
5
Sensitivity Operators on L2

This chapter studies the computation of L2-induced norms of sampled-data sen-
sitivity operators. The L2-induced norm is the operator norm when inputs and
outputs belong to the space of square-integrable signals L2, and it is closely re-
lated to important control problems. Indeed, for LTI systems, the L2-induced
norm of a system’s operator is the H∞-norm of its transfer matrix, which repre-
sents an extremely useful measure in many applications of modern control theory
[e.g., Francis, 1991].

Concepts and methods associated with LTI H∞ control bear no immediate
equivalent for sampled-data systems, since in this case the operators are time-
varying and no transfer functions are associated with them. In view of this, con-
siderable research during the last years has focused on the study of L2-norms and
H∞ related problems for sampled-data systems.

Early works considering L2-norms for hybrid systems studied restricted classes
of sampled-data systems Thompson et al. [1983, 1986], Chen and Francis [1990],
Leung et al. [1991]. Conic sectors were applied by Thompson et al. [1983] and
Thompson et al. [1986] to obtain upper bounds for the L2-norm of cascade con-
nections involving a sampler and a ZOH. Exact expressions for these open-loop
systems appeared later on in Chen and Francis [1990]. A formula for the L2-norm
of hybrid operators in a general feedback configuration was derived by Leung
et al. [1991] for the case of band-limited signals.

More recent works introduced the use of lifting techniques for the H∞ analy-
sis and synthesis of sampled-data systems Bamieh and Pearson [1992], Toivonen
[1992], Yamamoto [1990, 1993]. As mentioned in Chapter 1, the lifting technique
transforms the sampled-data system into a discrete time-invariant equivalent sys-
tem acting over infinite-dimensional signals. Time-invariance comes as a con-
sequence of periodicity, but in contrast to the classical pure discrete approach,
intersample behavior is built in the model, which is reflected in the infinite di-
mensionality of the transformed signals. Sampled-data H∞-norm computation
and optimization Bamieh and Pearson [1992], Toivonen [1992], Yamamoto [1993],
robust stabilization to LTI perturbations Dullerud and Glover [1993], and track-
ing Yamamoto [1994] are some recent results obtained via lifting.

Other time-domain approaches include the formulation of an associated Hamil-
tonian descriptor system Kabamba and Hara [1993], and the solution of continu-
ous and discrete Riccati equations derived using the theory of linear systems with
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jumps Sivashankar and Khargonekar [1994], Sun et al. [1993], Tadmor [1991].
An interesting and novel application derived from the computation of L2-

norms is the extension of the LTI concept of frequency-gain to sampled-data sys-
tems Araki and Ito [1993], Araki et al. [1993], Yamamoto and Khargonekar [1996],
Hagiwara et al. [1995], Yamamoto and Araki [1994]. The so-called frequency-gain
of a sampled-data system is equivalent to the magnitude of a Bode plot of certain
discrete transfer function associated with the hybrid system. In Yamamoto and
Khargonekar [1996] lifting techniques were used to compute the frequency-gain
of a sampled-data system. In Hagiwara et al. [1995] the same issue was addressed
using a frequency-domain framework that uses the notion of FR-operators Araki
and Ito [1993], Araki et al. [1993].

Our approach in this chapter evolves from the frequency-domain formulation
introduced in Chapter 4. In §5.1 we expound a frequency-domain lifting framework,
which further exposes the harmonic structure of the sampled-data system, yield-
ing a compact description of the operators that govern its behavior. This frame-
work is equivalent to that of FR-operators introduced by Araki and Ito [1993]
and Araki et al. [1993]. Yet, our formulation builds up on spaces of Fourier trans-
forms of the original signals, while the FR-operators are defined on special spaces
of time-domain signals called SD-sinusoids. The advantages of both methods
over time-domain alternatives are similar, and arise from the simplicity of the
frequency-domain description.

In §5.2 we exploit the benefits of the frequency-domain lifting to compute the
L2-induced norms and frequency-gains of sampled-data sensitivity and comple-
mentary sensitivity operators. Note that the complementary sensitivity opera-
tor is a finite-rank operator — and therefore compact — which implies that its
norm can be computed relatively easily. On the other hand, the sensitivity oper-
ator is non-compact, which imposes a greater difficulty in the computation of
its norm Yamamoto and Khargonekar [1996]. We show that either norm and
the frequency-gains can be computed in a straightforward way from finite di-
mensional discrete transfer functions. The expressions derived are easily imple-
mented in numerically reliable algorithms, as we show in §5.2.2.

