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Preliminaries

This chapter defines most of our notation, and introduces general assumptions
and preliminary results required in the sequel. We present a key formula concern-
ing the Laplace transform of a sampled signal that will play an important role in
the rest of this thesis. This formula yields the well-known infinite summation ex-
pression showing that the response of the discretized plant at a given frequency
depends upon that of the analog plant at infinitely many frequencies. We finish
the chapter reviewing the basic conditions for closed-loop stability of sampled-
data systems; i.e., a non-pathological sampling assumption, and the closed-loop
stability of the discretized system.

2.1 Analog and Discrete Signals

2.1.1 Signal Spaces

We start introducing some standard signal spaces. We denote the set of complex
numbers by C. The open and closed right halves of C are denoted by C+ and C+

respectively, and sometimes we shall use the acronyms ORHP and CRHP. Corre-
spondingly, we denote by C− and C− the open and closed left halves of C, also
referred as OLHP and CLHP, respectively. We denote the set of real numbers by
R, and by R+

0 we represent the set of non-negative real numbers, i.e., the segment
[0,∞). The open and closed unit disks in C are denoted by D , {z : |z| < 1} and
D , {z : |z| ≤ 1} respectively; we denote their complements by DC and DC

.
As usual, Ln

p(R+
0 ) denotes the space of Lebesgue measurable functions f from

R+
0 to Rn that satisfy

‖f‖Lp ,

(∫∞
0

|f(t)|p dt

)1/p

< ∞ for 1 ≤ p < ∞,

and
‖f‖L∞ , ess sup

t∈R+
0

|f(t)| < ∞,

where | · | denotes the Euclidean norm in Rn. We denote by Ln
pe(R+

0 ) the extended
space of Ln

p(R+
0 ), i.e., the space of functions whose truncations to intervals [0, a)

are in Ln
p(R+

0 ) for any finite real number a.
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In a similar way, Ln
2 denotes the space of functions F(jω) defined on jR with

values over Cn and satisfying

‖F‖L2
,

(∫∞
−∞ |F(jω)|2 dω

)1/2

< ∞.

Here the Euclidean norm | · | is taken on Cn, i.e., |F| =
√

F∗F, where F∗ denotes the
complex conjugate transpose of F. In general, we shall denote the transpose of a
matrix M by MT, and by M its conjugate.

In discrete-time we represent by `n
p the space of sequences u , {uk}∞k=−∞

valued in Cn and satisfying

‖u‖`p ,

( ∞∑
k=−∞ |uk|p

)1/p

< ∞ for 1 ≤ p < ∞,

and
‖u‖`∞ , sup

k

|uk| < ∞.

We shall dispense with the superscript n in the above notations whenever the
dimension of the spaces is clear from the context. We shall also omit the subindex
that indicates the spaces in the notation of norms ‖ · ‖ when they are clear from
the context.

We shall represent linear dynamic systems as input-output operators acting
on Lp spaces. If M is a linear operator defined by

M : Lp(R+
0 ) → Lp(R+

0 )

: u 7→ y = Mu,

the Lp-induced norm of the operator M is defined as

‖M‖p , sup
{‖My‖Lp

‖u‖Lp

: for u in Lp(R+
0 ), and ‖u‖Lp 6= 0

}
.

A quick-reference list of the above notations may be found on page 156.

2.1.2 Samplers and Holds

As discussed in Chapter 1, the implementation of a controller for a continuous-
time system by means of a digital device, such as a computer, implies the process
of sampling and reconstruction of analog signals. By sampling, an analog signal
is converted into a sequence of numbers that can then be digitally manipulated.
The hold device performs the inverse operation, translating the output of the
digital controller into a continuous-time signal. We shall assume throughout that
nonlinearities associated with the process of discretization, such as finite memory
word-length, quantization, etc., have no significant effect on the sampled-data
system.
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We assume also that sampling is regular, i.e., if T is the sampling period, sam-
pling is performed at instants t = kT , with k = 0,±1,±2, . . .. Associated with T ,
we define the sampling frequency ωs = 2π/T . By ΩN we denote the Nyquist range
of frequencies [−ωs/2, ωs/2].

