2.477 Å, thus deviating from the ground

state values by 0.063 and -0.023 Å, respectively. Contractions in 〈θ〉 of 0.3 and 1.0◦

are also observed for the |100〉, |001〉 states, respectively. This illustrates the effects

of configuration interaction in the vibrational wave function on observable quanti-
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Table 5.11 Structural properties of low-lying vibrational states of (1A1)NaH+
2 ,

(1A′)NaHD+ and (1A1)NaD+
2 .

i VBO Assign Sym. Weighta RNa-H RNa-D 〈θ〉
(/cm−1) |t1t2t3〉 (/Å) (/Å) (/◦)

(1A1)NaH+
2

0 0.0b |000〉 a1 0.88 2.500 17.1
1 341.0 |100〉 a1 0.71 2.563 16.8
2 646.0 |001〉 b2 0.82 2.477 16.1
3 705.8 |200〉 a1 0.52 2.591 16.7
4 1057.8 |101〉 b2 0.73 2.523 16.0
5 1096.9 |200〉 , |300〉 a1 0.56,0.36 2.611 16.7
6 1428.9 |002〉 a1 0.72 2.433 15.9
7 1484.3 |201〉 b2 0.63 2.554 16.0
8 1508.9 |300〉 a1 0.56 2.631 16.7
9 1905.8 |102〉 a1 0.68 2.484 15.8

(1A′)NaHD+

0 0.0c |000〉 a′ 0.87 2.499 2.499 17.0
1 264.7 |100〉 a′ 0.67 2.558 2.560 16.7
2 530.2 |001〉 a′′ 0.59 2.527 2.552 16.3
3 558.2 |200〉 , |400〉 a′ 0.31, 0.24 2.552 2.534 16.4
4 827.3 |101〉 , |301〉 a′′ 0.46, 0.18 2.562 2.585 16.3
5 871.9 |101〉 , |001〉 a′′ 0.44, 0.20 2.578 2.545 16.3
6 1134.3 |201〉 , |101〉 a′′ 0.39, 0.17 2.553 2.583 16.1
7 1178.2 |002〉 , |600〉 a′ 0.44, 0.20 2.556 2.555 16.1
8 1223.7 |002〉 , |012〉 a′ 0.42, 0.22 2.522 2.509 16.0
9 1461.7 |301〉 , |501〉 a′′ 0.30, 0.24 2.575 2.600 16.1

(1A1)NaD+
2

0 0.0d |000〉 a1 0.87 2.498 17.0
1 229.5 |100〉 a1 0.64 2.568 16.6
2 405.2 |001〉 b2 0.77 2.500 16.0
3 464.6 |100〉 , |200〉 a1 0.54,0.38 2.606 16.5
4 669.8 |101〉 b2 0.61 2.545 15.9
5 715.0 |200〉 a1 0.60 2.625 16.4
6 869.5 |002〉 a1 0.65 2.472 15.6
7 942.2 |101〉 , |201〉 b2 0.48,0.44 2.574 15.9
8 980.9 |300〉 a1 0.55 2.639 16.4
9 1176.4 |102〉 a1 0.58 2.511 15.6

aSee text.
b(1A1)NaH+

2 ZPE = 2561.4 cm−1.
c(1A′)NaHD+ ZPE = 2213.7 cm−1.
d(1A1)NaD+

2 ZPE = 1814.2 cm−1.
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ties. These data cumulatively suggest that the analytical (1A1)NaH+
2 PES exhibits

a relatively small curvature in the immediate neighbourhood of the PES minimum.

Comparison of the fundamental frequencies in Table 5.11 with harmonic values also

supports conclusion. For example, the |100〉, |001〉 and |010〉 VBOs differ from the

CCSD(T) ω1, ω2 and ω3 values by -9.3, -202.8 and 77.6 cm−1, respectively. The

exaggerated difference in the fundamental a1 bend mode is typical of MHn+
2 species

[23, 40, 41] and illustrates the high anharmonicity present in the a1 breathe 1D PES

co-ordinate.

Extensive configuration mixing is observed for the low-lying vibrational states

of (1A′)NaHD+, which are presented in Table 5.11. For example, only the ground

state and the |100〉 and |001〉 fundamental modes have been assigned using a sin-

gle dominant term. The weights of the primary configurations in the latter two

states are 0.67 and 0.59, respectively, suggesting that a greater degree of delocal-

isation is present in the vibrational wave function of (1A′)NaHD+ than those of

(1A1)NaH+
2 and (1A1)NaD+

2 . The characters of all other vibrational states listed in

Table 5.11 are more multi-configurational in nature, and have been described using

two dominant configurations. Vibration-averaged structures of (1A′)NaHD+ are also

indicative of a flat PES in the region of the minimum. For example, 〈R〉(Na-H) and

〈R〉(Na-D) are identical for the ground vibrational state. For comparison, the same

differences for (1A′)LiHD+ and (1A′)MgHD+ have been calculated to be 0.004 and

0.0783 Å [23, 47].

Each of the lowest 10 states of (1A1)NaD+
2 has been assigned using a

single dominant configuration, except for the a1 and b2 states corresponding

to the VBOs at 464.58 and 942.24 cm−1, respectively. The latter vibrational

states were found to be composed primarily from [0.54× |100〉+ 0.38× |200〉] and

[0.48× |101〉+ 0.44× |201〉] terms, respectively. As for (1A1)NaH+
2 , the fundamen-
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tal vibrational states of (1A1)NaD+
2 have been assigned most definitively. For ex-

ample, the fundamental a1 breathe and b2 asymmetric stretch modes include |100〉

and |001〉 configuration weights of 0.67 and 0.59, respectively. These vibrational

states are therefore more delocalised than the analogous states for (1A1)NaH+
2 . The

vibrational overtone bands for (1A1)NaD+
2 also possess more multi-configurational

character than the fundamental states. For example, the |002〉 term exhibits a con-

figuration weight of 0.65 in the lowest b2 asymmetric stretch overtone (VBO = 869.5

cm−1). Similarly, the second overtone in the a1 breathe mode includes the |300〉 term

with a configuration weight of 0.55. For the ground vibrational state of (1A1)NaD+
2 ,

isotopic substitution results in a contraction of 0.0014 Å in the 〈R〉(Na-D) value,

compared to (1A′)NaHD+, as expected. The effect of this isotopic substitution is

negligible with respect to 〈θ〉.

All rovibrational states of (1A1)NaH+
2 , (1A′)NaHD+ and (1A1)NaD+

2 for

v ≤ 10, J ≤ 5 have been calculated in this work. These states are included in

Appendix E. Rotational constant, centrifugal distortion and Coriolis coupling ma-

trix elements spanned by the lowest ten vibrational states of each species have also

been evaluated. The κ asymmetry parameters for the ground vibrational states of

(1A1)NaH+
2 , (1A′)NaHD+ and (1A1)NaD+

2 have been calculated to be -0.952, -0.950

and -0.947, respectively. As such, each species is a near-prolate top. All rovibrational

states have been assigned using the JKaKc assignment scheme.

Vibrational radiative properties, including vibration transition moments,

Einstein A and B coefficients, vibration band strengths and radiative lifetimes have

been calculated for the low-lying vibrational states of (1A1)NaH+
2 , (1A′)NaHD+ and

(1A1)NaD+
2 . These data are given in Table 5.12. It is evident from this table that the

|001〉 states of (1A1)NaH+
2 , (1A′)NaHD+ and (1A1)NaD+

2 are of the greatest inten-

sity, exhibiting S values of 6.24×10−12, 2.75×10−12 and 1.34×10−12 cm molecule−1,
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Table 5.12 Radiative properties of low-lying vibrational states of (1A1)NaH+
2 ,

(1A′)NaHD+ and (1A1)NaD+
2 .

i VBO µ2 A0i B0i S0i τ
(/cm−1) (/au2) (/s−1) (/10−16 cm3 erg−1 s2) (/cm molecule−1) (/s)

(1A1)NaH+
2

1 341.0 3.38+04 4.20+05 6.36+06 3.07−12 6.13−07
2 646.0 3.06+04 2.59+06 5.76+06 6.24−12 3.29−07
3 705.8 1.26+04 1.39+06 2.38+06 2.84−12 1.56−07
4 1057.8 1.41+04 5.22+06 2.65+06 4.88−12 5.54−08
5 1096.9 6.96+02 2.88+05 1.31+05 2.50−13 5.64−08
6 1428.9 9.35+02 8.55+05 1.76+05 4.40−13 1.86−07
7 1484.3 8.95+03 9.18+06 1.69+06 4.38−12 1.52−08
8 1508.9 7.15+00 7.71+03 1.35+03 3.56−15 2.64−08
9 1905.8 2.04+03 4.43+06 3.84+05 1.28−12 1.75−08

(1A′)NaHD+

1 264.7 2.71+04 1.58+05 5.11+06 1.50−12 8.87−07
2 530.2 1.95+04 9.11+05 3.67+06 2.75−12 3.67−07
3 558.2 1.53+04 8.33+05 2.88+06 2.30−12 3.81−07
4 827.3 3.20+03 5.69+05 6.03+05 7.50−13 1.24−07
5 871.9 6.46+03 1.34+06 1.22+06 1.60−12 1.13−07
6 1134.3 4.37+03 2.00+06 8.23+05 1.42−12 5.13−08
7 1178.2 3.38+03 1.73+06 6.36+05 1.14−12 5.96−08
8 1223.7 1.09+03 6.25+05 2.05+05 3.83−13 6.49−08
9 1461.7 1.29+03 1.27+06 2.44+05 5.45−13 2.32−08

(1A1)NaD+
2

1 229.5 2.68+04 1.02+05 5.05+06 1.04−12 1.05−06
2 405.2 1.53+04 3.18+05 2.87+06 1.34−12 1.42−06
3 464.6 9.02+03 2.84+05 1.70+06 9.44−13 3.80−07
4 669.8 8.17+03 7.70+05 1.54+06 1.32−12 2.70−07
5 715.0 2.61+02 2.99+04 4.91+04 4.54−14 2.00−07
6 869.5 1.56+03 3.22+05 2.94+05 3.36−13 7.20−07
7 942.2 5.01+03 1.31+06 9.43+05 1.17−12 8.00−08
8 980.9 4.52−01 1.34+02 8.51+01 1.10−16 1.10−07
9 1176.4 1.56+03 7.94+05 2.93+05 4.58−13 8.01−08

respectively. It is therefore anticipated that these bands would be dominant in the

simulated ab initio rovibrational spectra of these species.

These bands are observed in Figure 5.3, which depicts the ab initio rovibra-

tional spectra of (1A1)NaH+
2 , (1A′)NaHD+ and (1A1)NaD+

2 for v ≤ 10 and J ≤ 5.

The rovibrational spectrum of (1A1)NaH+
2 features several bands of similar inten-

sity in the region 500-1750 cm−1. The most intense transitions however have been

assigned to the |001〉 ← |000〉 (∼650-750 cm−1), |101〉 ← |000〉 (∼1000-1100 cm−1)
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Figure 5.3 Ab initio rovibrational spectra for v ≤ 10, J ≤ 5 and Sab at 296 K: (a)
(1A1)NaH+

2 (Sab = 1× 10−20), 7764 lines; (b) (1A′)NaHD+ (Sab = 1× 10−20), 4855
lines, and; (c) (1A1)NaD+

2 (Sab = 1× 10−25), 4162 lines. Frequencies and
intensities given in cm−1 and cm molecule−1, respectively.
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and |201〉 ← |000〉 (∼1450-1550 cm−1) bands. Assignments of the most promi-

nent transitions are given explicitly in Table 5.13. The rovibrational spectrum of

Table 5.13 Assignments of prominent transitions in the ab initio rovibrational
spectra of (1A1)NaH+

2 , (1A′)NaHD+ and (1A1)NaD+
2 . Frequencies and intensities

given in cm−1 and cm molecule−1, respectively.

Initial Final
|t1t2t3〉 J Ka Kc |t1t2t3〉 J Ka Kc Freq. Intensity

(1A1)NaH+
2

|001〉 5 0 5 ← |000〉 4 0 4 661.9 1.16−13
|001〉 4 0 4 ← |000〉 5 0 5 631.8 9.62−14
|001〉 4 0 4 ← |000〉 3 0 3 658.6 9.62−14
|101〉 5 0 5 ← |000〉 4 0 4 1072.8 9.09−14
|001〉 5 1 4 ← |000〉 4 1 3 672.3 8.36−14
|001〉 3 0 3 ← |000〉 4 0 4 634.5 8.29−14
|001〉 5 1 5 ← |000〉 4 1 4 671.9 8.08−14
|101〉 4 0 4 ← |000〉 5 0 5 1042.9 7.99−14
|201〉 5 0 5 ← |000〉 4 0 4 1499.0 7.57−14
|101〉 4 0 4 ← |000〉 3 0 3 1069.7 7.51−14

(1A′)NaHD+

|101〉 , |001〉 5 0 5 ← |100〉 4 0 4 617.4 4.54−18
|101〉 , |001〉 4 0 4 ← |100〉 3 0 3 615.4 3.59−18
|001〉 5 0 5 ← |000〉 4 0 4 568.1 3.54−18
|001〉 5 1 4 ← |000〉 4 1 3 571.2 3.27−18
|001〉 5 1 5 ← |000〉 4 1 4 571.0 3.22−18
|100〉 5 1 4 ← |000〉 5 0 5 310.7 3.18−18
|101〉 , |001〉 5 1 4 ← |100〉 4 1 3 620.7 3.16−18
|101〉 , |001〉 5 1 5 ← |100〉 4 1 4 620.5 3.11−18
|001〉 5 1 4 ← |100〉 5 0 5 316.2 3.02−18
|001〉 4 0 4 ← |000〉 5 0 5 547.6 2.87−18

(1A1)NaD+
2

|101〉 , |201〉 5 0 5 ← |100〉 4 0 4 720.8 1.42−22
|100〉 5 1 4 ← |000〉 5 0 5 265.3 1.39−22
|101〉 5 0 5 ← |100〉 4 0 4 448.6 1.32−22
|101〉 , |201〉 4 0 4 ← |100〉 5 0 5 705.2 1.28−22
|101〉 , |201〉 5 1 5 ← |100〉 4 1 4 724.1 1.18−22
|100〉 , |200〉 4 1 3 ← |100〉 4 0 4 265.4 1.17−22
|101〉 , |201〉 5 1 4 ← |100〉 4 1 3 724.4 1.16−22
|101〉 , |201〉 4 0 4 ← |100〉 3 0 3 719.2 1.16−22
|101〉 4 0 4 ← |100〉 5 0 5 433.0 1.14−22
|101〉 5 1 5 ← |100〉 4 1 4 452.5 1.13−22

(1A′)NaHD+ exhibits two predominant bands located at ∼550-650 cm−1 and ∼300-

400 cm−1. The most intense lines have been also characterised in Table 5.13. These
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transitions have been assigned to the [|101〉 , |001〉]← |100〉 and |001〉 ← |000〉 bands,

respectively. The rovibrational spectrum of (1A1)NaD+
2 is dominated by three bands

of intensity ca. 1.5 × 10−22 in the 300-500 cm−1 region. Nevertheless, the most in-

tense transitions have been assigned unequivocally. In particular, transitions from

the |100〉 ← |000〉 (∼250-350 cm−1), [|001〉 , |201〉] ← |000〉 (∼450-550 cm−1) and

[|101〉 , |201〉]← |000〉 (∼700-800 cm−1) bands have been assigned.