5.1 A Frequency-domain Lifting

Many important concepts and methods for LTI systems have no immediate ex-
tension to sampled-data systems for the simple fact that sampled-data systems
are time-varying. Nevertheless, they belong to a particular class of time-varying
systems that have a lot of structure, namely, they can be represented by periodic
operators. Most of recent advances in sampled-data control theory have been
based on mathematical frameworks that profit from this periodic characteristic.
An example of this is the time-domain lifting technique of Bamieh and Pearson
[1992] and Yamamoto 1990, 1994. By lifting, a signal valued in a finite dimen-
sional space is bijectively mapped into a signal valued in infinite dimensional
spaces. The great attractiveness of the transformation lies on the fact that in the
new spaces the operators are represented as LTI operators, which allow a simpler
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treatment of many important problems.
In this section we describe a similar mathematical formalism that we call the

frequency-domain lifting1. The lifting of Bamieh and Pearson [1992] and Yamamoto
[1994] is done over signals in the time-domain, which leads to state-space repre-
sentations of the sampled-data system. The main difference in our approach is
that we lift signals directly in frequency-domain, which — as we shall see in the
remaining sections of this chapter — may allow a simpler and more intuitive
treatment2 of problems that are naturally formulated in input-output scenarios.

Consider a signal y in the space L2(0,∞). Then, its Fourier transform Y(jω)
is known to belong to L2(−∞,∞). Introduce the following sequence of functions
constructed from Y(jω),

Yk(jω) = Y(j(ω + kωs)), (5.1)

for ω in the Nyquist range ΩN and k integer. We arrange this sequence in an
infinite vector, and we denote it by

y(ω) ,



...
Y1(jω)
Y0(jω)
Y−1(jω)

...

 . (5.2)

We say that the infinite vector y(ω) is the — frequency-domain — lifting of the
signal Y(jω). Figure 5.1 illustrates the action of the lifting operation, which chops
up the function Y(jω) defined on (−∞,∞) into a sequence of functions Yk(jω),
k = 0,±1,±2, . . . defined on ΩN.

F

−2ωN−3ωN −ωN ωN

|Y(jω)|

ω

2ωN 3ωN ωN−ωN

|Y0(jω)|

2ωNωN

|Y1(jω)|

3ωN2ωN

|Y2(jω)|

ω ω ω

· · · · · ·

Figure 5.1: Action of the frequency-domain lifting operation.

Thus, y(ω) can be seen as a function defined a.e.3 over ΩN taking values in
`2. Moreover, the space of such functions is a Hilbert space under the norm

‖y‖ ,

(∫
ΩN

‖y(ω)‖2
`2

dω

)1/2

, (5.3)

1The concept of frequency-domain lifting is not new; it was developed in the signal processing
literature for linear discrete-time periodic systems [e.g., Shenoy et al., 1994].

2Simpler and more intuitive in the sense explained in Chapter 1, §1.2 (i).
3With respect to the standard Lebesgue measure.
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and inner product

〈y, x〉 ,
∫
ΩN

〈y(ω), x(ω)〉`2
dω . (5.4)

We denote this space by L2(ΩN; `2) [cf. Balakrishnan, 1981]. Since the signals in
L2(ΩN; `2) are basically rearrangements of signals in L2(−∞,∞), it is not difficult
to see that both spaces are isomorphic with preservation of norm, as the following
lemma asserts.

Lemma 5.1.1
The space L2(ΩN; `2) is isometrically isomorphic to L2(−∞,∞).

Proof: See Appendix A, §A.4. �

Lemma 5.1.1 tells us that there is a bijective relation between elements in
L2(−∞,∞) and elements in L2(ΩN; `2), and moreover, they have the same mea-
sure, i.e.,

‖y‖L2(ΩN;`2) = ‖Y‖L2(−∞,∞).

We formalize this relationship by defining the frequency-domain lifting operator,
F, mapping

F : L2(−∞,∞) → L2(ΩN; `2)

Y(jω) 7→ y(ω) .

Evidently from Lemma 5.1.1, F is invertible, and moreover, ‖F‖ = 1 = ‖F−1‖. In
particular, if M is a bounded linear operator from L2(−∞,∞) to L2(−∞,∞), then
the lifted operator M = F M F−1 is a bounded linear operator from L2(ΩN; `2) to
L2(ΩN; `2) with the same operator norm. A key observation at this point is that it
will be in general easier and numerically more tractable to compute ‖M‖ rather
than ‖M‖.

The representation of sampled-data operators by their liftings also reveals
structure with interesting similarities to ordinary LTI operators and their cor-
responding transfer matrices. Indeed, it turns out that the lifted operator M is
a multiplication operator in `2 sense, so it has an associated representation as an
infinite-dimensional “transfer matrix”. In other words, we can write (My)(ω) =
Mωy(ω), where Mω is a bounded linear operator in `2 at (almost) every fixed ω

in ΩN. An important consequence of this fact is that the L2-induced norm of the
operator can be computed as [cf. Yamamoto and Khargonekar, 1996]

‖M‖ = sup
ω∈ΩN

‖Mω‖`2
, (5.5)

where ‖Mω‖`2
denotes the induced `2-norm of the operator Mω. Notice the

similarity of (5.5) to the familiar expression of the L2-induced norm of an operator
in a LTI system, i.e., the H∞-norm of its associated transfer matrix.