We consider an idealized model of the sampler. If y is an analog signal defined
on the time set R+

0 with values over Cn, we define the sampling operator with
sampling period T , denoted by ST , as

ST {y} = {yk}∞k=−∞, (2.1)

where {yk}∞k=−∞ is the sequence representing the sampled signal, and yk = y(kT+)1.
Thus, the sampler is a linear, periodically time-varying operator. Note that the
sampler operator may be unbounded in many standard signal spaces, as for ex-
ample from Lp(R+

0 ) to `p when 1 ≤ p < ∞ Chen and Francis [1991]. Therefore,
we need to specify with some care the class of signals that are “sampleable”.

A class of functions that guarantee that the sampling operator is well-defined
is the class of functions of bounded variation (BV). These functions will be required
to define the hold devices we shall deal with, and to assure the validity of a sam-
pling formula that will be the starting point of our approach to sampled-data
systems. The following definition is taken from Riesz and Sz.-Nagy [1990].

Definition 2.1.1 (Function of Bounded Variation)
A function f defined over a real interval (a, b) is of BV if the following sum is
bounded,

n∑
k=1

|f(tk) − f(tk−1)| < ∞, (2.2)

for every partition of the interval (a, b) into subintervals (tk, tk−1), where k =
1, 2, . . . , n, and t0 = a, tn = b. The least upper bound of the sum in (2.2) is called
the total variation of f in the interval (a, b). �

A function of BV is not necessarily continuous, but it is differentiable almost
everywhere and its derivative is a function in L1(a, b) Rudin [1987]. Moreover,
the limits f(t+) and f(t−) are well defined for every t in (a, b), which means that
f can have discontinuities of at most the finite-jump type.

The hold device that we shall consider is a GSHF a la Kabamba [1987], defined
by the operation

u(t) = h(t − kT)uk, for kT ≤ t < (k + 1)T, (2.3)

where {uk}∞k=−∞ is a discrete sequence, and h is a bounded function with support
on the interval [0, T). We consider the case in which the sequence {uk}∞k=−∞ takes
values in Rp, and so h takes values in Rp×p. We shall assume throughout that h

satisfies the following technical conditions.
1Here, y(kT±) denotes the right (left) limit of y(·) at t = kT , i.e.,

y(kT±) , lim
ε↓0

f(kT ± ε), for ε > 0,

whenever the limit exists.
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Assumption 1
The hold function h is a function of BV on [0, T). ◦

As discussed in Middleton and Freudenberg [1995], we can associate a fre-
quency response function to this hold device, defined by

H(s) =

∫T

0

e−st h(t)dt. (2.4)

Since h is supported on a finite interval, it follows that H is an entire function,
i.e., analytic at every s in C. For example, in the case of the ZOH we have the
well-known response H(s) = (1− e−sT )/s. Frequency responses of other types of
holds will be studied in detail in Chapter 3.

We shall be particularly interested in the zeros of the response function H.
These have transmission blocking properties, and may affect the stabilizability of
the discretized system Middleton and Freudenberg [1995]. Furthermore, as we
shall see in Chapter 4, they are an important factor in analysis of the achievable
performance of the sampled-data system.

Definition 2.1.2 (Zeros of the Hold Middleton and Freudenberg [1995])
Consider a response function defined by (2.4) and suppose that det(H) is not
identically zero. Then the zeros of H are those values s in C for which H(s) has
less than full rank. �

bb - -H
uk u

Figure 2.1: Response of a GSHF.

The frequency response of the hold defined in (2.4) is useful to compute the
Laplace transform of the output of the hold device (see Figure 2.1). As described
in Middleton and Freudenberg [1995], the i-th column of the frequency response
function (2.4) represents the Laplace transform of the output of the hold to an
unitary pulse in the ith input. More generally, if Ud is the Z-transform of the
input sequence {uk}∞k=−∞, then we have the following Åström and Wittenmark
[1990].