5.8. Conclusion

A detailed and systematic investigation of the structures, stabilities and ener-

getics of ground state MH+
2 , HMHe+ and MHe+

2 (M = Li, Na, K) has been presented.

Both single- and multi-reference methods were employed to calculate equilibrium pa-

rameters including Re, θe and De and elucidate trends therein. The results of this

work concerning the dihydride cations of Li, Na and K indicate that these species

result from a charge-quadrupole interaction between the metal ion and the H2 molec-

ular subunit. This fact is now well established in the literature. Trends in terms

of Re, θe, De, ω1, ω2 and ω3 have been ascribed largely to the relative ionic radii,

and the consequent strength of this charge-quadrupole interaction. Values of D0 of

MH+
2 are generally in good or excellent agreement with available experimental data.

The geometric structures of the ground states of the hydrohelide/helide cations are

extremely fluxional with respect to the central bond angle co-ordinate. In the case

of the hydrohelide monocations of Li, Na and K, a substantial variation in M-H and

M-He bond lengths is also observed. It is consequently concluded that a concept

such as ‘equilibrium structure’ for such species is of limited value. The ground state

PESs of MHe+
2 are also extremely sensitive to the ab initio methods by which they

are modelled. Indeed, the symmetry of the state itself is seen to be determined by

the level of theory employed in this approximation.
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FCI and CCSD(T) have been employed to construct analytical PEFs and

DMFs of (1A1)LiH+
2 and (1A1)NaH+

2 , respectively. The molecular property surfaces

of the former species were developed in Chapter Three. Discrete CCSD(T) PES

and DMS grids of (1A1)NaH+
2 consisted of 118 and 90 points, respectively. The

analytical (1A1)NaH+
2 PES consisted of a P (6, 6) approximant (with σ85−88,91−99 = 0

using SVD) in conjunction with the OGL expansion variable. Similarly, 7th order

power series expansions of the internal displacement co-ordinates were employed for

analytical µx and µy component DMFs.

Vibration band origins and vibration-averaged structures for (1A1)MH+
2 ,

(1A′)MHD+ and (1A1)MD+
2 (M = Li, Na) were calculated using variational

algorithms detailed in Chapter Four. The character of ground and excited state vi-

brational eigenvectors were assessed using a configuration weight assignment scheme.

In the cases of (1A′)LiHD+ and (1A′)NaHD+, it was observed that the low-lying

vibrational states possessed a relatively delocalised nature. Conversely, the lowest

vibrational states of (1A1)LiH+
2 , (1A1)LiD+

2 , (1A1)NaH+
2 and (1A1)NaD+

2 could be

assigned using a single dominant configuration. The rovibrational wave functions

of all isotopomeric species could be assigned unequivocally using normal modes

of vibration and the JKaKc assignment scheme. For (1A1)LiH+
2 and (1A1)LiD+

2 ,

calculated rovibrational transition frequencies in the H-H stretch bands were

calculated to be within ca. 0.1-0.2% of recent experimental values. Vibrational

radiative properties, such as vibration transition moments, Einstein A and B

coefficients, vibration band strengths, radiative lifetimes and rovibrational spectral

intensities were calculated using methods outlined in Chapter Four.
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CHAPTER 6

Ab Initio Investigation of Alkaline-Earth

Metal Hydride and Helide Ions

6.1. Introduction

A detailed ab initio study of the structures and stabilities of ground state

MHn+
2 , HMHen+ and MHen+

2 for M = Be, Mg, Ca and n = 1, 2 is presented in this

Chapter. In particular, single- and multi-reference ab initio methods will be em-

ployed to characterise the equilibrium structures, dissociation energies and harmonic

vibration frequencies of these species. These data will be presented and compared

with available theoretical [1–20] data in §6.3, 6.4 and 6.5, respectively. A com-

prehensive review of experimental and theoretical data concerning the species of

interest has been presented in Chapter One. Page et al. [15, 17, 21] have previously

elucidated the structural and energetic trends of Be, Mg and Ca hydrohelide and

helide ions. This discussion will be extended to the respective dihydrides in §6.3.

Particular emphasis will be placed upon the efficacy of isovalent and isoelectronic

arguments [22, 23] with respect to these species. Electron density analyses will also

be utilised to elucidate the relative structural and energetics trends in the respective

mono- and dications.

A systematic study of the structures and energetics of MHn+
2 , HMHen+ and

MHen+
2 will allow those species suitable for full rovibrational analyses to be deter-

mined (see Figure 1.1). The ab initio method employed here is that developed and

benchmarked in Chapter 2. Page and von Nagy-Felsobuki have constructed ab ini-

tio rovibrational spectra for (1A1)BeH2+
2 [5] and (1A1)MgH2+

2 [7] from single- and
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multi-reference property surfaces. These efforts will be extended to the ground states

of (2Σ+)HBeHe2+, (2Σ+)HMgHe2+ and (1Σ+
g )MgHe2+

2 in this work. Hence, molecu-

lar PEFs and DMFs of the ground states of these species will be presented in §6.7.

These property surfaces have been constructed using methods described in Chapter

Three. Vibrational and rovibrational data, including vibration-averaged structures

of these species will be presented and discussed in §6.8, 6.9 and 6.10, respectively.

Vibrational and rovibrational radiative data (i.e. band and line strengths) will also

be presented in §6.8, 6.9 and 6.10, respectively. All vibrational and rovibrational

data have been calculated according to the algorithms developed and described in

Chapter Four.

The principle aim of this investigation is to provide information regarding

the structural and energetic properties of this interesting class of molecules. Fur-

thermore, comparison and discussion of trends with respect to these properties will

provide insight into underlying mechanisms. Experimental spectroscopy of molecu-

lar hydride, hydrohelide and helide ions is presently a burgeoning field of research.

This is particularly the case with respect to ground state ion-quadrupole complexes

of form MHn+
2 [24–27]. Ab initio data concerning the vibrational and rovibrational

structures and spectra may therefore be timely in assisting the experimental detec-

tion and characterisation of such species.

6.2. Computational Procedure

The UCCSD(T), IC-MRCI and IC-MRCI+Q methods and atomic basis sets

employed presently are essentially those described in Chapter Two. In cases where

helium was present, helium 1s electron density was excluded from the CASSCF

optimisation. Thus a correct description of the electronic wave function in the

asymptotic limit (in which the He 1s configuration is identically doubly occupied)
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is obtained. Conversely, hydrogen 1s electron density was included in all CASSCF

active spaces. It is also noted that all ab initio results calculated in this work include

BSSE and relativistic (DK2) correction and have been calculated using Molpro

[28], unless stated otherwise. All MO, NO and electron density plots presented in

this thesis have been constructed using Molden [29].

6.3. Alkaline-Earth Metal Dihydride Cations: MHn+
2 (n = 1, 2)

6.3.1. MH+
2 (M = Be, Mg, Ca)

Equilibrium parameters of (2A1)BeH+
2 , (2A1)MgH+

2 and (2A1)CaH+
2 including

Re, θe, ω1, ω2 and ω3 have been calculated and are presented in Table 6.1.

With respect to the 2A1 ground state of BeH+
2 there is excellent agreement

between single- and multi-reference equilibrium parameters calculated in this work.

In particular, it is evident that the UCCSD(T), IC-MRCI and IC-MRCI+Q θe val-

ues are in exact agreement, whereas the largest discrepancy in Re calculated with

these methods is 0.4 mÅ. The VBCI calculations of Poshusta et al. [1, 30] yielded

significantly larger equilibrium bond lengths and smaller bond angles than those of

this work, as is anticipated. In addition, the fundamental vibration frequencies of

(2A1)BeH+
2 reported by Poshusta et al. [1, 30] also differ substantially from those of

this work, most notably in the ω1 and ω3 modes. These correspond directly to the

Be-H stretch modes, and therefore these differences are consistent with those ob-

served in Re. The MRCI/cc-pVQZ results of Hinze et al. [2] are in closer agreement

with those of this work. For example, the values of Re calculated using MRCI are

ca. 20 mÅ smaller than those values reported here. These two sets of θe values are

also in better agreement, differing by ca. 0.3◦. It is noted that the (2A′)BeH+
2 PES

minimum calculated by Hinze et al. [2] corresponded to equilibrium Be-H bond
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Table 6.1 Ab initio equilibrium parameters of (2A1)MH+
2 , M = Be, Mg, Ca.

Re θe De
a Frequencies

Method (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 3 ω1 ω2 ω3

BeH+
2

UCCSD(T)b 1.8161 24.4 37.68 188.1 494.4 1158 3862 911
IC-MRCIb 1.8159 24.4 35.42 187.4 494.1 1184 3898 932
IC-MRCI+Qb 1.8163 24.4 36.04 188.0 494.7 1162 3872 913
VBCIc 2.76 17.1 16.4 790 4600 590
VBCId 2.20 20.5 10.6 240 4582
MRCIe 1.794 24.72 39.76
MRCI+Qe 1.794 24.72

MgH+
2

UCCSD(T)b 2.6387 16.3 9.867 265.5 466.6 691 4147 796
IC-MRCIb 2.6847 15.9 13.76 267.9 465.6 666 4223 792
IC-MRCI+Qb 2.6528 16.2 8.920 268.0 464.7 683 4158 793
MRCIf 2.748 15.8 9.2 180 4313 410

CaH+
2

UCCSD(T)b 3.1892 13.4 4.79 258.9 461.5 519 4188 763
IC-MRCIb 3.3417 12.8 1.69 254.9 458.4 493 4205 763
IC-MRCI+Qb 3.1670 13.6 2.83 257.4 459.6 505 4169 752
MRCIg 3.33 12.8 6.75

aDe(1), De(2) and De(3) correspond to dissociative reactions (6.1), (6.2) and (6.3), respectively.
bThis work.
cIn conjunction with GTOs; see reference [30].
dSee reference [1].
eCore-corrected values, calculated in conjunction with cc-pVQZ basis sets; see reference [2]. The
Re values correspond to 2A1 PES minima. The corresponding Cs minima exhibits symmetry
breaking in the Be-H bonds. Explicitly, Re(Be-H1) = 1.798 and Re(Be-H2) = 1.790 Å.

fEmploying a SA-MCSCF reference wave function, in conjunction with [9s9p7d4f ] (Mg) and
[6s4p2d] (H) basis sets; see reference [8].
gIn conjunction with [7s6p6d1f ] (Ca) and cc-pV5Z (H) basis sets; see reference [11].

lengths which differed by 8 mÅ. According to Hinze et al. [2] this symmetry break-

ing was a result of the interaction between two 1A1 states and a 1B2 state, all of

which transform as 1A′ states in Cs symmetry. No such symmetry breaking was

observed in the present work. As such, it is possible that the symmetry breaking

observed by Hinze et al. [2] was a product of the active space employed in their

CASSCF/MRCI wave function, which included only the 1s, 2s and 2p orbitals of

Be and H.

For the 2A1 ground state of MgH+
2 , the results of the present work may
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only be compared with those of Bauschlicher [8]. In addition, no experimental data

concerning (2A1)MgH+
2 have been reported, despite the experimental work of Ding

et al. [24] concerning the spectroscopy of (2A1)MgD+
2 . Bauschlicher [8] employed

MRCI in conjunction with a state-averaged MCSCF (SA-MCSCF) reference deter-

minant. The relative magnitudes of the Re values calculated by Bauschlicher [8]

and those calculated here are as anticipated, and may be explained with recourse to

the sizes of the respective basis sets employed. The effects of the +Q correction to

the IC-MRCI energy are noticeable with respect to the equilibrium parameters of

(2A1)MgH+
2 . For example, Re decreases by ca. 30 mÅ and θe increases by 0.3◦ upon

inclusion of the +Q term. Similar effects in the calculated harmonic frequencies and

dissociative well-depths (vide infra) are also noticed. These fluctuations indicate

that the CCSD(T) and IC-MRCI+Q data concerning these equilibrium parameters

are in good agreement.

This is also evident with respect to the 2A1 ground state of CaH+
2 . For

example, from Table 6.1 it can be seen that the addition of the +Q correction to the

IC-MRCI energy corresponds to a decrease of ca. 0.18 Å in the Re(Ca-H) value. As

such, the IC-MRCI+Q and UCCSD(T) equilibrium parameters for (2A1)CaH+
2 are

in good agreement, exhibiting differences in Re and θe values of ca. 20 mÅ and

0.1◦, respectively. To date the only equilibrium structure of (2A1)CaH+
2 reported

in the literature is that of Czuchaj et al. [11], who employed MRCI in conjunction

with [7s6p6d1f ] and cc-pV5Z [31] basis sets for Ca and H, respectively. There is

a substantial difference between the latter Re values and those of this work (as

anticipated). These differences are ca. 200 mÅ, and are ascribed to the relative sizes

of the contracted basis sets employed. Better agreement is observed with respect to

the equilibrium bond angles, with the largest difference being 0.8◦.

In order that the dissociative behaviours of the 2A1 ground states of BeH+
2 ,
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MgH+
2 and CaH+

2 be better understood, the dissociative mechanisms,

De(1) : (2A1)MH+
2 → (2S1/2)M

+ + (1Σ+
g )H2 (6.1)

De(2) : (2A1)MH+
2 → (1Σ+)MH+ + (2S1/2)H (6.2)

De(3) : (2A1)MH+
2 → (2S1/2)M

+ + 2(2S1/2)H (6.3)

have been considered in this work. Potential well-depths for each of these reac-

tions are listed in Table 6.1. It is evident from Table 6.1 that each species is most

weakly bound with respect to the [M+ + (1Σ+
g )H2] dissociative products (i.e. equa-

tion (6.1)). For instance, this well-depth for (2A1)BeH+
2 is calculated to be ca. 36

kJ mol−1, whereas those corresponding to equations (6.2) and (6.3) are ca. 188 and

494 kJ mol−1, respectively. Similarly, for the ground state of MgH+
2 , these respec-

tive well-depths are ca. 10, 267 and 465 kJ mol−1, whilst for (2A1)CaH+
2 they are

ca. 4, 255 and 460 kJ mol−1. These data suggest that each of the BeH+
2 , MgH+

2 and

CaH+
2 ground states arise from the interaction between the metal ion charge and

the H2 subunit quadrupole moment. This fact has been established for each species

in previous investigations [2, 8, 11] and will be discussed at greater length in this

work (vide infra). The ω2 fundamental frequencies for (2A1)BeH+
2 , (2A1)MgH+

2 and

(2A1)CaH+
2 , which essentially correspond to ωe(H2), also suggest that these species

exist as ion-molecule complexes. For example, ω2 for these species are calculated to

be ca. 3850, 4150 and 4200 cm−1, respectively. For comparison, the value of ωe(H2)

calculated using CCSD/aug-cc-pVQZ is 4399 cm−1.