In particular, we shall be concerned with compact and approximable operators
on these spaces, so we finish the section with a brief discussion of these concepts.
This follows Willis [1994].
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Recall that a set K in a metric space is compact if each sequence in K has a
convergent subsequence. Equivalently, for any collection of open sets {Vk} that
covers K, then K is compact if and only if {Vk} has a finite subcollection that covers
K. To say that a set is compact is to say that it is “small” in some sense. The Heine-
Borel Theorem [e.g., Rudin, 1987] asserts that a set in a finite-dimensional space
is compact if and only if it is closed and bounded.

Definition 5.1.1 (Compact Operator)
Let X and Y be metric spaces, and let BX denote the unit ball in X. Then the
operator T : X → Y is said to be compact if the closure of T(BX) is a compact
set. �

Compact operators are very close to finite-rank operators, i.e., operators whose
range is finite-dimensional. Since T(BX) is bounded if T is a bounded operator,
it follows from the Heine-Borel Theorem that each finite-rank operator is com-
pact. In a sense, a “converse” of this is also true in the spaces we are interested
in. Namely, a compact operator on these spaces is approximable by sequences
of finite-rank operators; i.e., if {En} is a sequence of finite-rank operators, then
limn→∞ ‖En − T‖ = 0, where ‖ · ‖ denotes the induced operator norm.

5.2 L2-induced Norms and Frequency-gains

5.2.1 Sensitivity Operators

We study the sensitivity and complementary sensitivity operators for the sampled-
data system of Figure 2.4. As for LTI systems, we define these operators as the
mappings relating output disturbance d and noise n to the output y, and denote
them respectively by

S : L2 → L2

Sd 7→ y
and T : L2 → L2

Tn 7→ y.

Under the assumptions of closed-loop L2-stability, S and T are bounded operators
on L2.

The actions of the sensitivity and complementary sensitivity operators are re-
spectively defined in frequency-domain by the steady-state responses (4.1) and
(4.2) introduced in Chapter 4, §4.1. From the definition of frequency-domain lift-
ing in §5.1, it is straightforward to alternatively write (4.1) and (4.2) evaluated at
s = jω in a very compact form as

y = Sωd and y = −Tωn , (5.6)

where Tω and Sω are the following infinite-dimensional transfer matrices de-
fined on ΩN

Tω =


. . .

...
...

· · · GkFk GkFk−1 · · ·
· · · Gk−1Fk Gk−1Fk−1 · · ·

...
...

. . .

 , (5.7)
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Sω =


. . .

...
...

· · · 1 − GkFk −GkFk−1 · · ·
· · · −Gk−1Fk 1 − Gk−1Fk−1 · · ·

...
...

. . .

 , (5.8)

where, to ease notation, we have omitted the explicit dependence of the variable
jω in the entries of the matrices. Keep also in mind the notation Fk(jω) repre-
senting F(j(ω + kωs)), which will be profusely used in the sequel. Here F(jω) is
the transfer matrix of the anti-aliasing filter, and the function G(jω) denotes the
product

G(jω) ,
1

T
P(jω)H(jω)Sd(ejωT )Cd(ejωT ) . (5.9)

Associated with F(jω) and G(jω) we define the following discretized transfer
matrices that will be required to formulate our results,

Gd(ejωT ) ,
∞∑

k=−∞ G∗
k(jω)Gk(jω), (5.10)

and

Fd(ejωT ) ,
∞∑

k=−∞ Fk(jω)F∗k(jω), (5.11)

where F∗ denotes the conjugated transpose of F. Note that if y, n, and d are valued
in Rm, then Gd(ejωT ) and Fd(ejωT ) are m×m discrete transfer matrices.

Operators Sω and Tω are infinite-dimensional transfer matrix representations
of the hybrid sensitivity and complementary sensitivity operators S and T, and
verify the complementarity relation Sω + Tω = I [cf. Araki and Ito, 1993, Araki
et al., 1993, Yamamoto and Araki, 1994]. From (5.5) their induced norms are given
by

‖T‖ = sup
ω∈ΩN

‖Tω‖`2
and ‖S‖ = sup

ω∈ΩN

‖Sω‖`2
, (5.12)

and so, they can be evaluated by computing the functions ‖Tω‖`2
and ‖Sω‖`2

—
the so-called frequency-gains of the hybrid operators [e.g., Hagiwara et al., 1995]
— and then searching for suprema over the finite interval ΩN.

An important fact about the complementary sensitivity operator T is that it
has finite rank (and therefore is compact, as discussed in §5.1). We show this in
the following lemma.

Lemma 5.2.1
If the inputs to the system in Figure 2.4 are valued in Rm, then T has at most rank
m.

Proof: Partition F(jω) by rows, and G(jω) by columns, i.e.,

F(jω) =


f1(jω)
f2(jω)

...
fm(jω)

 , and G(jω) =
[
g1(jω) g2(jω) · · · gm(jω)

]
.
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Introduce the liftings for F∗(jω) and G(jω),

f(ω) ,



...
F∗1(jω)
F∗0(jω)
F∗−1(jω)

...

 , and g(ω) ,



...
G1(jω)
G0(jω)
G−1(jω)

...