Lemma 2.1.1
Consider the hold defined by (2.3) and its associated frequency response (2.4).
Then

U(s) = H(s)Ud(esT ).

◦
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GSHFs have been proposed as a more versatile alternative to the traditional
ZOH [see for example Kabamba, 1987], and indeed, recent studies have shown
that if a solution to the sampled-data H∞ control problem exists, then it may
be realized by a LTI discrete controller and a GSHF Sun et al. [1993]. Neverthe-
less, these devices certainly are much more complex to be implemented and —
as some authors have suggested and we shall expand on — they may bring in
serious intersample difficulties.

2.1.3 A Key Sampling Formula

Our approach to sampled-data systems is in the frequency-domain. We now
present a result that is essential to the understanding of the frequency-domain
properties of sampled-data systems and will play a central role throughout the
following chapters. Unfortunately, despite the fact that the result is well-known
and appears in many textbooks [e.g., Åström and Wittenmark, 1990, Franklin
et al., 1990, Kuo, 1992, Ogata, 1987], it is difficult to find in the literature a proof
that is rigorous and self-contained, and which clearly delineates the classes of
signals to which it is applicable. Indeed, this fact has stimulated discussion in the
past [cf. Pierre and Kolb, 1964, Carroll and W.L. McDaniel, 1966, Phillips et al.,
1966, 1968].

Let g be a function of BV in every finite interval of R+
0 , and let G be its Laplace

transform,

G(s) =

∫∞
0

e−st g(t)dt.

If σG is the abscissa of absolute — and uniform — convergence of G, we denote
by DG the strip

DG , {s = x + jy, with x > σG and y in ΩN}.

Given a sequence {gk}∞k=0, we introduce the Z-transform, Gd = Z{{gk}}, defined
by

Gd(z) =

∞∑
k=0

gkz−k. (2.5)

For a continuous-time signal g defined on R+
0 , and g(t) = 0 for t < 0, we define

the Z-transform as the transformation of its sampled version,

Gd(z) = Z{ST {g}}

=

∞∑
k=0

g(kT+) z−k.

Then we have the following lemma.

Lemma 2.1.2
If g is a function of BV in every finite interval of R+

0 , then for every s in DG

Gd(esT ) =
g(0+)

2
+

∞∑
k=1

g(kT+) − g(kT−)

2
e−skT +

1

T

∞∑
n=−∞ G(s + jnωs). (2.6)
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Proof: See Appendix A, §A.1. �

Lemma 2.1.2 shows the well-known fact that the frequency response of a sam-
pled signal is built upon the superposition of infinitely many copies of the orig-
inal frequency response of the signal. If the signal has finite discontinuities at
the sampling instants, then correction terms of half of the jumps at the corre-
sponding sampling instants have to be included — cf. the property of the Laplace
and Fourier inverse transforms which converge to the average of the limits of the
function from left and right at a jump discontinuity. In particular, (2.6) is closely
related to an important identity in Fourier analysis known as the Poisson Summa-
tion Formula2. See further remarks in Appendix A, §A.1.

Moreover, Lemma 2.1.2 clearly de-

?
�c b b c- -��

u y
F

yd

ST

Figure 2.2: Filtered sampling.

lineates two important classes of sig-
nals and systems to which the formula
is applicable, as we shall see in the fol-
lowing two corollaries. The first one
is concerned with sampling the response
of a strictly proper finite dimensional
(FD), LTI system (see Figure 2.2). This

represents a common practice in digital control engineering, i.e., to precede the
sampler by an anti-aliasing filter, and is also required for the the sampling opera-
tion to be well-defined [e.g., Chen and Francis, 1991].

Corollary 2.1.3
Let u be a signal in L1e(R+

0 ), and let F be a strictly proper rational function. Then
for every s in DFU

(FU)d(esT ) =
1

T

∞∑
n=−∞ F(s + jnωs)U(s + jnωs).