6.3.2. MH2+
2 (M = Be, Mg, Ca)

Values of Re, θe, De, ω1, ω2 and ω3 for the ground states BeH2+
2 , MgH2+

2 and

CaH2+
2 have been calculated using UCCSD(T), IC-MRCI and IC-MRCI+Q. It is
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evident from Table 6.2 that the single- and multi-reference equilibrium parameters

are in exact agreement for the 1A1 ground state of BeH2+
2 . These results are also

in excellent agreement with previously published data. For example, the differences

in Re values calculated in this work and the CCSD(T)/MRCI values of Page and

von Nagy-Felsobuki [5] are of the order of 0.1 mÅ. The latter method employed

augmented, core-correlated quadruple-ζ basis sets. Similarly, the discrepancy in θe

with these respective methods is 0.1◦. The MRCI Re value reported by Valtazanos

et al. [4] is smaller than the values of this work by ca. 15 mÅ, and was calculated

using double-ζ basis sets.

There is also good agreement between single- and multi-reference equilib-

rium structures for (1A1)MgH2+
2 . For example, Re and θe values calculated using

UCCSD(T), IC-MRCI and IC-MRCI+Q agree to within 2.5 mÅ and 0.1◦, respec-

tively. The only previously reported structure determined using a correlated ap-

proach is that of Simandiras and Nicolaides [9], who employed MP2 in conjunction

with [9s7p3d1f ] and [3s2p] basis sets for Mg and H, respectively. At this level of

theory, the ground state of MgH2+
2 exhibits Re and θe values ca. 1 mÅ and 0.1◦

larger than those of this work, respectively. Conversely, the predicted equilibrium

H2 subunit bond lengths of this work are ca. 10 and 9 mÅ larger than the HF and

MP2 values of Simandiras and Nicolaides [9], respectively.

The discrepancy between UCCSD(T), IC-MRCI and IC-MRCI+Q equilib-

rium structures of (1A1)CaH2+
2 and the MP2 structure of Simandiras and Nicolaides

[9] is more noticeable. For example, the equilibrium Ca - H bond lengths agree to

within 30 mÅ, whereas θe values agree to within ca. 0.2◦. Nevertheless, the single-

and multi-reference Re values of this work are in excellent agreement, differing by

ca. 4 mÅ. The equilibrium bond angles calculated using these methods are in exact

agreement.
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Table 6.2 Ab initio equilibrium parameters of (1A1)MH2+
2 , M = Be, Mg, Ca.

Re θe De
a Frequencies

Method (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 3 ω1 ω2 ω3

BeH2+
2

UCCSD(T)b 1.6093 29.3 230.8 522.9 687.6 1469 3372 1132
IC-MRCIb 1.6093 29.3 230.8 522.8 687.5 1467 3372 1130
IC-MRCI+Qb 1.6093 29.3 230.9 522.9 687.7 1469 3372 1132
CCSD(T)c 1.609 29.4 231.0
MRCId 1.594 28.7 212.3
MRCIc 1.609 29.4 230.9

MgH2+
2

UCCSD(T)b 2.0297 22.1 97.01 484.9 553.8 1071 3767 957
IC-MRCIb 2.0332 22.0 95.51 471.9 538.0 1287 3826 1153
IC-MRCI+Qb 2.0321 22.0 92.76 481.3 550.2 1084 3802 966
SCFe 2.048 21.9 90.8 871 4133 782
MP2e 2.034 22.2 95.0 844 4067 794

CaH2+
2

UCCSD(T)b 2.4635 17.7 47.61 472.0 504.4 838 4026 872
IC-MRCIb 2.4676 17.7 42.73 476.5 491.2 829 4021 866
IC-MRCI+Qb 2.4647 17.7 45.07 472.1 505.1 836 4029 871
SCFe 2.350 17.2 39.3 698 4372 497
MP2e 2.491 17.5 43.1 628 4304 527

aDe(1), De(2) and De(3) correspond to dissociative reactions (6.4), (6.5) and (6.6), respectively.
bThis work.
cIncludes BSSE correction, in conjunction with aug-CVQZ (Be) [15, 32] and aug-cc-pVQZ (H)

[31, 33] basis sets; see reference [5].
dIn conjunction with an augmented double-ζ Dunning-Hay basis set [34]; see reference [4].
eIn conjunction with [9s7p3d1f ] (Mg), [9s8p3d] (Ca) and [3s2p] (H) basis sets; see reference [9].

The natures of the 1A1 ground states of BeH2+
2 , MgH2+

2 and CaH2+
2 necessi-

tate a thorough analysis of the possible dissociative mechanisms. As such, binding

energies corresponding to the dissociative reactions,

De(1) : (1A1)MH2+
2 → (1S0)M

2+ + (1Σ+
g )H2 (6.4)

De(2) : (1A1)MH2+
2 → (2Σ+)MH2+ + (2S1/2)H (6.5)

De(3) : (1A1)MH2+
2 → (1S0)M

2+ + 2(2S1/2)H (6.6)

have been considered. These data are presented in Table 6.2. The values of De(1)
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indicate that the (1A1)MH2+
2 complexes (M = Mg, Ca) are most weakly bound with

respect to the dissociation products [M2++ (1Σ+
g )H2], as was the case for (2A1)MH+

2 .

For instance, the former of these species exhibits potential well-depths of ca. 92, 480

and 545 kJ mol−1 for reactions (6.4), (6.5) and (6.6), respectively, whereas these

respective well-depths for (1A1)CaH2+
2 are ca. 42, 472 and 500 kJ mol−1. This is not

the case for (1A1)BeH2+
2 , since IE2(Be) is smaller than IE1((

1Σ+
g )H2). Consequently,

the [Be+ + (1Σ+)H+
2 ] dissociation channel is 25.85, 25.92 and 25.78 kJ mol−1 lower

in energy than the (1A1)BeH2+
2 potential minimum using UCCSD(T), IC-MRCI

and IC-MRCI+Q, respectively. Conversely, these same dissociation channels for

(1A1)MH2+
2 (M = Mg, Ca) are thermodynamically stable, and correspond to poten-

tial well-depths of 149.39, 138.12 and 145.95 kJ mol−1 (M = Mg) and 408.99, 422.19

and 414.81 kJ mol−1 (M = Ca), using UCCSD(T), IC-MRCI and IC-MRCI+Q,

respectively.

It is inferred from these trends in dissociation energies that the

(1A1)MH2+
2 complexes essentially result from the anisotropic interaction between

the H2 quadrupole moment and the M2+ charge, in the same manner as for the

monocations. This inference is corroborated by an investigation of the IC-MRCI

density of each species (vide infra). The calculated harmonic vibration frequencies

also provide support for this conclusion. For instance, the ω2 harmonic frequency

of (1A1)BeH2+
2 is calculated to be 3372 cm−1 using all correlated methods employed

here. The harmonic frequencies of (1A1)MgH2+
2 and (1A1)CaH2+

2 listed in Table

6.2 are also indicative of a ion-quadrupole interaction between the Mg2+/Ca2+ ion

and H2. For example, ω2(MgH2+
2 ) and ω2(CaH2+

2 ) are calculated to be ca. 3800 and

4020 cm−1, respectively. The distinct increases in De(1), De(2) and De(3) values for

MH2+
2 , compared to those of MH+

2 , are also noted here.
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6.3.3. Isovalent Comparisons

Each of (2A1)MH+
2 (M = Be, Mg, Ca) arise from the interaction between the

metal ion charge and the H2 quadrupole moment, as previously stated. These metal

ions possess [RG]ns1 configurations. An identical interaction leads to the formation

of the (1A1)MH2+
2 complexes, with the metal ions possessing [RG] configurations.

That each species in both the (2A1)MH+
2 and (1A1)MH2+

2 series exhibit symmetri-

cally identical ground state equilibrium structures is anticipated. Because of this, it

is appropriate to investigate trends evident in the dissociative energies and harmonic

fundamental frequencies in the context of isovalent arguments.

Comparison of successive binding energies corresponding to the dehydro-

genation of (2A1)MH+
2 and (1A1)MH2+

2 (i.e. equations (6.2)/(6.5) and (6.3)/(6.6)

for n = 1/2, respectively) yields insight into the dissociative natures of these com-

plexes. Use of the logic applied to (1A1)MH+
2 (M = Li, Na, K) pertaining to ∆

in Chapter 5 provides an indication of the relative binding energies of the two hy-

drogens in MHn+
2 (M = Be, Mg, Ca). These data are provided in Table 6.3, from

which it is inferred that for the 1A1 ground states of BeH2+
2 , MgH2+

2 and CaH2+
2 the

binding of the second hydrogen is weaker than the first. This is also the case for

(2A1)MgH+
2 and (2A1)CaH+

2 , for which ∆ values are calculated to be ca. -70 and

-55 kJ mol−1. However, the converse is the case for the 2A1 ground state of BeH+
2 ,

for which ∆ is 118.1 kJ mol−1. Nevertheless, it is noted that these differences in

binding energies decrease monotonically down the group, independently of charge.

In order to better understand these observed trends in the binding energies

of isovalent MHn+
2 species, electron density analyses have been performed. The

maximum electron density (MED) path along an arbitrary X-Y bond (denoted ρ(R))

may be employed to assess the degree of binding [22, 23, 35–38] in MHn+
2 (n = 1, 2).

According to the nomenclature of Frenking et al. [22], the point at which the gradient
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Table 6.3 Binding energies (/kJ mol−1) for successive hydrogenation of Mn+ ions
(M = Be, Mg, Ca).

De(2) De(3) ∆a De(2) De(3) ∆a De(2) De(3) ∆a

Method (2A1)BeH+
2 (2A1)MgH+

2 (2A1)CaH+
2

UCCSD(T) 188.1 494.4 118.1 265.5 466.6 -64.5 258.9 461.5 -56.2
IC-MRCI 187.4 494.1 119.3 267.9 465.6 -70.1 254.9 458.4 -51.3
IC-MRCI+Q 188.0 494.7 118.7 268.0 464.7 -71.3 257.4 459.6 -55.3

(1A1)BeH2+
2 (1A1)MgH2+

2 (1A1)CaH2+
2

UCCSD(T) 522.9 687.6 -358.1 484.9 553.8 -416.0 472.0 504.4 -439.6
IC-MRCI 522.8 687.5 -358.1 471.9 538.0 -405.8 476.5 491.2 -461.8
IC-MRCI+Q 522.9 687.7 -358.2 481.3 550.2 -412.3 472.1 505.1 -439.1

a∆ = De(3) − 2De(2). De(2) and De(3) correspond to dissociative reactions (6.2)/(6.5) and
(6.3)/(6.6) for n = 1/2, respectively. It is assumed that both Mn+-H bonds are identical.

of ρ(R) vanishes, denoted ρ(Rb) = ρb, corresponds to a saddle point of the MED of

rank and signature (3,+1). The latter is a sufficient condition for the existence of

a chemical bond between two nuclei. Thus, the values ρb and Rb may be used to

gauge the strength and polarity of any chemical bond. To place the MED data of

the species investigated presently in context, it is noted here for comparison that the

typical ρb for a covalent bond is ca. 1.5-3.0 e Å−3 [23, 36–38]. Electron density plots

for MHn+
2 (M = Be, Mg, Ca) have been generated using IC-MRCI, and are included

in Appendix F. The corresponding MEDs along the Mn+- H2 midpoint vector are

also given in Appendix F. The MED data pertinent to the present discussion has

been collated in Table 6.4, where they are accompanied by the polarisability of

each metal ion. Plots of the IC-MRCI bonding NOs and −∇2ρ(R) of all species

investigated in this Chapter are also included in Appendix F.

Values of ρb and Rb for the ground states of MHn+
2 indicate that the strength

of the Mn+-H2 interaction is inversely proportional to the polarisability of the

Mn+ ion. For example, α(Be+) and α(Be2+) are 24.46 and 0.05 a3
0, respectively,

whereas ρb for (2A1)BeH+
2 and (1A1)BeH2+

2 are 0.21 and 0.42 e Å−3, respectively.

Identical observations are made with respect to the Mg and Ca species given in
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Table 6.4 IC-MRCI values of ρb and Rb for MHn+
2 and α(Mn+) (M = Be, Mg, Ca;

n = 1, 2).

α(Mn+) ρb Rb/Re
a

(/a3
0) (/e Å−3)

(2A1)BeH+
2 24.46 0.21 0.37

(2A1)MgH+
2 35.61 0.06 0.47

(2A1)CaH+
2 81.65 0.03 0.49

(1A1)BeH2+
2 0.05 0.42 0.39

(1A1)MgH2+
2 0.48 0.18 0.48

(1A1)CaH2+
2 3.19 0.13 0.53

aRb and Re are defined along the vector joining Mn+ and the midpoint of the H2 bond, relative
to Mn+.

Table 6.4. For example, the ratios ρb(MH+
2 ):ρb(MH2+

2 ) for M = Mg and Ca are 1:3

and 1:4.3, respectively. Nevertheless, the polarity of each respective Mn+-H2 inter-

action appears to be largely independent of the polarisability of the metal ion. This

is indicated by the relative magnitudes of the Rb/Re ratios for these species. For

instance, Rb/Re for MH2+
2 (M = Be, Mg, Ca) are only 5, 2 and 8% larger than those

of MH+
2 , respectively. As such, these data complement the equilibrium parameters

and dissociative potential well-depths listed in Tables 6.1 and 6.2.

6.4. Alkaline-Earth Metal Hydrohelide Cations: HMHen+ (n = 1, 2)

6.4.1. HMHe+ (M = Be, Mg, Ca)

Ab initio values of Re, θe, ω1, ω2 and ω3 of HBeHe+, HMgHe+ and

HCaHe+ have been calculated and are compared to available theoretical data in

Table 6.5. No experimental data concerning a molecular hydrohelide ion of an

alkaline-earth metal has been reported in the literature. In addition, Page and von

Nagy-Felsobuki [21] have reported the only known investigation into the structures

and stabilities of HMgHe+ and HCaHe+ using ab initio methods. Of particular

interest in the present context is the quasi-linear nature of the 1A′ ground state of
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Table 6.5 Ab initio equilibrium parameters of HMHe+, M = Be, Mg, Ca.