 . (5.13)

Using the partitions above, we can alternatively write

f(ω) =
[
f1(ω) f2(ω) . . . fm(ω)

]
,

and
g(ω) =

[
g1(ω) g2(ω) . . . gm(ω)

]
,

where each column fi = Ff∗i in f, and gi = Fgi in g is certainly a vector in
L2(ΩN; `2), since F and G are both stable and strictly proper from our assump-
tions in Chapter 2. Using this notation, the action of Tω can be alternatively
written as

Tωn =

m∑
i=1

gi〈n, fi〉`2
, (5.14)

where, 〈n, fi〉`2
is a scalar-valued function defined a.e. on ΩN

4. Equation (5.14)
shows that Tω is the sum of m rank-one operators on L2(ΩN; `2). Hence it has at
most rank m, and so does T. �

The fact that T is compact — and so approximable — suggests a way of nu-
merically computing the norm of T by truncating Tω between harmonics −n

and n, say, and evaluating the maximum singular value of the finite dimensional
transfer matrix so obtained Araki et al. [1993]. The convergence of this sequence
of computations could be slow, though, since in general G(jω) and F(jω) decay as
1/ωp, where p is some integer depending on the relative degrees of the transfer
matrices involved.

Actually, since T is of finite-rank, more efficient ways of numerically evaluat-
ing the induced norm of Tω are possible and already available. Using frequency-
domain techniques similar to ours, Hagiwara et al. [1995] have shown that the
computation of the frequency-gain of a compact operator can be obtained as the
magnitude of an associated discrete-time transfer matrix. For the case of ZOH,
they show how to implement their procedures in a numerically reliable fashion.

The following theorem is analogous to the result of Hagiwara et al. [1995]
for the case of the hybrid complementary sensitivity operator T. The pattern
of our proof is quite different though, and importantly, we shall use the same
pattern for the more difficult case of the hybrid sensitivity operator, which is non-
compact. Our results extend to the case of GSHF, and are also implementable in
a numerically reliable way, as we shall see in Subsection 5.2.2.

4Often, we shall drop the dependence of the independent variable when convenient; meaning will
always be clear from context.
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We denote by λmax[M] the maximum eigenvalue of a square matrix M. Then
we have the following result.

Theorem 5.2.2 (L2-induced Norm of the Complementary Sensitivity Operator)
If the hybrid system of Figure 2.4 is L2-input-output stable, then

‖T‖2 = sup
ω∈ΩN

λmax
[
Gd(ejωT )Fd(ejωT )

]
. (5.15)

Proof: Using (5.13) write Tω as a dyadic product

Tω = g(ω)f(ω)∗,

where f∗ denotes the conjugate transpose of f (i.e., f∗ is composed of “row” vec-
tors of L2(ΩN, `2)). From (5.12) we have that ‖T‖ = supω∈ΩN

‖Tω‖`2
. Fix ω in

ΩN, and decompose `2 into
`2 = PF ⊕ P⊥F ,

where PF is the subspace of `2 spanned by the range of f, and P⊥F its orthogonal
complement. Hence, if v is a vector in P⊥F then Tωv = 0. So,

‖Tω‖`2
= sup

v∈`2
v 6=0

‖Tωv‖`2

‖v‖`2

= sup
v∈PF
v 6=0

‖Tωv‖`2

‖v‖`2

.

Vectors of `2 in PF can be finitely parameterized as

v = fα,

where α belongs to Cm, with m the number of inputs of F. Thus, we have

‖Tω‖2
`2

= sup
α

fα6=0

α∗f∗fg∗gf∗fα
α∗f∗fα

= λmax

[
(f∗f)1/2(g∗g)(f∗f)1/2

]
. (5.16)

Notice that both (g∗g) and (f∗f) are finite m×m matrices, and particularly, f∗f is
non-singular since F was assumed full column rank.

Since eigenvalues are invariant under similarity transformations, (5.16) yields

‖Tω‖2
`2

= λmax [(g∗g)(f∗f)] .

The proof is finished by noting that

(g∗g)(ω) = Gd(ejωT )

and
(f∗f)(ω) = Fd(ejωT )

are the discrete transfer matrices defined in (5.10) and (5.11). �
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The case of S has to be considered more carefully, since this is a non-compact
operator, and as such, it may not be in principle approximable by sequences of
finite-rank operators (which means that the norms of progressive truncations of
Sω would not necessarily converge to the norm of the operator). Frequency-
gains of possibly non-compact sampled-data operators have been discussed in
Yamamoto and Khargonekar [1996]. Their method computes the frequency-gain
γω at the frequency ω by searching for the maximum value γ such that a γ-
dependent generalized eigenvalue problem has an eigenvalue ejωT . Yet, the pro-
cedure seems in general very hard to be implemented numerically in a reliable
fashion Hagiwara et al. [1995].

The following theorem gives an expression for the frequency-gain and L2-
induced norm of the hybrid sensitivity operator S. Our result relies on the fact
that S verifies the complementarity relation

S = I − T,

and since T is of finite rank, it is also possible to reduce the computation of the
frequency-gain of S to a finite-dimensional eigenvalue problem. As for Theo-
rem 5.2.2, these results admit a simple and reliable numerical implementation.

