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1. Abstract 

Fluoro-deoxyglucose (FDG) labeled with fluorine-18 is commonly used in 

positron emission tomography (PET) imaging. PET imaging is a powerful tool used 

primarily in the diagnosis and management of cancer. The growth of PET has been 

limited partly by the difficulties associated in producing fluorine-18. This project 

involves a theoretical investigation of a novel method of producing fluorine-18 

utilising proton generation via the 3He(d,p)4He nuclear reaction. 

Currently the most common method of producing fluorine-18 for PET is 

with a medical cyclotron that accelerates protons to mega-voltage energies. These 

protons are then directed onto a target rich in oxygen-18. This initiates the 
18O(p,n)18F reaction to produce fluorine-18. The 3He(d,p)4He reaction, utilized for 

the present study, has a Q-value of 18.35 MeV and this results in protons being 

produced at energies similar to that produced in a medical cyclotron. This reaction 

was investigated as an alternative proton source for the 18O(p,n)18F  reaction. The 

expected advantage of this method over the cyclotron is that particles need only be 

accelerated to keV energies rather than the tens of MeV that a medical cyclotron 

accelerates protons to. This is expected to significantly reduce the cost and 

associated size of the system.  

Two systems based on the 3He(d,p)4He reaction were designed and 

calculations were performed to determine the respective yields of fluorine-18. The 

first system involved separate targets for the 3He(d,p)4He  and 18O(p,n)18F  reactions. 

Helium-3 ions are initially fired onto a deuterated plastic target. A heavy-water 

(H2O
18) target is placed immediately behind this plastic target to absorb mega-

voltage protons produced by the reaction 3He(d,p)4He  in the plastic. The second 

system involved a single, super heavy water (D2O
18) target onto which helium-3 is 

fired so that both the 3He(d,p)4He and 18O(p,n)18F reactions can occur concurrently 

in the one target. 

The input parameters of energy and beam current for the helium-3 beam 

required for the 3He(d,p)4He  reaction were selected on the basis of the performance 
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of currently available ion sources and in particular the saddle-field ion source. 

Practical considerations such as radiation safety, target degradation and lifetime and 

ultra high vacuum (UHV) issues were also investigated to further determine the 

feasibility of the two systems.  

With the beam current and energy at the extreme limits of the saddle-field 

ion source it was calculated that insufficient fluorine-18 could be produced daily to 

supply a PET facility with FDG. It was also found that the high helium-3 beam 

currents and energy required to produce significant amounts of fluorine-18 resulted 

in prohibitive temperature rises in the targets that would likely result in target 

vaporization.  