Re (M-H) Re (M-He) θe De
a Frequencies

Method (/Å) (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 ω1 ω2 ω3

(1Σ+)HBeHe+

UCCSD(T)b 1.2997 1.5176 180.0 36.26 342.5 1045 277 2141
IC-MRCIb 1.2997 1.5179 180.0 36.33 342.2 1216 283 2047
IC-MRCI+Qb 1.2997 1.5177 180.0 35.67 342.0 1064 278 2013
B3LYPc 1.302 1.525 180.0 31.84
MP2c 1.294 1.519 180.0 28.45
QCISDc 1.305 1.529 180.0 27.20
CCSD(T)d 1.2998 1.5178 180.0 36.30
CCSD(T)c 1.305 1.529 180.0 27.20
MRCId 1.2998 1.5181 180.0 36.27
MRCI+Qd 1.2998 1.5175 180.0 35.69

(1Σ+)HMgHe+

UCCSD(T)b 1.6493 2.1665 180.0 7.806 208.0 664 194 1570
IC-MRCIb 1.6512 2.1779 180.0 7.255 200.4 662 192 1594
IC-MRCI+Qb 1.6494 2.1689 180.0 7.716 206.6 664 194 1574

(1A′)HCaHe+

UCCSD(T)b 1.9215 2.6271 113.4 4.016 211.6
IC-MRCIb 1.9260 2.6441 115.1 3.899 202.4
IC-MRCI+Qb 1.9210 2.6309 113.3 4.103 206.7

aDe(1) and De(2) correspond to dissociation reactions (6.7) and (6.8), respectively.
bThis work.
cIn conjunction with 6-311++G(2df ,2pd) basis sets; see reference [18].
dIncludes BSSE correction, in conjunction with aug-CVQZ (Be) [15, 32] and aug-cc-pVQZ [31, 33]

basis sets; see reference [5].

HCaHe+ (vide infra).

Single- and multi-reference methods employed in this work predict a linear

equilibrium geometry for the ground state of HBeHe+. These results therefore agree

with all previously published theoretical data. The ab initio methods employed

here predict identical equilibrium structures with respect to Re(Be-H). Moreover,

the largest deviation in Re(Be-He) is 0.3 mÅ, between UCCSD(T) and IC-MRCI

values. Good agreement between current and previous values of is also observed with

respect to Re(Be-H). There is excellent agreement between all equilibrium aspects of

(1Σ+)HBeHe+ calculated here and those of Page et al. [5], who employed CCSD(T)

and IC-MRCI in conjunction with aug-CVQZ (Be) [15, 32] and aug-cc-pVQZ (H, He)
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basis sets. For example, Re(Be-H) and Re(Be-He) values typically deviate by ca. 0.1

mÅ and 0.5 Å, respectively. Predictably, the lower-order correlated methods, such

as QCISD and DFT, give larger Re(Be-He) values than CCSD(T) and IC-MRCI by

a margin of ca. 10 mÅ. Page et al. [17] constructed the first full-dimensional PES of

the 1Σ+ ground state of HBeHe+ using IC-MRCI. The analytical representation of

this surface is shown in Figure 6.1. This PEF is provided as a Fortran subroutine

in Appendix F, along with the discrete IC-MRCI PES grid.

The potential energy surface minimum for HMgHe+ also corresponds to a

1Σ+ equilibrium structure. For example, the present methods yield Re(Mg-H) and

Re(Mg-He) values of ca. 1.65 and 2.17 Å, respectively. These data suggest that the

Mg+ ion exhibits greater affinity to the hydrogen than to the helium. The relative

magnitudes of the ω1 and ω3 harmonic vibration frequencies of (1Σ+)HMgHe+also

indicate this trend, since these frequencies correspond to the fundamental M-He

and M-H stretch modes, respectively. A similar observation is made with respect

to the ω1 and ω3 harmonic vibration frequencies for (1Σ+)HBeHe+, and the relative

magnitudes of the equilibrium Be-H and Be-He bond lengths.

Figure 6.1 Two-dimensional projections of the (4,4) DUN Padé IC-MRCI+BSSE
PEF of (1Σ+)HBeHe+ [17] (in a0): (a) w2 (x) versus w1 (y); (b) w4 (x) versus w1

(y), and; (c) w4 (x) versus w2 (y). Contours are spaced at increments of 20
kJ mol−1.
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All methods employed in this work predict a 1A′ equilibrium structure for the

ground state of HCaHe+. For example, employing UCCSD(T), IC-MRCI and IC-

MRCI+Q yields θe values of 113.4, 115.1 and 113.3◦, respectively. Good agreement

between these methods is also attained with respect to Re(Ca-H), with the largest

discrepancy being 5.0 mÅ. The +Q correction to the IC-MRCI energy is observed

to have a noticeable effect with respect to the value of Re(Ca-He), reducing it by

13.2 mÅ. Ab initio harmonic vibration frequencies have not been calculated for

(1A′)HCaHe+, due to the highly fluxional nature of the PES in the H-Ca-H bend co-

ordinate. This was illustrated by Page and von Nagy-Felsobuki [21], who constructed

the MEP for the H-Ca-He bend co-ordinate of (1A′)HCaHe+ by performing a series

of constrained angle optimisations. These workers subsequently determined the 1A′-

1Σ+ barrier height to be 115.02 and 117.15 cm−1 using UCCSD(T) and IC-MRCI+Q.

As such, the bend co-ordinate PES is unable to support a bound vibrational state.

This will be the subject of greater discussion in subsequent Sections.

The values of IE1 and IE2 for Be, Mg and Ca are less than that of IE1 for He.

The dissociation products of all Be, Mg and Ca molecular helide ions investigated

in this work would therefore be expected to include neutral He. Dissociation of

HMHe+ (M = Be, Mg, Ca) into [M+ + HeH] is also not likely to be a realistic process,

due to the relative polarisabilities of M+ and H, and the subsequent abilities of these

species to chemically bind helium. As such, potential well-depths corresponding to

the dissociative reactions,

De(1) : (1Σ+)HMHe+ → (1Σ+)MH+ + (1S0)He (6.7)

De(2) : (1Σ+)HMHe+ → (2S1/2)M
+ + (2S1/2)H + (1S0)He (6.8)

have been calculated so that the dissociative properties of HMHe+ may be assessed.
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From Table 6.5 it is evident that the relative magnitudes of De(1) and De(2) for

(1Σ+)HBeHe+ are different by an approximate order of magnitude. This suggests

that (1Σ+)HBeHe+ exists essentially as a complex of the form HBe+-He. This is

confirmed by the study of Page et al. [5], who calculated the Be-H and Be-He bond

orders to be 1.002 and 0.126, respectively, using RHF. Thus, H and Be+ share

a covalent bond, whereas the Be-He bond arises from an electrostatic interaction.

This conclusion is in agreement with that of Antoniotti et al. [18]. A similar trend in

binding energies is evident for (1Σ+)HMgHe+. For example, De(1) and De(2) values

calculated using the methods of this work are ca. 8 and 200 kJ mol−1, respectively.

As such, it is estimated that the strength of the Mg+-He bond is approximately 3%

of that of the Mg+-H bond. A similar analysis for (1A′)HCaHe+ gives an estimated

Ca+-He bond strength of ca. 2%. From these data a concomitant decrease in M+-He

bond orders would therefore be expected.

These trends with respect to HMHe+ helium binding energies may be un-

derstood with recourse to an AO density analysis of the electronic wave function

of each species. In particular, a successive decrease of M+ p-orbital density in the

HOMO/LUMO is observed for M = Be, Mg and Ca. This is complemented by a suc-

cessive increase in M+ s-orbital character with increasing M atomic number. Follow-

ing the arguments developed by Breckenridge et al. [39–41] (with respect to species

such as BeHe+, BeHe2+, MgHe+ and MgHe2+) these fluctuating M+ p/s orbital

populations are seen to result in an increased repulsive ‘σ/σ’ interaction between

the MH+ unit and He. Conversely, the magnitude of the quadrupole/induced-dipole

attractive forces experienced at small distances between MH+ and He diminishes

with increasing M atomic number.
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6.4.2. HMHe2+ (M = Be, Mg, Ca)

Equilibrium parameters including Re(M-H), Re(M-He), θe, ω1, ω2 and ω3 of

HMHe2+ (M = Be, Mg, Ca) have been calculated using UCCSD(T), IC-MRCI and

IC-MRCI+Q. These data are presented in Table 6.6.

No experimental or theoretical data for HMHe2+ (M = Be, Mg, Ca) have

been reported in the literature to date. Nevertheless, the methods of this work

predict PES minima corresponding to equilibrium structures for each species. From

comparison with data in Table 6.5 it is apparent that the spatial symmetry of

the ground state of HMHen+ is independent of the charge for n = 1, 2. As such,

both HBeHe2+ and HMgHe2+ exhibit 2Σ+ structures, where as the ground state of

HCaHe2+ exhibits an equilibrium structure of Cs symmetry.

Table 6.6 shows that the single- and multi-reference methods of this work

yield consistent results with respect to the ground state structures of HMHe2+. For

example, the largest deviations between UCCSD(T), IC-MRCI and IC-MRCI+Q

values of Re(Be-H) and Re(Be-He) are 0.2 mÅ and 0.2 mÅ, respectively. These

deviations for (2Σ+)HMgHe2+ are 1.2 mÅ and 0.6 mÅ, while for (2A′)HCaHe2+ they

are 8.9 mÅ and 7.5 mÅ, respectively. These methods also yield θe values for the

latter species in agreement to within 0.6◦.

The motivations discussed previously regarding the dissociative processes of

HMHe+ have been employed in the investigation of the dissociative mechanisms of

the respective dications. As such, the dissociative reactions,

De(1) : (2Σ+)HMHe2+ → (2Σ+)MH2+ + (1S0)He (6.9)

De(2) : (2Σ+)HMHe2+ → (1S0)M
2+ + (2S1/2)H + (1S0)He (6.10)

have been considered in this work. For (2Σ+)HBeHe2+ the De(1) and De(2) values
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Table 6.6 Ab initio equilibrium parameters of HMHe2+, M = Be, Mg, Ca.

Re (M-H) Re (M-He) θe De
a Frequencies

Method (/Å) (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 ω1 ω2 ω3

(2Σ+)HBeHe2+

UCCSD(T) 1.8002 1.4429 180.0 79.67 244.4 845 132 1072
IC-MRCI 1.8002 1.4427 180.0 79.76 244.3 880 167 1120
IC-MRCI+Q 1.8004 1.4429 180.0 78.87 244.5 841 144 1031

(2Σ+)HMgHe2+

UCCSD(T) 2.1778 1.9039 180.0 29.96 98.65 535 96 503
IC-MRCI 2.1790 1.9043 180.0 29.54 84.61 851 174 618
IC-MRCI+Q 2.1779 1.9045 180.0 29.44 97.88 521 120 448

(2A′)HCaHe2+

UCCSD(T) 2.5855 2.3675 121.7 13.71 45.81
IC-MRCI 2.5944 2.3750 121.1 13.30 38.25
IC-MRCI+Q 2.5867 2.3703 121.2 13.83 51.57

aDe(1) and De(2) correspond to dissociation reactions (6.9) and (6.10), respectively.

listed in Table 6.6 are indicative of significantly different energetics with respect

to (1Σ+)HBeHe+. In particular, these data suggest that the Be2+-He interaction

in (2Σ+)HBeHe2+ is stronger than the Be+-He interaction in (1Σ+)HBeHe+. For

example, reactions (6.7) and (6.9) correspond to potential well-depths of ca. 36

and 79 kJ mol−1, respectively. The ω1:ω3 ratios of these two species complement

these dissociative data, since they are indicative of the relative potential curva-

tures in the [BeHn+ + He] dissociative channels. By averaging the UCCSD(T),

IC-MRCI and IC-MRCI+Q ω1 and ω3 values, these ratios are ca. 1:1.86 and 1:1.25

for (1Σ+)HBeHe+and (2Σ+)HBeHe2+, respectively. A similar analysis has been ap-

plied to compare (1Σ+)HMgHe+and (2Σ+)HMgHe2+. In this case the difference

between the mono- and di-cationic species is more noticeable. For instance, the

binding energies corresponding to (6.7) and (6.9) are ca. 7 and 30 kJ mol−1. The

binding energy of the atomisation reactions (6.8) and (6.10) are ca. 205 and 90

kJ mol−1, respectively. The ω1:ω3 ratios for the magnesium species are also exagger-

ated compared to the beryllium analogues. Using mean values of ω1 and ω3, these
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ratios are ca. 1:2.38 and 1:0.82 for (1Σ+)HMgHe+and (2Σ+)HMgHe2+, respectively.

6.4.3. Isovalent Comparisons

From comparison of Tables 6.5 and 6.6 it is evident that the isovalent

pairs ((1Σ+)HBeHe+, (1Σ+)HMgHe+) and ((2Σ+)HBeHe2+, (2Σ+)HMgHe2+) ex-

hibit equilibrium structures of identical symmetries, in agreement with the Walsh

rules. Moreover, the increase in M-H and M-He bond lengths in both pairs may be

largely ascribed to the relative ionic radii of Be+/Mg+ and Be2+/Mg2+. Neverthe-

less, the ground state equilibrium bond angle of both HCaHe+ and HCaHe2+ are sig-

nificantly different than both ((1Σ+)HBeHe+, (1Σ+)HMgHe+) and ((2Σ+)HBeHe2+,

(2Σ+)HMgHe2+), respectively. This occurs in both cases despite each species pos-

sessing the same valence shell occupation. Nevertheless, no stationary point on the

ground state PES of either HCaHe+ or HCaHe2+ has been located [21]. The opti-

misation algorithm of Page and von Nagy-Felsobuki [21] has been employed in this

work to construct MEPs for the ground states of HMgHe2+ and HCaHe2+. The

resultant PESs are compared to those of (1Σ+)HMgHe+ and (1A′)HCaHe+ in Ap-

pendix F. It is obvious from this comparison that no stable linear conformation for

HCaHe2+ exists. However, HMgHe2+ resides in a relatively deep potential well, in

a similar fashion to HMgHe+. Page and co-workers [17, 21] have rationalised these

discrepant equilibrium structures using qualitative MO arguments, viz. comparison

of the energies and symmetries of the lowest unoccupied MO energies in the diatomic

fragment ions BeH+, MgH+and CaH+.