Theorem 5.2.3 (L2-induced Norm of the Sensitivity Operator)
If the hybrid system of Figure 2.4 is L2-input-output stable, then

‖S‖2 = 1 + sup
ω∈ΩN

λmax

[
Fd(ejωT )Gd(ejωT ) − Td(ejωT ) −Fd(ejωT )

Td(e−jωT )Gd(ejωT ) − Gd(ejωT ) −Td(e−jωT )

]
. (5.17)

Proof: The same idea for the proof of Theorem 5.2.2 works here. Again, for a
fixed ω in ΩN, decompose `2 into

`2 = P(F,G) ⊕ P⊥(F,G),

where P(F,G) denotes the subspace spanned by both f and g, and P⊥(F,G) its orthog-
onal complement. Since Sω is block diagonal in these spaces,

‖Sω‖`2
= max

 sup
v∈P(F,G)

v 6=0

‖Sωv‖`2

‖v‖`2

, sup
v∈P

(F,G)⊥

v 6=0

‖Sωv‖`2

‖v‖`2


= max

 sup
v∈P(F,G)

v 6=0

‖Sωv‖`2

‖v‖`2

, 1

 . (5.18)

Now, any vector v in P(F,G) can be finitely parameterized as

v = fα + gβ

= [f, g]γ, (5.19)
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with γ in C2m. Denote h , [f, g], and M , h∗h. Notice that M is a finite-
dimensional Hermitian matrix and, moreover, since for any vector η in C2m we
have that η∗Mη = η∗h∗hη = ‖hη‖2, M is also non-negative definite, i.e., M ≥
0. Using the notation introduced in (5.10) and (5.11), and the definition of the
discrete output complementary sensitivity function (2.11) (i.e., notice that Td =
f∗g), we can write M as

M =

[
Fd Td

T∗d Gd

]
.

Introduce also the matrix N,

N ,

[
Gd −I

−I 0

]
.

It then follows that h∗(I−fg∗)(I−gf∗)h = (I+MN)M, and hence we obtain from
(5.19) that

sup
v∈P(F,G)

v 6=0

‖Sωv‖2
`2

‖v‖2
`2

= sup
γ∈C2m

γ∗Mγ + γ∗MNMγ

γ∗Mγ

= 1 + λmax

[
M1/2NM1/2

]
(5.20)

= 1 + λmax [MN] . (5.21)

Since in (5.21) the product MN is

MN =

[
FdGd − Td −Fd

T∗dGd − Gd −T∗d

]
,

from (5.18) and (5.21) we see that it remains to show that λmax [MN] is nonnega-
tive to complete the proof. This follows easily from the fact that M ≥ 0. Indeed,
if M is positive definite, i.e., M > 0, then

δ =

[
Fd Td

T∗d Gd

]−1/2 [
I

0

]
,

gives δ∗M1/2NM1/2δ = Gd ≥ 0. Thus λmax in (5.20) is nonnegative. If otherwise
M is not positive definite it is then necessarily singular, and therefore 0 must be
in the spectrum of M1/2NM1/2, which then shows that λmax [MN] ≥ 0. The proof
is now complete. �

Remark 5.2.1 (L2-norms and Hybrid Sensitivity Functions) As anticipated at the
end of Chapter 4, the L2-induced norm of these operators may be linked to certain
measure of the hybrid sensitivity functions S0, T0, and Tk. In fact, this connec-
tion establishes that large harmonics will necessarily imply a large norm of the
operator on L2, as we shall see next. We define first the hybrid (k,m)-harmonic
response

Tk,m , GkFm.
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Notice that Tk,m for k,m = ±1,±2, . . . appear as the off-diagonal entries of the
infinite-dimensional transfer matrices Tω and Sω in (5.7) and (5.8). In particu-
lar, Tk,0 = Tk and T0,0 = T0, the harmonic and fundamental complementary
sensitivity responses of Chapter 4. We require the following preliminary lemma.

Lemma 5.2.4
Let A,B1, B2, . . . , Bk, . . . be square hermitian positive-definite matrices. Then

λmax

[∑
k

BkA

]
≥ max

k
λmax [BkA] .

Proof:

λmax

[∑
k

BkA

]
= λmax

[∑
k

[A
1
2 BkA

1
2 ]

]
= max

ν,‖ν‖=1

∑
k

[ν∗A
1
2 BkA

1
2 ν]

≥ max
k

max
ν,‖ν‖=1

ν∗A1/2BkA1/2ν

= max
k

λmax [BkA]

�

Now we have the following result.

Proposition 5.2.5
Assume the conditions of Lemma 2.2.2 are satisfied. Then

‖T‖ ≥ max
k,m

‖Tk,m‖∞
Proof: From Theorem 5.2.2,

‖T‖2 =
1

T2
sup

ω∈ΩN

λmax

[(∑
k

G∗
kGk

)(∑
m

FmF∗m

)]
.