Proof: Immediate from Lemma 2.1.2 by noting that the response of a FDLTI
strictly proper system to an input in L1e(R+

0 ) is continuous [e.g., Desoer and
Vidyasagar, 1975], so y(t+) = y(t−) for every t. In particular, since y(t) = 0

for t < 0, this also implies that y(0) = 0, and the result then follows. �

The second corollary deals with sampling the pulse response of a hold func-
tion followed by a FDLTI strictly proper system, and displays the relation be-
tween the discrete equivalent of this cascade and the corresponding continuous-
time Laplace transforms (see Figure 2.3).

Corollary 2.1.4
Let H be a hold frequency-response function as described in Subsection 2.1.2 and
P a strictly proper rational function. Let (PH)d denote the discrete equivalent of
the cascade connection PH defined as

(PH)d(z) = Z{ST {L−1{P(s)H(s)}}}.

2This is the following Rudin [1987]. If G is the Fourier transform of g, then∞∑
k=−∞ g(kα) = β

∞∑
k=−∞ G(jkβ),

where α > 0, β > 0, and αβ = 2π. Although named after S.D. Poisson, this formula seems to have
been first discovered by A.L. Cauchy in 1817 [Grattan-Guinness, 1990, p. 793].
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Then for every s in DP,

(PH)d(esT ) =
1

T

∞∑
n=−∞ P(s + jnωs)H(s + jnωs). (2.7)

Proof: Since the pulse response of H is of BV by assumption, we then have that
the output of P is continuous Desoer and Vidyasagar [1975]. The result then fol-
lows from Lemma 2.1.2. �
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Figure 2.3: Discrete equivalent of the cascade of a hold and a FDLTI system.

Note that the domains of validity of these results can be further extended by
analyticity of Laplace transforms.

Equation (2.7) appears in many digital control textbooks [e.g., Åström and
Wittenmark, 1990, Franklin et al., 1990], and it has been the starting point of a
number of recent frequency-domain approaches to sampled-data systems Good-
win and Salgado [1994], Araki and Ito [1993], Araki et al. [1993], Freudenberg
et al. [1995]. Some authors refer to (2.7) as the impulse modulation formula [e.g.,
Araki and Ito, 1993, Araki et al., 1993].

2.2 Hybrid Systems

2.2.1 Basic Feedback Configuration

The basic feedback system of study is shown in Figure 2.4. The analog plant is
a linear time-invariant system represented by the transfer matrix P, and the con-
troller is given by the discrete transfer matrix Cd. The digital controller interfaces
with the analog parts of the system by a sampler ST and a hold function H as
described in Subsection 2.1.2. The transfer matrix F represents the anti-aliasing
filter.

Signals in Figure 2.4 are as follows,

r reference input,
y plant output,
d output disturbance,
n sensor noise,

uk discrete control sequence,
u analog control signal,
v analog output of the filter,
vk sampled output of the filter.
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Figure 2.4: Sampled-data control system.

Analog signals are given as functions defined over t in R+
0 , while discrete

signals are sequences defined at entire multiples k of the sampling time T . We
shall assume that the input signals satisfy the following condition.

Assumption 2
The reference signal r, disturbance d, and noise n are functions in L1e(R+

0 ). ◦

It is straightforward to verify that this assumption is satisfied by signals that
are steps, ramps, sinusoids or exponentials, and signals in Lp(R+

0 ) for 1 ≤ p ≤ ∞
Chen and Francis [1991]. Signals that contain impulses are excluded.

We shall assume throughout that the following conditions are satisfied by the
plant, filter, and compensator.

Assumption 3
The plant, filter, and compensator are full column rank rational transfer matrices,
each free of unstable hidden modes, and they satisfy the following additional
hypotheses,

(i) P(s) = P0(s) e−sτ, where P0 is proper and τ ≥ 0,

(ii) F is strictly proper, stable and minimum-phase, and

(iii) Cd is proper. ◦

The assumption that the filter F is strictly proper is standard and guaran-
tees that the sampling operation is well-defined [e.g., Chen and Francis, 1991,
Sivashankar and Khargonekar, 1993]. The assumptions that F has no poles or
zeros in C+ may be removed, and are only invoked to facilitate discussion. In
practice anti-aliasing filters will satisfy these assumptions.