Similar trends are noticed with the relative atom-diatom potential well-

depths of the ((1Σ+)HBeHe+, (1Σ+)HMgHe+, (1A′)HCaHe+) and ((2Σ+)HBeHe2+,

(2Σ+)HMgHe2+, (2A′)HCaHe2+) isovalent series. For instance, from Tables 6.5 it

is observed that the potential well-depths of equations (6.7) for (1Σ+)HBeHe+,
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(1Σ+)HMgHe+and (1A′)HCaHe+ are ca. 36, 7 and 4 kJ mol−1, respectively. Sim-

ilarly, for (2Σ+)HBeHe2+, (2Σ+)HMgHe2+and (2A′)HCaHe2+ these well-depths are

ca. 79, 29 and 13 kJ mol−1, respectively. From these data it may be inferred that

both the M-He and M-H bond strengths decrease with increasing M2+ polarisability.

This trend appears to be independent of the metal ion charge.

Electron density analyses have been performed for the ground states of

HMHen+ so that these trends observed with respect to structures and energetics

may be elucidated further. Electron density plots for HMHen+ (n = 1, 2) have

been calculated using IC-MRCI and are given in Appendix F. The corresponding

MEDs along the internuclear vectors are also given in Appendix F. Pertinent data

relative to the present context are listed in Table 6.7. These data support the

previous inference with respect to the relative M-H and M-He bond strengths of

HMHen+ (n = 1, 2). For example, a monotonic decrease in ρb(M-H) and ρb(M-He)

is observed for both the mono- and dications, indicating that the degree of bind-

ing is inversely proportional to the M+ polarisability. In the case of the dications,

comparison of the relative values of ρb(M-H) and ρb(M-He) for each species indi-

cates that the HeM2+-H nature of these complexes also decreases with increasing

polarisability of M. For example, both (2Σ+)HBeHe2+ and (2Σ+)HMgHe2+ are such

that ρb(M-H)< ρb(M-He), whereas for (2A′)HCaHe2+ these values are 0.08 and 0.09

Table 6.7 IC-MRCI values of ρb and Rb for HMHen+ (M = Be, Mg, Ca; n = 1, 2).

ρb (M-H) Rb/Re (M-H)a ρb (M-He) Rb/Re (M-He)a

(/e Å−3) (/Å) (/e Å−3) (/Å)
(1Σ+)HBeHe+ 0.74 0.42 0.23 0.40
(1Σ+)HMgHe+ 0.43 0.52 0.07 0.49
(1A′)HCaHe+ 0.43 0.68 0.04 0.54
(2Σ+)HBeHe2+ 0.25 0.39 0.40 0.48
(2Σ+)HMgHe2+ 0.12 0.47 0.15 0.49
(2A′)HCaHe2+ 0.08 0.54 0.09 0.56

aDisplacement along the M-H/M-He bond relative to M.
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e Å−3, respectively.

6.5. Alkaline-Earth Metal Dihelide Cations: MHen+
2 (n = 1, 2)

6.5.1. MHe+
2 (M = Be, Mg, Ca)

Equilibrium structures and harmonic vibration frequencies of the 2A1 ground

states of BeHe+
2 , MgHe+

2 and CaHe+
2 have been calculated using UCCSD(T), IC-

MRCI and IC-MRCI+Q. These data are presented in Table 6.8. No alkaline-earth

metal dihelide ion has been identified or characterised experimentally to date. There-

fore, the results of this work may only be compared with previous ab initio values.

It is evident from Table 6.8 that the UCCSD(T), IC-MRCI and IC-MRCI+Q

equilibrium parameters of BeHe+
2 of this work are in excellent agreement with those

reported by Page et al. [15] using the same correlated approaches. The latter inves-

tigation employed aug-CVQZ (Be) [15, 32] and aug-cc-pVQZ (H, He) [31, 33] basis

sets. For example, Re values calculated using CCSD(T), IC-MRCI and IC-MRCI+Q

differ by ca. 8.0, 8.0 and 5.0 mÅ, respectively. Similar accuracy is observed with re-

spect to values of θe. The MP2 values of Bu and Zhong [13] and Page et al. [15], the

former of which employed 6-311+G(3df ,3pd) basis sets, give slightly larger values of

Re and θe, as anticipated. There is greater variance between the ab initio binding

energies of this work and those reported in the literature. This is particularly the

case for the first of the following dissociation reactions,

(2A1)MHe+
2 → (2Σ+)MHe+ + (1S0)He (6.11)

(2A1)MHe+
2 → (2S1/2)M

+ + 2(1S0)He (6.12)

With respect to equation (6.11), UCCSD(T), IC-MRCI and IC-MRCI+Q yield well-
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Table 6.8 Ab initio equilibrium parameters of (2A1)MHe+
2 , M = Be, Mg, Ca.

Re θe De
a Frequencies

Method (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 ω1 ω2 ω3

BeHe+
2

UCCSD(T)b 2.9336 59.7 1.601 3.101 78 35 67
IC-MRCIb 2.9263 59.9 2.073 2.604 59 14 58
IC-MRCI+Qb 2.9253 60.3 0.905 3.401 83 64 61
MP2c 3.085 61.3 1.8923 2.2228 69 25 60
MP2d 3.020 60.6 1.3334 2.6002 89.4 46.4 64.2
CCSD(T)d 2.942 60.1 1.6310 3.1608 82.2 43.4 70.6
IC-MRCId 2.934 59.9 1.3322 2.7877 65.9 23.3 71.1
IC-MRCI+Qd 2.920 60.2 1.7998 3.2085 67.3 23.7 68.1

MgHe+
2

UCCSD(T)b 3.5048 50.9 0.917 1.742 49 28 44
IC-MRCIb 3.5896 49.6 0.653 1.461 13 58 43
IC-MRCI+Qe 3.5062 51.3 0.873 1.155 56 36 48
MP2c 3.600 51.9 23 46 43
MP2e 3.602 52.47 2.0455 21.45 45.85 42.65

CaHe+
2

UCCSD(T)b 4.2857 39.5 0.500 0.910 41 67 31
IC-MRCIb 4.3367 43.8 0.444 0.763 33 40 27
IC-MRCI+Qb 4.2291 41.4 0.555 0.729 41 57 33
B3LYPf 4.05 57.8 0.013 62.3 33.1 54.3

aDe(1) and De(2) correspond to dissociation reactions (6.11) and (6.12), respectively.
bThis work.
cIn conjunction with 6-311+G(3df ,3pd) basis sets; see reference [13, 14].
dIn conjunction with aug-CVQZ (Be) [15, 32] and aug-cc-pVQZ basis sets. MP2, CCSD(T) and

IC-MRCI+Q values are BSSE corrected; see reference [15].
eIn conjunction with the 6-311+G(3df ,3pd) basis set; see reference [19].
bIn conjunction with the 6-311+G(3df) basis set; see reference [20].

depths of 1.601, 2.073 and 0.905 kJ mol−1, respectively. Although this UCCSD(T)

result is in good agreement with the corresponding CCSD(T) value of Page et al. [15],

the difference in the results of the multi-reference methods are more noticeable, being

ca. 0.7 kJ mol−1. Nevertheless, the topological curvature of the IC-MRCI+Q molec-

ular PES constructed by Page et al. [15] is extremely small in the dissociative regions.

Indeed, the dissociative potential wall in the He-Be-He bend co-ordinate is ca. 25

cm−1, as can be seen from Figure 6.2. As such, the dissociative energetics of this

molecule are likely to be extremely sensitive to the ab initio method employed. The
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Figure 6.2 Two-dimensional projections of the IC-MRCI+Q+BSSE (4,4) Padé
SPF PEF of (2A1)BeHe+

2 [15] (in a0): (a) t2 (x) versus t1 (y); (b) t3 (x) versus t1
(y), and; (c) t3 (x) versus t2 (y). Contours are spaced at increments of 1 kJ mol−1.

IC-MRCI+Q PEF of Page et al. [15] is given as a Fortran subroutine in Appendix

F, as is the IC-MRCI+Q discrete PES. The shallow nature of the (2A1)BeHe+
2 PES

is also apparent upon comparison of harmonic vibration frequencies. For example,

it can be seen from Table 6.8 that each fundamental mode exhibits a frequency less

than ca. 100 cm−1, irrespective of the method employed. These data provide further

indication as to the extremely weak nature of the bonding exhibited by the ground

state of BeHe+
2 .

In a similar manner to the molecular dihydride cations discussed in §6.3,

the increase in the equilibrium Re(M-He) values observed with the increasing po-

larisability of M is ascribed to the increasing ionic radii of the central metal ion.

Nevertheless, the bonding in the ground states of MHe+
2 are significantly different

in nature to that of MH+
2 . From Table 6.8 it is evident that UCCSD(T) and IC-

MRCI+Q give consistent equilibrium parameters of MgHe+
2 to within 1.4 mÅ (Re)

and 0.4◦ (θe). The +Q correction to the IC-MRCI wave function decreases the value

of Re by ca. 80 mÅ. However, these equilibrium structures differ significantly from

those calculated by Sapse et al. [19] and Bu et al. [13, 14] who employed MP2/6-

311+G(3df ,3pd). For example, the latter Re values are ca. 100 mÅ larger than those
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of this work. The single- and multi-reference methods employed presently therefore

suggest a more tightly bound complex than has been previously reported. This

fact is also evident upon comparison of the potential well-depths for equation (6.11)

calculated in this work and the MP2/6-311+G(3df ,3pd) value. Explicitly, the latter

value is ca. 1.0-1.5 kJ mol−1 larger than the values reported in this work.

The only equilibrium structure for (2A1)CaHe+
2 reported in the literature is

that of Jalbout and Solimannejad [20], who employed B3LYP/6-311+G(3df). Ac-

cording to this method and those employed in the present work, the ground state

of CaHe+
2 is extremely weakly bound with respect to equation (6.11). For exam-

ple, this well-depth using B3LYP/6-311+G(3df) is calculated to be 0.013 kJ mol−1.

Using UCCSD(T), IC-MRCI and IC-MRCI+Q, this well-depth is an order of mag-

nitude larger at ca. 0.5 kJ mol−1. There are similar discrepancies with respect to

the equilibrium parameters of (2A1)CaHe+
2 . For instance, the values of Re and θe

calculated in this work are ca. 0.2-0.3 Å larger and ca. 18-14◦ smaller than the val-

ues of Jalbout and Solimannejad [20], respectively. Wilson and von Nagy-Felsobuki

[42–47] have discussed and established the shortcomings of applying DFT to helium

bonding with respect to small TM-helide cations.

6.5.2. MHe2+
2 (M = Be, Mg, Ca)

Equilibrium parameters for the ground states of MHe2+
2 (M = Be, Mg, Ca)

have been calculated using UCCSD(T), IC-MRCI and IC-MRCI+Q. These data

are collated in Table 6.9. Potential well-depths corresponding to the dissociative

reactions

MHe2+
2 → (1Σ+)MHe2+ + (1S0)He (6.13)

MHe2+
2 → (1S0)M

2+ + 2(1S0)He (6.14)
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Table 6.9 Ab initio equilibrium parameters of MHe2+
2 , M = Be, Mg, Ca.

Re θe De
a Frequencies

Method (/Å) (/◦) (/kJmol−1) (/cm−1)
1 2 ω1 ω2 ω3

(1Σ+
g )BeHe2+

2

UCCSD(T)b 1.4373 180.0 85.04 175.1 729 101 1004
IC-MRCIb 1.4373 180.0 85.10 175.9 765 102 1021
IC-MRCI+Qb 1.4373 180.0 84.30 174.1 738 102 1010
HFc 1.44 180.0 74.1
CCSD(T)d 1.4373 180.0 84.98 730.8 13.7 995.2
IC-MRCId 1.4372 180.0 85.01 727.1 105.2 1010
IC-MRCI+Qd 1.4373 180.0 84.24

(1Σ+
g )MgHe2+

2

UCCSD(T)b 1.8960 180.0 31.46 63.56 446 47 508
IC-MRCIb 1.8964 180.0 29.05 62.48 448 48 513
IC-MRCI+Qb 1.8936 180.0 30.66 62.88 450 47 510
MP2e 1.911 135.9 27.90 56.15 413 45 453

(1A1)CaHe2+
2

UCCSD(T)b 2.3667 106.0 13.85 27.91
IC-MRCIb 2.3516 109.9 14.17 36.20
IC-MRCI+Qb 2.3419 108.1 14.60 28.60

aDe(1) and De(2) correspond to dissociation reactions (6.13) and (6.14), respectively.
bThis work.
cSee reference [16].
dRe, θe andDe values are corrected for basis set superposition error, calculated in conjunction with

the aug-CVQZ (Be) [15, 32] and aug-cc-pVQZ (He) basis sets. CCSD(T) ω values are harmonic
and neglect basis set superposition error correction. IC-MRCI ω values are anharmonic and include
basis set superposition error correction; see reference [17].
eIn conjunction with the 6-311+G(3df ,3pd) basis set; see reference [13].

have been considered here.

With respect to the 1Σ+
g ground state of BeHe2+

2 , comparison is only possible

with theoretical values since no experimental data for (1Σ+
g )BeHe2+

2 is available.

The UCCSD(T), IC-MRCI+Q and IC-MRCI (1Σ+
g )BeHe2+

2 equilibrium structures

are in exact agreement. Furthermore, these equilibrium bond lengths are in excellent

agreement with the CCSD(T), IC-MRCI and IC-MRCI+Q values reported by Page

et al. [17], with the largest difference between Re values being 0.1 mÅ. The inclusion

of correlation in the description of the (1Σ+
g )BeHe2+

2 ground state therefore has a

negligible effect on the equilibrium geometry in the region of the minimum of PES.
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For instance, optimised UCCSD(T), IC-MRCI and IC-MRCI+Q structures differ

from the HF structure of Harrison et al. [16] by ca. -3.0 mÅ. In this investigation

the (1Σ+
g )BeHe2+

2 ground state did not exhibit an energy conformer with a non-linear

equilibrium structure.

The only previously reported equilibrium structure of the ground state

of MgHe2+
2 is that of Bu and Zhong [48], who used BSSE corrected MP2/6-

311+G(3df ,3pd). It is evident from Table 6.9 that using all methods of this work Re

is ca. 20 mÅ smaller than the MP2/6-311+G(3df ,3pd) [48] value. Conversely, the po-

tential well-depths calculated in this work for the ground state of MgHe2+
2 are larger

than the MP2/6-311+G(3df ,3pd) [48] values, for both equations (6.13) and (6.14).

For instance, for the former dissociative reaction it is seen from Table 6.9 that the

potential well-depths calculated in this work differ from the MP2/6-311+G(3df ,3pd)

[48] value by ca. 2.5-3.5 kJ mol−1. For the latter reaction, this difference is ca. 7

kJ mol−1. It is therefore concluded that the single- and multi-reference wave func-

tions employed here predict the 1Σ+
g ground state of MgHe2+

2 to be more strongly

bound than has been previously reported. The largest discrepancy between the re-

sults of this work and those of Bu and Zhong [48] is that observed with respect to

the θe value for (1Σ+
g )MgHe2+

2 . In particular, using MP2/6-311+G(3df ,3pd), Bu and

Zhong [48] determined this bond angle to be 135.9◦. However, no potential min-

imum corresponding to a non-linear equilibrium structure could be located using

UCCSD(T) or IC-MRCI+Q (vide infra). The ω1 fundamental frequencies calcu-

lated for (1Σ+
g )MgHe2+

2 differ from the MP2/6-311+G (3df ,3pd) [48] value by ca. 40

cm−1. For ω2 these differences are ca. 3 cm−1, whilst for ω3 these differences are an

order of magnitude larger, being ca. 60 cm−1.