Use Lemma 5.2.4 with A = (
∑

k G∗
kGk), and Bm = FmF∗m to get

‖T‖2 ≥ 1

T2
sup

ω∈ΩN

max
m

λmax

[∑
k

G∗
kGkFmF∗m

]
,

and once more with A = FmF∗m, and Bk = G∗
kGk. This yields

‖T‖2 ≥ 1

T2
sup

ω∈ΩN

max
k,m

λmax [G∗
kGkFmF∗m]

= max
k,m

sup
ω∈ΩN

‖ 1

T
GkFm‖2

2

= max
k,m

‖Tk,m‖2∞.

�
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This result establishes that a peak in any of the harmonics will increase the L2-
induced norm of T, reducing the system’s stability robustness properties against
T -periodic perturbations Sivashankar and Khargonekar [1993]. �

In the particular case of SISO systems, we can derive simpler formulas from
Theorems 5.2.2 and 5.2.3. The operator T is then of rank one, and so the compu-
tation of its norm and the norm of S reduces to a single-eigenvalue problem.

Corollary 5.2.6
If the hybrid system of Figure 2.4 is SISO, then

‖T‖ = sup
ω∈ΩN

Φd(ejωT )|Td(ejωT )|, (5.22)

and

‖S‖ = sup
ω∈ΩN

1

2

(√
(Φ2

d(ejωT ) − 1)|Td(ejωT )|2 + (|Sd(ejωT )| + 1)2

+

√
(Φ2

d(ejωT ) − 1)|Td(ejωT )|2 + (|Sd(ejωT )| − 1)2

)
, (5.23)

where

Φ2
d(ejωT ) =

Fd(ejωT )Gd(ejωT )

|Td(ejωT )|2
. (5.24)

Proof: The proof of (5.22) follows immediately from Theorem 5.2.2. Formula
(5.23) is obtained by computing λmax in (5.17) and after some algebraic manipu-
lation. �

The function Φd may be given some interesting interpretations that we con-
sider in the following remarks.

Remark 5.2.2 (Φd as a Measure of Intersample Activity) The function Φd may
be given an interpretation as a “fidelity function”, that is, a measure of the amount
of intersample behavior in the sampled-data system. Indeed, note that Φd is
always greater than or equal to 1, since by Cauchy-Schwarz

|(FPH)d(ejωT )|2 =

∣∣∣∣∣ 1T
∞∑

k=−∞ Fk(jω)Pk(jω)Hk(jω)

∣∣∣∣∣
2

≤

( ∞∑
k=−∞ |Fk(jω)|2

)(
1

T2

∞∑
k=−∞ |Pk(jω)Hk(jω)|2

)
.

Thus, from (5.22) we can see that

‖T‖ ≤ ‖Φd‖∞‖Td‖∞,

so ‖Φd‖∞ is an upper bound of the quotient between the L2-induced norms con-
sidering full-time information, and sampled behavior respectively.
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Also notice that since Φd ≥ 1, for all ω in ΩN, then ‖T‖ ≥ ‖Td‖∞; i.e., the L2-
induced norm of the discretized system gives a lower bound for the L2-induced
norm of the sampled-data system, as should be expected. The following result
formalizes this observation.

Corollary 5.2.7
Under the assumptions of Corollary 5.2.6,

lim
Φd→1

‖T‖ = ‖Td‖∞ (5.25)

lim
Φd→1

‖S‖ = ‖Sd‖∞ (5.26)

Proof: Proof of (5.25) is immediate from (5.22). For (5.26) we have the following
from (5.23):

lim
Φd→1

‖S‖ = lim
Φd→1

sup
ω∈ΩN

|Sd(ejωT )| + 1 + ||Sd(ejωT )| − 1|

2

= max{‖Sd‖∞, 1}

= ‖Sd‖∞.

(5.27)

�

Hence, for example, if ‖Φd‖∞ is close to 1, then ‖T‖ ≈ ‖Td‖∞ and ‖S‖ ≈ ‖Sd‖∞,
and we should expect little intersample activity. �

Remark 5.2.3 (An Alignment Condition) Notice that Φd is independent of the
controller, but depends on the prefilter, plant, and hold function. This suggests
a possibly interesting way of looking at an optimization problem; i.e., selecting
a suitable discrete complementary sensitivity function Td, and then choosing the
prefilter and hold to minimize Φd. In particular, when Φd = 1 the matrix on
the RHS of (5.17) becomes singular, since the vectors f and g “align”. Therefore,
minimization of the intersample behavior may be interpreted as an “alignment
condition” between the hold, plant, and prefilter. This remains as a topic for
future investigation. Further related comments may be found in Hagiwara and
Araki [1995]. �

5.2.2 Numerical Implementation

The expressions for the frequency-gains and L2-induced norms obtained in the
last section can be readily numerically implemented by computing Gd and Fd

from (5.10) and (5.11). These computations can be approached as “special dis-
cretizations” by considering relations similar to (2.8). In this way, the arguments
of supω∈ΩN

in (5.15) and (5.17) are expressed by two rational transfer functions
in z = ejωT — the frequency-gains of the sampled-data sensitivity operators. The
induced norms can then be computed by a straightforward search of maxima
over the finite interval ΩN

5.
5Similar formulas have been derived for the case of ZOH in Leung et al. [1991, Theorem 3].
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Computation of Fd(ejωT )

We compute (5.11) from the discretization Fd(z) = TZ{ST {L−1{F(s)F̃(s)}}} (see Fig-
ure 5.2), where F̃(s) denotes F(−s)T. Since F is a strictly proper rational function,
the sampling of the output of FF̃ is well-defined.