We define the discretized plant as the discrete transfer function of the series
connection of hold, plant, filter, and sampler,

(FPH)d(z) , Z{ST {L−1{F(s)P(s)H(s)}}}. (2.8)
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It follows from Assumptions 1 and 3, and Corollary 2.1.4 that the discretized
plant satisfies the well-known relation

(FPH)d(esT ) =
1

T

∞∑
k=−∞ Fk(s)Pk(s)Hk(s), (2.9)

where the notation Fk(s) represents F(s + jkωs), i.e., the shift of F(·) by an entire
number of times the sampling frequency in the direction of the imaginary axis.
We shall use this notation throughout this thesis.

Suppose now that in the loop of Figure 2.4 we assume r = 0 and consider a
disturbance x at the input of the plant. Introduce a ficticious hold at x, and shift
the filter and sampler to the inputs at the summation point of n, as shown in
Figure 2.5. From this diagram we obtain the discrete loop of Figure 2.6.

�
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Figure 2.5: Sampled-data system with input disturbances.

We now define the discrete sensitivity and discrete complementary sensitivity
functions. Since the setup is multiple-input multiple output, there are two pairs of
functions corresponding to the scalar ones, depending where the loop is opened
Freudenberg and Looze [1988]. We shall require only the following input discrete
sensitivity function,

Sd(z) , [I + Cd(z)(FPH)d(z))]
−1

, (2.10)

and output discrete complementary sensitivity function,

Td(z) , (FPH)d(z)Sd(z)Cd(z). (2.11)

These functions map signals in the discrete loop of Figure 2.6 as

Ũd(z) = Sd(z)Xd(z) and Yd(z) = Td(z)Nd(z),

where Ũd, Xd, Yd, and Nd correspond to the Z-transforms of the signals ũx, xk, yk,
and nk, respectively.
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Figure 2.6: Discrete sensitivity functions.

2.2.2 Non-pathological Sampling and Internal Stability

As with the case of a ZOH, closed-loop stability is guaranteed by the assumptions
that sampling is non-pathological and that the discretized system is closed-loop
stable. The next result is a generalization of the well-known result of Kalman
et al. [1963] to the case of GSHFs.

Lemma 2.2.1 (Non-pathological Sampling, Middleton and Freudenberg [1995])
Suppose that P and F are as defined in Subsection 2.2.1 and assume further that

(i) if λi and λk are CRHP poles of P, then

λi 6= λk + jnωs, n = ±1,±2, · · · (2.12)

(ii) if λi is a CRHP pole of P, then H(s) has no zeros at s = λi.

Then the discretized plant (2.8) is free of unstable hidden modes. ◦

In particular, Lemma 2.2.1 says that since the response of a GSHF may have
zeros in C+, it may be necessary to require that none of these coincides with an
unstable pole of the analog plant (note that this is necessary in the SISO case). Un-
der the non-pathological sampling hypothesis, it is straightforward to extend the
exponential and L2 input-output stability results of Francis and Georgiou [1988]
and Chen and Francis [1991] to the case of GSHF.

Lemma 2.2.2
Suppose that P, F, Cd, and H are as defined in Subsections 2.1.2 and 2.2.1, that
the nonpathological sampling conditions (i) - (ii) are satisfied, that the product
(FPH)d Cd has no pole-zero cancelations in DC, and that all poles of Sd lie in
D. Then the feedback system in Figure 2.4 is exponentially stable and L2 input-
output stable.

Proof: The proof may be obtained by simple modification of the proofs of Fran-
cis and Georgiou [1988, Theorem 4] and Chen and Francis [1991, Theorem 6]. �

Lemma 2.2.2 establishes the conditions for the nominal stability of the sampled-
data system of Figure 2.4, and will be required in most of the remaining chapters.
In particular, this result guarantees that the operators mapping disturbances and
noise to the output are bounded on L2. This will be the starting point for the
analysis developed in Chapter 5.
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2.3 Summary

This chapter has introduced the main notation, definitions, and preliminary re-
sults that will be required in the rest of this thesis.