The ab initio equilibrium structures of the ground state of CaHe2+
2 reported

by Page and von Nagy-Felsobuki [21] are the only data available for this species.
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From Table 6.9 it is evident that these equilibrium structures are reasonably consis-

tent, with Re and θe values agreeing to within ca. 10 mÅ and 4◦, respectively. These

data indicate the sensitivity of the molecular PES topology with respect to the ab

initio method employed. The 1A1 ground state of CaHe2+
2 exhibits a quasi-linear

structure, and so is consistent with its isoelectronic analogue (1A′)HCaHe+. How-

ever, the 1A1-
1Σ+

g potential barrier for CaHe2+
2 is substantially smaller. Page and

von Nagy-Felsobuki [21] have reported this barrier to be 3.53 and 2.85 cm−1 using

UCCSD(T) and IC-MRCI+Q, respectively, suggesting that the fluxional nature of

these helide ions increases proportionally with helium substitution.

6.5.3. Isovalent Comparisons

It is appropriate to compare the properties of isovalent series (2A1)BeHe+
2 ,

(2A1)MgHe+
2 , (2A1)CaHe+

2 ), (1Σ+
g )BeHe2+

2 , (1Σ+
g )MgHe2+

2 and (1A1)CaHe2+
2 ). From

Table 6.8 it is seen that the ground states of BeHe+
2 , MgHe+

2 and CaHe+
2 correspond

to equilibrium structures of C2v symmetry. However, these structures exhibit quan-

titatively different equilibrium geometries. For example, Re values for (2A1)BeHe+
2 ,

(2A1)MgHe+
2 and (2A1)CaHe+

2 are ca. 2.9, 3.5 and 4.2 Å, respectively. There is a

complementary decrease in θe for this series also. In particular, θe for (2A1)BeHe+
2 ,

(2A1)MgHe+
2 and (2A1)CaHe+

2 have been calculated to be ca. 60, 50 and 40◦, respec-

tively. It is inferred from these data that the electrostatic nature of the M-He bond

increases with increasing Mn+ polarisability, independently of charge (n = 1, 2).

This conclusion is also reached upon consideration of the potential well-

depths corresponding to equations (6.11) and (6.13). For example, for the former

dissociation reaction these potential well-depths have been calculated to be ca. 1.5,

1.0 and 0.5 kJ mol−1, respectively, whereas for the latter the well-depths are ca. 3.0,

1.5 and 1.0 kJ mol−1. These binding energies are quantitatively very similar to the
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atomisation energies for each species (i.e. equations (6.12) and (6.14)). The rela-

tive binding energies of both helium atoms to the metal ion may be assessed using

the ∆ values listed in Table 6.10. It is seen from this table that for MHe+
2 both

M+-He bonds are almost identical in an energetic sense. For example, for BeHe+
2 ,

MgHe+
2 and CaHe+

2 exhibit ∆ values of ca. 1, 0.5 and 0.1 kJ mol−1, respectively. This

is contrary in nature to the trends observed in §6.3.3, with respect to the ground

states of BeHe+
2 , MgHe+

2 and CaHe+
2 .

Similar trends to those observed with respect to the ground state structures

of the hydrohelide species discussed in §6.4 are also evident. For example, both

(BeHe+
2 , MgHe+

2 ) and (BeHe2+
2 , MgHe2+

2 ) exhibit symmetrically identical ground

states. The ground state equilibrium structure of CaHe2+
2 differs from those of

BeHe2+
2 and MgHe2+

2 , despite possessing the same valence shell occupation. Page

et al. [17, 21] have argued that these structures arise from the relative energies and

symmetries of the lowest unoccupied MO energies in the diatomic fragment ions

BeHe2+, MgHe2+ and CaHe2+, respectively. These differences are also illustrated

by the comparison of the MEPs in the He-M-He bend co-ordinate, which have been

constructed using the same constrained-angle optimisation approach employed for

HMgHen+ and HCaHen+. These MEPs are included in Appendix F.

In order to further illustrate these bonding trends for the ground states of

Table 6.10 Binding energies (/kJ mol−1) for successive helium addition of
M+ ions (M = Be, Mg, Ca).

BeHe+
2 MgHe+

2 CaHe+
2

Method De(2) De(3) ∆a De(2) De(3) ∆a De(2) De(3) ∆a

UCCSD(T) 1.601 3.101 -0.101 0.917 1.742 -0.091 0.500 0.910 -0.091
IC-MRCI 2.073 2.604 -1.542 0.653 1.461 0.155 0.444 0.763 -0.124
IC-MRCI+Q 0.905 3.401 1.592 0.873 1.155 -0.591 0.555 0.729 -0.380

aDe(1) and De(2) correspond to dissociative reactions (6.11) and (6.12), respectively. ∆ De values
are defined as De(2)− 2De(1) and it is assumed both M-He bonds are identical.
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MHe+
2 and MHe2+

2 , densities and MEDs have been calculated using IC-MRCI. These

are depicted in Appendix F, and summarised in terms of ρb and Rb/Re in Table 6.11.

It is evident that the dependence of bond strength on the polarisability of the metal

ion is replicated in these data. For example, ρb for MHe2+
2 are 0.34, 0.15 and 0.09

e Å−3, respectively. The data in Table 6.11 succinctly convey the weakness of the

MHe+
2 bonding. For example, BeHe+

2 , MgHe+
2 and CaHe+

2 exhibit ρb values of 0.02,

0.01 and 4.09×10−3 e Å−3, respectively. Using the present nomenclature for what

constitutes a chemical bond, it is concluded that the ground states of MHe+
2 (M =

Be, Mg, Ca) are the result of purely dispersive and electrostatic interactions.

Table 6.11 IC-MRCI values of ρb and Rb for MHen+
2 (M = Be, Mg, Ca; n = 1, 2).

ρb Rb/Re
a

(/e Å−3) (/Å)
(2A1)BeHe+

2 0.02 0.54
(2A1)MgHe+

2 0.01 0.58
(2A1)CaHe+

2 4.09×10−3 0.62
(1Σ+

g )BeHe2+
2 0.34 0.41

(1Σ+
g )MgHe2+

2 0.15 0.50
(1A1)CaHe2+

2 0.09 0.56

aDisplacement along the M-He bond relative to M.

6.6. Isoelectronic Comparisons of Helide Species

The limitations of the isoelectronic argument have been established previ-

ously with respect to main-group [23, 35] and TM [42, 43] helide ion chemistry. It

is therefore constructive to determine the efficacy of this argument in the context of

the alkaline earth metal helide ions. Although MH+
2 and HMHe2+ are isoelectronic,

it is not feasible to consider these species in an isoelectronic sense. This conclusion

has been reached following the discussion presented in this Chapter concerning the

disparate natures of the bonding mechanisms in the respective species. As such,
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the present isoelectronic discussion will be limited to comparisons between species

of form HMHe+ and MHe2+
2 .

Data pertinent to the consideration of the isoelectronic comparison between

the ground states of HMHe+ and MHe2+
2 are reiterated in Table 6.12, for conve-

nience. Without loss of generality, all isoelectronic comparisons are made using

IC-MRCI+Q. It is immediate that there is little consistency between the isoelec-

tronic species HMHe+ and MHe2+
2 . For example, the ground states of HBeHe+ and

BeHe2+
2 exhibit Re(Be-He) values of 1.5177 and 1.4373 Å, respectively, and thus

differ by 80.4 mÅ. The dissociative potential well-depths with respect to the loss

of a single helium atom are 35.67 and 84.30 kJ mol−1, respectively. These data

indicate that (1Σ+
g )BeHe2+

2 is significantly more tightly bound than (1Σ+)HBeHe+.

The values of ρb(Be-He) for (1Σ+)HBeHe+ and (1Σ+
g )BeHe2+

2 , calculated to be 0.23

and 0.34 eÅ−3, respectively, support this conclusion. Nevertheless, the polarity of

the Be-He bonds in these species, indicated by the relative values of Rb(Be-He), are

0.61 and 0.59 Å, respectively.

Similar inconsistencies in structural and energetic parameters are observed

for the isoelectronic (1Σ+)HMgHe+ and (1Σ+
g )MgHe2+

2 . For example, the respective

Re(Mg-He) values are 2.1689 and 1.8936 Å, respectively, and so exhibit a differ-

ence of 275.3 mÅ. Similarly, the removal of a single helium atom from both species

corresponds to well-depths of 7.806 and 30.66 kJ mol−1, values differing by an ap-

proximate factor of 4. With respect to IC-MRCI MED data, the discrepancies for

these species are also exaggerated with respect to the beryllium analogues. For

instance, ρb(Mg-He) are calculated to be 0.07 and 0.15 eÅ−3, respectively. It is esti-

mated therefore that the Mg-He bond strength in (1Σ+)HMgHe+ is approximately

double that in (1Σ+
g )MgHe2+

2 . However, Rb(Mg-He) are reasonably consistent, with

(1Σ+)HMgHe+ and (1Σ+
g )MgHe2+

2 exhibiting values of 1.07 and 0.95 Å, respectively.



251

Table 6.12 Comparison of HMHe+ and MHe2+
2 using IC-MRCI+Q, M = Be, Mg,

Ca.

Re(M-He) θe De
a ρb(M-He)b Rb(M-He)b

(/Å) (/◦) (/kJ mol−1) (/e Å−3) (/Å)
(1Σ+)HBeHe+ 1.5177 180.0 35.67 0.23 0.61
(1Σ+

g )BeHe2+
2 1.4373 180.0 84.30 0.34 0.59

(1Σ+)HMgHe+ 2.1689 180.0 7.806 0.07 1.07
(1Σ+

g )MgHe2+
2 1.8936 180.0 30.66 0.15 0.95

(1A′)HCaHe+ 2.6309 113.3 4.103 0.04 1.44
(1A1)CaHe2+

2 2.3419 108.1 14.60 0.09 1.32

aCorresponds to dissociation into [(1Σ+)MH+ +(1S0)He] and [(1Σ+)MHe2+ +(1S0)He], respec-
tively.
bIC-MRCI values.

A comparison of Re(Mg-He) and Rb(Mg-He) reveals that the polarity of the Mg-

He bonds in both (1Σ+)HMgHe+ and (1Σ+
g )MgHe2+

2 are shifted towards the helium

nucleus, relative to the analogous beryllium species.

Both (1A′)HCaHe+ and (1A1)CaHe2+
2 exhibit non-linear equilibrium struc-

tures, with bond angles of 113.3 and 108.1◦, respectively. Nevertheless, Page and

von Nagy-Felsobuki [21] reported IC-MRCI+Q 1A′-1Σ+ and 1A1-
1Σ+

g barrier heights

for HCaHe+ and CaHe2+
2 of 117.15 and 2.85 cm−1, respectively. These data illus-

trate the differences in the PES topology in the X-Ca-Y bond angle co-ordinate.

Identical trends in Re, De, ρb and Rb observed for isoelectronic beryllium and mag-

nesium species are also evident for (1A′)HCaHe+ and (1A1)CaHe2+
2 . For example,

Re(Ca-He) values for these two species differ by 289.0 mÅ, respectively, whereas the

De values differ by ca. 10.50 kJ mol−1. The latter figure corresponds to a factor

of ca. 3.5. Both ρb(Ca-He) and Rb(Ca-He) here are indicative of extremely weakly

bound complexes. Nevertheless, ρb(Ca-He) for (1A′)HCaHe+ is approximately half

that for (1A1)CaHe2+
2 . It is interesting to note here that Re(Ca-He) and Rb(Ca-

He) values indicate that the polarity of the Ca-He bond in both species is centred

on the helium nucleus. For the beryllium and magnesium species presently under
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discussion, the converse is the case.

6.7. Ab Initio Property Surfaces of MH2+
2 , HMHe2+ (M = Mg, Be) and

MgHe2+
2

From the discussion presented in this Chapter it is evident that not all species

of form MHn+
2 , HMHen+ and MHen+

2 (M = Be, Mg, Ca and n = 1, 2) are suitable

candidates for vibrational and rovibrational calculations. For example, it is gener-

ally observed from §6.3, 6.4 and 6.5 that the dications exhibit equilibria that are

more thermodynamically stable compared to the respective monocations. This was

particularly evident for the hydrohelide and dihelide ions. Similarly, the ground

states of HCaHen+ and CaHen+
2 (n = 1, 2) are also deemed unsuitable for a nor-

mal co-ordinate vibrational analysis, due to their fluxional nature. Consequently,

vibrational and rovibrational calculations have been limited to the ground states of

MgH2+
2 , HMHe2+ (M = Be, Mg) and MgHe2+

2 in this Chapter.

Page and von Nagy-Felsobuki [7] reported an analytical PEF and DMF of the

1A1 ground state of MgH2+
2 using the CCSD(T) method employed in this work. This

method has been applied here to the 2Σ+ and 1Σ+
g ground states of HMgHe2+ and

MgHe2+
2 , and the 2Σ+ ground state of HBeHe2+. Analytical PEFs and DMFs of these

species have also been developed in this work. Page and von Nagy-Felsobuki also

developed ab initio property surfaces for (1A1)BeH2+
2 [5] and (1Σ+

g )BeHe2+
2 [17] using

IC-MRCI in conjunction with aug-CVQZ (Be) and aug-cc-pVQZ (H,He) basis sets.

These surfaces were presented in Chapter Three, and rovibrational and vibrational

spectra for these respective species were presented in Chapter Four. Discrete and

analytical property surfaces for these molecules are detailed in Table 6.13. Discrete

PES grids of (1A1)MgH2+
2 , (2Σ+)HMHe2+ (M = Be, Mg) and (1Σ+

g )MgHe2+
2 are

included in Appendix F, as are their analytical representations. The latter are
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provided as Fortran subroutines. Two-dimensional contour plots of all surfaces

are also provided in Appendix F.