?
�a a��

T
b b- - -

uk y yk
FF̃

Figure 5.2: Scheme to compute Fd(ejωT ).

Let {a, b, c, 0} be a minimal state-space realization of F. Then, a minimal real-
ization for FF̃ is given by

A =

[
a bbT

0 −aT

]
, B =

[
0

−cT

]
, C =

[
c 0

]
.

We then have the following.

Lemma 5.2.8 (Computation of Fd(ejωT ))
The function Fd(ejωT ) is given by

Fd(ejωT ) = TC(ejωT I − eAT )−1B.

Proof: At the sampling instants the state response of FF̃ is given by

xk+1 = eATxk +

∫T

0

eA(T−τ)B u(τ)dτ

= eATxk +

∫T

0

eA(T−τ)B δ(τ − T)dτuk , (5.28)

where δ is Dirac’s delta, since there is no hold device at the input of the system.
From (5.28) we get the discrete system

xk+1 = Adxk + Bduk

yk = Cxk ,

where Ad = eAT and Bd = B. The result then follows from application of
Lemma 2.1.2. �

Computation of Gd(ejωT )

The case of Gd is slightly more complicated than the previous one, but can be
approached in a similar fashion. From (5.10) we have

Gd(ejωT ) =

∞∑
k=−∞ G∗

k(jω)Gk(jω)

=
1

T
C∗

d(ejωT )S∗d(ejωT )Ed(ejωT )Sd(ejωT )Cd(ejωT ),
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where

Ed(ejωT ) ,
1

T

∞∑
k=−∞ H∗

k(jω)P∗k(jω)Pk(jω)Hk(jω). (5.29)

Hence, to compute Gd we need to evaluate Ed(ejωT ). We do this by discretizing
the system depicted in Figure 5.3, i.e., the cascade of the hold H̃, the system PP̃,
and the hold H. Since H is proper by definition, so is the cascade, and therefore
the sampling operation is again well-defined.

?
�a a��

T
bvkb -- - - -

uk H P̃P
y

H̃
u v

Figure 5.3: Scheme for computing (5.29).

Suppose that the plant P has a minimal realization {a, b, c, d}. Then, a minimal
realization for P̃P is given by

A =

[
a 0

cTc −aT

]
, B =

[
b

cTd

]
, C =

[
dTc −bT

]
, D =

[
dTd

]
We consider the case of a FDLTI GSHF; similar derivations are also valid for a

PC GSHF. As seen in Chapter 3, a LTI GSHF is defined by a pulse response h,

h(t) =

{
KeL(T−t)M if t ∈ [0, T)
0 otherwise

, (5.30)

for matrices K, L, and M of appropriate dimensions. The following lemma gives
a formula for the computation of Ed(ejωT ) given the matrices A, B, C,D, and
K, L,M.

Lemma 5.2.9 (Computation of Ed(ejωT ))
The function Ed(ejωT ) in (5.29) is given by

Ed(ejωT ) = Cd(ejωT I − Ad)Bd + Dd, (5.31)

where

Ad = eAT

Bd =

∫T

0

eAτBKeLτM dτ

Cd =

∫T

0

MTeLT(T−τ)KTCeAτ dτ

Dd =

∫T

0

MTeLTτKTDKeLτM dτ +

∫T

0

MTeLT(T−τ)KTC

∫τ

0

eA(τ−σ)BKeL(T−σ)M dσdτ
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Proof: We discretize the system of Figure 5.3 in four steps. Suppose t is in the
interval [kT, (k+ 1)T ]. First we compute the continuous-time response of the hold
H to a pulse in uk. This is

u(t) = KeL((k+1)T−t)Muk. (5.32)

Second, feed u from (5.32) into PP̃ to get

x(t) = eA(t−kT)xk +

∫t−kT

0

eA(t−kT−σ)BKeL(T−σ)Mdσ uk (5.33)

y(t) = Cx(t) + DKeL((k+1)T−t)M uk. (5.34)

Third, compute the response of the hold H̃ to the output y given by (5.34) above.
By Lemma 3.1.5 we know that the frequency response of the LTI GSHF is H(s) =
K(sI+L)−1(eLT −e−sT )M. Let h̃ denote the impulse response of the “conjugated”
hold whose frequency response is H̃(s) = MT(sI−LT)−1(e−LTT −e−sT )eLTTesTKT.
Here, we neglect for the moment the “advance” of one sampling period due to
the non-causality of H̃, i.e., we are considering e−sT H̃(s) instead. It follows then
that

h̃(t) =

{
MTeLTtKT if t ∈ [0, T)
0 otherwise

. (5.35)

We get

v(t) =

∫t

kT

h̃(t − τ)y(τ)dτ

=

∫t−kT

0

MTeLT(t−kT−τ)KTCx(τ + kT)dτ

+

∫t−kT

0

KeLT(t−kT−τ)KTD u(τ + kT)dτ.