The analytical PEFs for (2Σ+)HBeHe2+, (2Σ+)HMgHe2+ and

(1Σ+
g )MgHe2+

2 outlined in Table 6.13 exhibit (χ2)
1/2

values of 14.88, 10.97

and 10.95 cm−1, respectively. As such, the accuracy of these fitted surfaces

(with respect to the discrete ab initio grid) in the region employed for numerical

integration may be questionable. However, these (χ2)
1/2

values serve to illustrate

the difference between purely statistical and topological accuracies. For example,(
(χ2)1/2,max

[
(χ2)

1/2
])

for points on the P (5, 5) OGL (2Σ+)HBeHe2+ PEF

with energies V such that V < 3000, 3000 < V < 6000, 6000 < V < 9000,

9000 < V < 12000 and 12000 < V < 15000 cm−1 are (2.19, 0.64), (2.41, 0.35),

(3.95, 0.69), (9.22, 1.50) and (4.61, 1.74) cm−1, respectively. The deviation between

ab initio and fitted PES points therefore increases in the more geometrically

remote areas of the PES domain. This observation is also made with respect to

the (2Σ+)HMgHe2+ and (1Σ+
g )MgHe2+

2 PEFs outlined in Table 6.13. In the context

of the calculation of low-lying vibrational states, these increasing deviations are

relatively insignificant, due to the rapid decay of the vibrational wave function in

these areas of the PES domain.

6.8. Ab Initio Rovibrational Spectrum of (1A1)MgH2+
2

Low-lying ab initio 1D vibrational eigenvalues, VBOs, configuration as-

signments and vibration-averaged structures for the ground electronic state of

(1A1)MgH2+
2 , (1A′)MgHD2+ and (1A1)MgD2+

2 are given in Appendix F. The nu-

merical solution to the 1D nuclear Schrödinger equations for these species employed

normal co-ordinate domains of [-2.0 a0, 4.0 a0] (t1), [-1.0 a0, 5.0 a0] (t2) and [-2.25

a0, 2.25 a0] (t3).
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A single dominant configuration is assigned to each of the lowest ten vi-

brational states of (1A1)MgH2+
2 . Moreover, none of these states possess leading

configurations with excited quanta in the t2 co-ordinate, a fact ascribed to the rel-

ative 1D PES curvatures in the t1, t2 and t3 co-ordinates. As expected, the ground

vibrational state of (1A1)MgH2+
2 is composed primarily from the |000〉 configura-

tion, which exhibits a weight of 0.94. Similarly, for the fundamental t1 and t3 modes

(with VBOs at 754.6 and 796.9 cm−1, respectively), the |100〉 and |001〉 configura-

tions possess weights of 0.83 and 0.85, respectively. A single dominant configuration

(|010〉 with a weight of 0.74) also comprises the fundamental t2 vibration (with VBO

at 3704.4 cm−1). The inclusion of anharmonic effects in the fundamental modes of

vibration may be gauged via the comparison between the anharmonic and harmonic

frequencies. The respective differences in for the t1, t2 and t3 fundamental modes

are 36.9, 246.3 and 29.3 cm−1. The relatively large difference observed between the

fundamental t2 frequencies is typical of alkali and alkaline-earth metal dihydride

cations [5, 7].

Compared to (1A1)MgH2+
2 there is significantly more configuration mixing

present in the lowest 10 vibrational states of (1A′)MgHD2+. For instance, the states

of a′ symmetry with VBOs at 1313.4, 1578.1, 1700.4, 1880.9 and 2301.3 cm−1 are

each composed from two primary configurations. The t1 and t3 fundamental vi-

brations of (1A′)MgHD2+ are also more delocalised than are those of (1A1)MgH2+
2 ,

having |100〉 and |001〉 configuration weights of 0.70 and 0.68. The |010〉 configura-

tion is more dominant in the t2 fundamental mode, having a configuration weight

of 0.84. The lowest ten vibrational states of (1A1)MgD2+
2 are each composed pri-

marily from a single configuration. In addition, the t1, t2 and t3 fundamental vibra-

tional states of (1A1)MgD2+
2 are composed almost entirely from the |100〉, |010〉 and

|001〉 configurations, respectively. Several near-degenerate vibrational states exist
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in the vibrational spectrum of (1A1)MgD2+
2 . For example, the b2 (0.85× |001〉) and

a1 (0.84 × |100〉) states have VBOs at 550.1 and 552.4 cm−1, respectively. This

near-degeneracy is also observed for the b2 (0.70×|101〉) and a1 (0.65×|002〉) states

with VBOs at 1105.8 and 1108.6 cm−1.

Radiative properties, including transition moments R2, Einstein A and B

coefficients, band strengths S and radiative lifetimes τ of the lowest 10 vibrational

states have been calculated for (1A1)MgH2+
2 , (1A′)MgHD2+ and (1A1)MgD2+

2 at 296

K. These data are given in Appendix F. The rovibrational spectra of (1A1)MgH2+
2 ,

(1A′)MgHD2+ and (1A1)MgD2+
2 have also been calculated for the lowest 10 vi-

brational states and J ≤ 5. These spectra are shown in Figure 6.3. The most

prominent rovibrational transitions predicted for the ground states of (1A1)MgH2+
2 ,

(1A′)MgHD2+ and (1A1)MgD2+
2 have been assigned and are listed in Appendix F.

From Figure 6.3 it can be seen that the calculated rovibrational spectrum

of the ground state of (1A1)MgH2+
2 is dominated by three bands with intensities

of the order of 10−13 cm molecule−1. These bands correspond to the |001〉, |101〉

and |003〉 vibrational states. The ab initio rovibrational spectrum of (1A′)MgHD2+,

features several bands of similar intensities. The most intense band observable for

(1A′)MgHD2+ is assigned as the |001〉 state, located at ca. 750-850 cm−1. The

rovibrational spectrum of (1A1)MgD2+
2 exhibits three prominent bands, located at

550-650, 1100-1200 and 1700-1800 cm−1. Each of the bands observed in Figure 6.3

have been assigned unequivocally, despite the existence of near-degeneracies. For

example, the band located at 550-650 cm−1 is assigned to the |001〉 state, despite the

near-degeneracy of this state with the |100〉 state. The band located at 1100-1200

cm−1 is assigned to be the |101〉 state, despite this states near-degeneracy with the

|002〉 state. The band at 1700-1800 cm−1 is assigned to the |003〉 state.
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Figure 6.3 Ab initio rovibrational spectra for v ≤ 10, J ≤ 5 and Sab ≥ 1.0× 10−30

at 296 K: (a) (1A1)MgH2+
2 ; (b) (1A′)MgHD2+, and; (c) (1A1)MgD2+

2 . Transition
frequencies and intensities given in cm−1 and cm molecule−1, respectively.
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6.9. Ab Initio Vibrational Spectra of (2Σ+)HMHe2+ (M = Be, Mg)

Vibrational structural and radiative properties of the 2Σ+ ground states

of HBeHe2+ and HMgHe2+ have been calculated using the solution algorithm

of von Nagy-Felsobuki and co-workers [49, 50] for l = 0. The 1D vibrational

Schrödinger equations for (2Σ+)HBeHe2+ were solved using integration domains

of [−2.0a0, 5.0a0], [−4.0a0, 4.0a0] and [−2.0a0, 2.5a0] in the w1, w2 and w3 modes,

respectively. These domains in the case of (2Σ+)HMgHe2+ were [−2.0a0, 5.0a0],

[−5.0a0, 5.0a0] and [−2.5a0, 3.0a0], respectively.

The low-lying l = 0 vibrational states of (2Σ+)HBeHe2+ are dominated by ex-

citations in the w2 vibrational co-ordinate. For example, from Table 6.14 it is evident

that the vibrational states with VBOs at 215.5, 475.2, 760.2, 981.5, 1062.2 1233.2

and 1264.2 cm−1 exhibit significant w2 character. Nevertheless, the assignment of

each of the ten lowest vibrational states is made using only one or two dominant

configuration terms. The prominent contribution from excited w2 quanta in this

spectrum is attributed to the relative 1D PEF curvatures. Moreover, the same term

in the CI is seen to occur with comparable weights in adjacent vibrational states.

The three lowest l = 0 excited vibrational states illustrate this point. These states

are assigned using |020〉, [|020〉 , |040〉] and |040〉 terms, respectively. The respective

configuration weights of these terms are 0.74, [0.54,0.36] and 0.58. The pair of states

(predominantly of |120〉 character) with VBOs at 981.5 and 1233.6 cm−1 also exhibit

this phenomenon. Vibration-averaged structures of (2Σ+)HBeHe2+ yield insight into

the topology of the molecular PEF in the region of the geometrical equilibrium. It

is observed that the vibrational ground state exhibits 〈RBe-H〉 and 〈RBe-He〉 values of

1.794 and 1.457 Å, respectively. These values differ by ca. -6 and 14 mÅ from the

ab initio PES minimum, respectively.

With respect to transition to the ground vibrational state, it is observed
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that the most intense transitions for (2Σ+)HBeHe2+ are those from states of w3

character. For example, the two most intense bands in the vibrational spectrum of

(2Σ+)HBeHe2+ are the |001〉 and |021〉 bands, which exhibit S values of 9.96×10−15

and 1.21 × 10−15 cm molecule−1, respectively. Conversely, the |100〉 ← |000〉 tran-

sition exhibits a band strength of 9.39 × 10−17 cm molecule−1, and so is compara-

tively weak. This transition is relatively persistent however, exhibiting a τ value of

1.78×10−3 s. The only state in the l = 0 vibrational spectrum with a greater radia-

tive lifetime is the |020〉 state with VBO at 215.5 cm−1, for which τ is 1.88 × 10−3

s.

The structural and radiative parameters for the low-lying l = 0 vibra-

tional states of (2Σ+)HMgHe2+ are listed in Table 6.14. It is evident that there

is more extensive delocalisation of the low-lying vibrational wave functions than for

(2Σ+)HBeHe2+. For example, the states with VBOs at 119.5, 311.7, 502.4, 559.5,

687.5 and 835.2 cm−1 are each assigned using two dominant configuration terms.

The first two excited vibrational states of (2Σ+)HMgHe2+ succinctly illustrate the

effects of vibrational CI. For example, these states correspond to the VBOs at 119.5

and 311.7 cm−1, but both consist primarily of the |020〉 configuration term. Never-

theless, the |021〉 and |040〉 terms, respectively, possess configuration weights similar

to that of the |020〉 term, respectively. This property is also observed in the |120〉

states with VBOs at 502.4 and 687.5 cm−1. These states exhibit contributions from

the |140〉 and |160〉 terms, respectively. Each of these latter terms correspond to

configuration weights of 0.26. Compared to the ab initio equilibrium bond lengths,

the vibration-averaged Mg-H and Mg-He bond lengths differ by 17 and 28 mÅ. It is

therefore inferred that the ground state vibrational wave function decays relatively

quickly. This decay is itself a reflection of the surprisingly steep curvature of the

molecular PEF in the neighbourhood of the equilibrium structure. Values of 〈RMg-H〉
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are seen to decrease (from those of the ground state) for all vibrational states of w2

character given in Table 6.14. This is not the case with respect to 〈RMg-He〉. For

example, the states with VBOs at 559.5 and 835.2 cm−1 exhibit 〈RMg-He〉 values of

1.946 and 1.951 Å, respectively. Both 〈RMg-H〉 and 〈RMg-He〉 are seen to increase in

all excited vibrational states of w1 and w3 character.

The low-lying l = 0 vibrational spectrum of (2Σ+)HMgHe2+ includes several

bands of similar intensity. For instance, the bands at 119.5, 311.7, 502.4, 687.5

and 835.2 cm−1 each possess S values of ca. 10−15 cm molecule−1. Similarly, the

bands at 397.9 and 761.5 cm−1 exhibit band strengths of ca. 10−16 cm molecule−1,

respectively. The radiative lifetimes of the low-lying vibrational states are generally

smaller than those of (2Σ+)HBeHe2+ by ca. a factor of 10-100. It is evident from

Table 6.14 that the most persistent bands in this (2Σ+)HMgHe2+ spectrum are the

|001〉 and |100〉 bands, which possess τ values of 1.87 × 10−4 and 1.68 × 10−4 s,

respectively.

6.10. Ab Initio Vibrational Spectrum of (1Σ+
g )MgHe2+

2

The low-lying l = 0 vibrational spectrum of the 1Σ+
g ground state of

MgHe2+
2 has been calculated using the solution algorithm of von Nagy-Felsobuki

and co-workers [49, 50]. Associated structural and radiative properties are given

in Table 6.15. The 1D vibrational Schrödinger equations of (1Σ+
g )MgHe2+

2 in the

w1, w2 and w3 co-ordinates were solved numerically using integration domains of

[−2.0a0, 5.5a0], [−4.0a0, 4.0a0] and [−1.75a0, 1.75a0], respectively.

The low-lying VBOs of (1Σ+
g )MgHe2+

2 are closely spaced in energy, as seen

from Table 6.15. Moreover, the lowest four excited states are almost entirely domi-

nated from excitations in w2. These excitations are also observed to be relatively de-

localised. For instance, the states with VBOs at 54.8 and 133.9 cm−1 are described
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Å

)
(/

a.
u
.2

)
(/
s−

1
)

(/
10

1
6

cm
3

er
g−

1
s2

)
(/

cm
m

ol
ec

u
le
−

1
)

(/
s)

0
|0

00
〉

σ
+ g

0.
94

0.
0b

1.
90

2
1
|0

20
〉,|

04
0〉

σ
+ g

0.
61

,0
.3

7
54

.8
1.

83
2

7.
13
−

01
c

3.
67
−

02
1.

34
+

02
5.

51
−

19
2.

39
−

02
2
|0

20
〉,|

06
0〉

σ
+ g

0.
65

,0
.2

6
13

3.
9

1.
81

4
9.

17
−

02
6.

90
−

02
1.

73
+

01
3.

55
−

19
2.

30
−

02
3
|0

40
〉

σ
+ g

0.
63

24
0.

7
1.

81
0

1.
22
−

02
5.

31
−

02
2.

29
+

00
1.

22
−

19
1.

99
−

02
4
|0

40
〉,|

06
0〉

σ
+ g

0.
49

,0
.4

4
36

7.
7

1.
80

1
1.

91
−

03
2.

98
−

02
3.

60
−

01
3.

54
−

20
1.

53
−

02
5
|1

00
〉

σ
+ g

0.
91

38
3.

0
1.

93
9

1.
57
−

01
2.

77
+

00
2.

96
+

01
3.

08
−

18
1.

25
−

02
6
|0

01
〉

σ
+ u

0.
86

43
2.

8
1.

93
4

9.
99

+
00

2.
54

+
02

1.
88

+
03

2.
29
−

16
2.

44
−

03
7
|1

20
〉

σ
+ g

0.
57

44
3.

1
1.

87
9

3.
20
−

03
8.

73
−

02
6.

03
−

01
7.

58
−

20
1.

10
−

02
8
|0

21
〉

σ
+ u

0.
49

47
5.

9
1.

85
2

8.
99
−

04
3.

04
−

02
1.

69
−

01
2.

33
−

20
2.

58
−

03
9
|0

60
〉

σ
+ g

0.
57

50
4.

5
1.

80
3

3.
25
−

03
1.

31
−

01
6.

12
−

01
9.

05
−

20
1.

12
−

02

a
Se

e
te

xt
.

b
Z

P
E

=
44

9.
9

cm
−

1
.

c
7.

13
-0

1
de

no
te

s
7.

13
×

10
−

0
1
.



263

predominantly by the |020〉 term, in conjunction with the |040〉 and |060〉 terms,

respectively. Conversely, the |100〉 and |001〉 configuration terms constitute the ma-

jority of the w1 and w3 fundamental modes, exhibiting weights of 0.91 and 0.86,

respectively. The vibration-averaged Mg-He bond length for the vibrational ground

state is 1.902 Å, a value only 6 mÅ larger than Re calculated using UCCSD(T). This

indicates directly the interplay between PEF topology and the asymptotic decay of

the ground state vibrational wave function. For the w1 and w3 fundamental modes,

〈RMg-He〉 is 1.939 and 1.934 Å. This corresponds to respective increases of 37 and 32

mÅ relative to the ground vibrational state (as anticipated).

The transitions between the ground state and the fundamental w3 and w1

exhibit the greatest band strengths for all states considered. Explicitly, these band

strengths are 2.29×10−16 and 3.08×10−18 cm molecule−1. This is not only consistent

with expectations for a D∞h molecule, but is also reflective of extent to which

configuration mixing is limited in these states. Excited states with considerable w2

character in the (1Σ+
g )MgHe2+

2 vibrational spectrum generally correspond to much

weaker transitions, with respect to the ground vibrational state. For example, the

|040〉 bands (VBOs=240.7 and 367.7 cm−1) and the |060〉 band (VBO=504.5 cm−1)

each exhibit band strengths of ca. 10−20 cm molecule−1. Each of the lowest 10

vibrational states in the (1Σ+
g )MgHe2+

2 l = 0 spectrum exhibit radiative lifetimes of

ca. 10−2 − 10−3 s, with respect to transition to the ground vibrational state.

6.11. Conclusion

A systematic investigations of the structures, stabilities and dissociative en-

ergetics of ground state MHn+
2 , HMHen+ and MHen+

2 (M = Be, Mg, Ca; n = 1,

2) has been presented. Both single- and multi-reference methods were employed to

calculate equilibrium parameters including Re, θe, De, ω1, ω2 and ω3. The ground
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states of MHn+
2 were found to arise from the charge-quadrupole interaction with

the molecule constituents. This finding has been established previously in the lit-

erature, and is consistent with those concerning isoelectronic alkali-metal species.

Trends in Re, θe, De, ω1, ω2 and ω3 have been analysed with recourse to both iso-

valent and isoelectronic arguments. Additionally, bonding characteristics derived

from electron density analyses have been discussed in this context. The limitations

in the application of both arguments have therefore been shown in this investiga-

tion. The geometric equilibria of the ground states of HMHe+ are observed to be

extremely fluxional with respect to the H-M-He bond angle co-ordinate. A simi-

lar conclusion was reached for the alkaline-earth dihelide monocations. However,

the respective bonding of the H and He in both HMHe+ and HMHe2+ appeared

to be charge-dependent. Despite the weak bonding characteristically observed for

these hydrohelide and helide monocations, the corresponding dications each exhibit

thermodynamically stable equilibria.

The UCCSD(T) method employed in this thesis was employed to construct

discrete PES and DMS grids of (1A1)MgH2+
2 , (2Σ+)HMHe2+ (M = Be, Mg) and

(1Σ+
g )MgHe2+

2 . The subsequent analytical representations of these discrete grids

were employed in the calculation of vibrational and rovibrational spectra. In

particular, the rovibrational spectrum of (1A1)MgH2+
2 was calculated for v ≤ 10,

J ≤ 5. All rovibrational states were assigned using normal modes and JKaKc ,

respectively. Zero angular momentum (i.e. l = 0) pure vibrational spectra of

(2Σ+)HMHe2+ (M = Be, Mg) and (1Σ+
g )MgHe2+

2 were also calculated.
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CHAPTER 7

Conclusion and Future Research

7.1. Introduction

The principle aim of this work was to investigate the structures, stability

and spectroscopy of Group-I and II hydrides and helides. It is hoped that these

calculations will provide timely assistance in the experimental identification and

characterisation of these ions. This has been illustrated in this work with respect to

the rovibrational spectra of (1A1)LiH+
2 and (1A1)LiD+

2 .

High level ab initio electronic structure methods were employed to investi-

gate MH2, MHn+
2 , HMHen+ and MHen+

2 (M = Li, Be, Na, Mg, K, Ca; n = 1, 2).

Trends associated with the equilibrium parameters of these species were rationalised

with recourse to qualitative MO arguments. The attributes and limitations of the

isoelectronic and isovalent reasoning were also discussed with respect to the equilib-

rium properties of HMHen+ and MHen+
2 . These latter arguments were found to be

of limited use in this context. This conclusion is consistent with previous investiga-

tions of main group and transition metal helide ions (these investigations have been

reviewed in previous chapters).

7.2. Structure and Stability of Group-I and II Metal Hydrides and Helides

In order to determine the efficacy of various electronic structure methods

with respect to Group-I and II hydrides and helides, atomic properties of Li, Be,

Na, Mg, K and Ca including IE1, α and electronic transition frequencies were cal-
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culated. The relativistic ANO-RCC basis sets were found to provide a relatively

efficient and accurate description of the ground state electronic wave functions of

these atoms. The inclusion of the DK2 relativistic correction was shown to generally

improve atomic properties. As expected, post-HF methods were generally necessary

for anything other than qualitative agreement with experiment. Moreover, excita-

tions greater than singles and doubles in the correlated wave function were found to

be beneficial with respect to calculated atomic properties. To this end, UCCSD(T)

and IC-MRCI(+Q) were deemed to be the most suitable methods with respect to

both efficiency and accuracy.

The UCCSD(T) and IC-MRCI(+Q) methods were employed to investigate

the low-lying states of MH2 and the ground states of MHn+
2 . The lowest 2A1 and

2Σ− states of MH2 were found to be purely repulsive, in agreement with previous

predictions. The main factor determining the structure and stability of the 1B1 and

2B2 excited states of MH2 was the relative orientations and occupations of the valence

p atomic orbital of the metal and the H2 1σu orbital. The presence of occupied p

orbitals in the metal ligand also increased the stability of the D∞h excited states.

The ground states of MHn+
2 were found to be the result of the charge-quadrupole

interaction between the metal ion and the H2 molecular subunit. This fact is now

well established in the literature. Trends in terms of equilibrium parameters have

been ascribed largely to the relative ionic radii, and the consequent strength of this

charge-quadrupole interaction.

The equilibrium structures and stabilities of the ground states of

HMHen+ and MHen+
2 were also investigated using UCCSD(T) and IC-MRCI(+Q).

The structures of the ground states of HMHe+ were extremely fluxional with re-

spect to the central bond angle co-ordinate. A substantial variation in M-H and

M-He bond lengths of these species was also observed. The concept of an ‘equi-
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librium structure’ for such species is therefore of limited value. The ground state

PESs of MHe+
2 were also extremely sensitive to the ab initio method by which they

were modelled. Indeed, in the case of LiHe+
2 , NaHe+

2 and KHe+
2 , the symmetry

of the state itself was seen to be determined by the level of theory employed in

this approximation. The respective bonding of the H and He in both HMHe+ and

HMHe2+ appeared to be charge-dependent in the case of Be, Mg and Ca. Despite

the weak bonding characteristically observed for the Group-II hydrohelide and helide

monocations, the corresponding dications each exhibited thermodynamically stable

equilibria, and resided in relatively deep potential wells.

7.3. Molecular Property Surfaces

The development of accurate molecular property surfaces critically depends

on the knowledge of the molecular equilibrium structure. To this end, the results

of the electronic structure calculations of Group-I and II hydrides and helides were

employed in the construction of molecular PESs. In particular, PESs of (1A1)LiH+
2 ,

(1A1)NaH+
2 , (1A1)BeH2+

2 , (1A1)MgH2+
2 , (1A1)BeHe+

2 , (1Σ+
g )BeHe2+

2 , (1Σ+)HBeHe+,

(2Σ+)HBeHe2+, (1Σ+
g )MgHe2+

2 and (2Σ+)HMgHe2+ were developed using correlated

methods. For each species, a number of grid points (distributed about the equi-

librium structure) were selected, at which electronic energies were calculated. The

design of the discrete energy grid affects the accuracy of the final analytical PEF.

In this work, points were selected to be coincident with the numerical quadrature

points that were subsequently used in vibrational and rovibrational calculations.

Analytical PEFs were generated using a least-squares regression algorithm.

Functional forms of molecular DMSs are required for the calculation of vi-

brational and rovibrational radiative properties. In this work, analytical DMFs

(in terms of internal displacement expansion co-ordinates) were generated in an
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analogous manner to that employed for the construction of PEFs. Similarly,

the design of each discrete DMS grid was based on that of the respective dis-

crete PES grid. All dipole moments were calculated using standard electronic

structure programs, and employed the Eckart framework. Analytical DMFs of

(1A1)LiH+
2 , (1A1)NaH+

2 , (1A1)BeH2+
2 , (1A1)MgH2+

2 , (1Σ+
g )BeHe2+

2 , (2Σ+)HBeHe2+,

(1Σ+
g )MgHe2+

2 and (2Σ+)HMgHe2+ were generated in this manner.

7.4. Calculation of Vibrational and Rovibrational States and Spectra

The solution of the ‘pure’ vibrational Schrödinger equation requires the vi-

brational Hamiltonian to be derived in a suitable co-ordinate system that ensures

the absence of singularities in the resultant formulation. The rectilinear normal

co-ordinate vibrational Hamiltonians of von Nagy-Felsobuki and co-workers were

employed in this work. Separate Hamiltonians for non-linear and linear species were

therefore employed. Initially, three 1D vibrational eigenfunctions were calculated

via the solution of the respective 1D vibrational Schrödinger equations. The trial

3D vibrational wave functions were then constructed as CI expansions of these 1D

basis functions. The Hamiltonian matrix was diagonalised using variational algo-

rithms. The HEG quadrature scheme was employed in the calculation of all neces-

sary matrix integrals. In this work, the solution algorithm of von Nagy-Felsobuki

and co-workers has been extended in three ways:

(i) The solution of the 3D vibrational problem for linear triatomic molecules has

been implemented;

(ii) A method by which vibration-averaged structures of triatomic molecules can

be calculated has been developed and implemented;

(iii) The calculation of vibration transition moment integrals, and hence vibra-
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tional radiative properties, for linear triatomic molecules has been imple-

mented.

Vibrational radiative properties and spectra of (1A1)LiH+
2 , (1A1)NaH+

2 ,

(1A1)BeH2+
2 , (1A1)MgH2+

2 , (1Σ+
g )BeHe2+

2 , (2Σ+)HBeHe2+, (1Σ+
g )MgHe2+

2 and

(2Σ+)HMgHe2+ were subsequently calculated.

Rovibrational energies and wave functions of non-linear triatomic molecules

were calculated using a rovibrational ‘super-matrix’. The trial rovibrational wave

functions were constructed as the products of vibrational and rotational basis func-

tions. The rovibrational ‘super-matrix’ was then diagonalised using fully variational

methods. For (1A1)LiH+
2 and (1A1)LiD+

2 , rovibrational transition frequencies for

J ≤ 10 and 0 ≤ K ≤ 3 calculated in this manner were within ca. 0.1-0.2% of ex-

perimental values. Rovibrational transition probabilities were calculated using an

adapted HEG quadrature scheme. Subsequently, ab initio rovibrational spectra of

(1A1)LiH+
2 , (1A1)NaH+

2 , (1A1)BeH2+
2 and (1A1)MgH2+

2 were calculated.

7.5. Future Research

Further research arising from this study may centre on the following.

(i) The Electronic Structure Methodology

The accurate calculation of molecular properties using ab initio electronic

structure methods is a continuing field of research. Ongoing developments in

computer hardware (e.g. parallel architectures, improvements in cpu/memory

capacity), software (e.g. linear scaling methods, sparse-matrix factorisation

methods) and computational methods (e.g. multi-reference CC, CC(n) meth-

ods) will be the main aspects driving the advancement of molecular electronic

structure calculations. The recent extension of the cc basis sets to Group-I
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and II metals will also assist in the accurate calculation of Group-I and II

molecular species.

(ii) The Thermodynamic Stability of Group II Metal Hydride and Helide Dications

More extensive investigation of the dissociative processes of MH2+
2 ,

HMHe2+ and MHe2+
2 (M = Be, Mg, Ca) is recommended. In particular,

investigation of the dissociation channels corresponding to H+ and He+ loss

for these dications would provide definitive evidence regarding the relative

stability of these species and their respective monocations. This data would

also further assist in identifying those molecular candidates most suitable for

further rovibrational analysis (vide infra).

(iii) The Multi-Dimensional Finite-Element Method

The 3D vibrational wave functions employed in this work were constructed as

CI expansions of 1D vibrational basis functions. The latter were calculated

using a FEM algorithm. While this CI approach provides a convenient assign-

ment scheme for the final vibrational wave functions, errors inherent in the

1D approximation are incorporated into the final vibrational eigenspectrum.

The use of a 3D finite-element algorithm would remove these approximations

and so improve the accuracy of the ultimate vibrational eigenspectrum.

(iv) Ab Initio Investigation of Group-I and II Metal Hydrides and Helides

This work centered on the ab initio calculation of electronic and vibrational

structures of Group-I and II metal hydrides and helides. The topologies of

the ground state PESs of several helide ions investigated in this work were

unsuitable for vibrational calculations using a rectilinear normal co-ordinate

Hamiltonian. These systems would however be amenable to a scattering coor-
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dinate analysis. The calculation of rovibrational spectra of more electron-dense

dihydride ions, such as KH+
2 and CaH2+

2 , may also be timely. The rotational

solution algorithm of von Nagy-Felsobuki and co-workers is at present lim-

ited to non-linear triatomic molecules. Extension of this code to the linear

case would make the calculation of rovibrational spectra of such species as

(1Σ+
g )HBeHe+, (2Σ+)HBeHe2+ and (2Σ+)HMgHe+ feasible.

(v) Ab Initio Spectra of Large Molecular Systems

All vibrational calculations presented in this work were performed using

an Eckart-Watson Hamiltonian in conjunction with rectilinear normal co-

ordinates. It was observed that this approach delivers accurate vibrational and

rovibrational properties for triatomic molecules under two provisos. Firstly,

it is required that the PES exhibits a single, well-defined, deep potential min-

imum. The molecule must also undergo small amplitude vibrations around

some well-defined equilibrium structure. Further development of the solution

algorithm of von Nagy-Felsobuki and co-workers (for example to tetra-atomic

molecules) would facilitate the calculation of more complex molecular spectra.
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