(5.36)

Denote the first integral on the RHS of (5.36) by v1, and the second by v2. Replace
x(τ + kT) and u(τ + kT) in (5.36) using (5.33) and (5.32) to obtain

v1(t) =

(∫t−kT

0

MTeLT(t−kT−τ)KTCeAτ dτ

)
xk

+

(∫t−kT

0

MTeLT(t−kT−τ)KTC

∫τ

0

eA(τ−σ)BKeL(τ−σ)M dσdτ

)
uk,

(5.37)

and

v2(t) =

(∫t−kT

0

MTeLT(t−kT−τ)KTDKeL(T−τ)M dτ

)
uk. (5.38)

Finally, we evaluate v = v1 + v2 at t = (k + 1)T , which renders

xk+1 = Adxk + Bduk

vk+1 = Cdxk + Dduk,
(5.39)
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where Ad, Bd, Cd and Dd are as claimed. To conclude, compute the Z-transform
of the expressions in (5.39) above, and eliminate X to get

zV(z) = (Cd(zI − Ad)−1Bd + Dd)U(z). (5.40)

If we introduce now the advance of one sampling period neglected before, the
factor z on the RHS of (5.40) is canceled, rendering Ed(z) = V(z)/U(z) = Cd(zI −
Ad)−1Bd + Dd. Application of Lemma 2.1.2 gives the result. �

Remark 5.2.4 Matrices Bd, Cd and Dd in the above expressions can be easily nu-
merically evaluated using matrix exponential formulas suggested by Van Loan
[1978]. So, we have

Bd = [eAT 0] exp
{[

−A BK

0 L

]
T

} [
0

M

]
,

Cd = [MT 0] exp
{[

LT KTC

0 A

]
T

} [
0

I

]
,

Dd = [MTeLT 0] exp
{[

−LT KTDK

0 L

]
T

} [
0

M

]

+[MT 0] exp


LT KTC 0

0 A BK

0 0 −L

 T


[

0

eLTM

]
.

�

Example 5.2.1 (Sensitivity of gain-margin improvement with GSHFs) The use of
these formulas is illustrated by computing the “frequency gain” of a system from
an example in Yang and Kabamba [1994]. In this paper the authors present a
technique based on GSHFs to achieve arbitrary gain-margin improvement of a
feedback system.

The plant considered in the example is the following,

P(s) =
s − 2

(s − 1)(s + 2)
.

Since the plant is non-minimum phase, there is a limit to the gain-margin achiev-
able by LTI compensation Khargonekar et al. [1985], which in this case is 4.

Using the technique suggested by Yang and Kabamba, this plant can be stabi-
lized by a FDLTI GSHF (Definition 3.1.1) determined by the matrices

K =
[
0 1

]
, L =

[
0 2

1 −1

]
, M =

[
−12616

312.8194

]
,

and a sampling period of T = 0.05, yielding a gain-margin of 10. However, this
improvement of gain-margin comes at the cost of a very large sensitivity to input
disturbances. Indeed, consider the feedback loop of Figure 5.4, where we have
introduced a plant input disturbance c. Figure 5.5 shows the frequency-gain of
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Figure 5.4: System with plant input disturbance.
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Figure 5.5: Hybrid frequency gains.
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the hybrid operator on L2 mapping c to u. For comparison we also plotted the
frequency response of the discrete sensitivity function Sd.

The corresponding L2-induced norms are

‖S‖ = 134.69

‖Sd‖∞ = 1.0785,

which display a great difference. In a sense, this says that the discretized model
does not represent the true behavior of the system. Indeed, these norms show
that taking in account just the sampled behavior in this system gives only a very
conservative lower bound of the actual L2-gain of the hybrid system. As a conse-
quence, a significant part of the system’s dynamics is “hidden” from a sampled
analysis as intersample activity. A large ‖S‖ means high sensitivity to L2 plant in-
put disturbances, which is particularly problematic if in addition there exist plant
input saturations. Furthermore, a large ‖S‖ will also imply poor robustness prop-
erties to time-varying perturbations Sivashankar and Khargonekar [1993]. �

5.3 Summary

This chapter has considered the hybrid sensitivity and complementary sensi-
tivity operators on L2. We have described a mathematical framework called
“frequency-domain lifting”, which provides a representation of these operators
as infinite dimensional “transfer matrices”. Based on this representation we have
characterized the frequency-gains of these operators as the maximum eigenvalue
of an associated finite dimensional discrete transfer matrix. The L2-induced norm
of the operators is then computed by performing a search of maxima of these
eigenvalues over a finite interval of frequencies. The expressions obtained can be
easily implemented numerically to any desired degree of accuracy in a reliable
fashion.

Similar expressions have been communicated in the literature for the case of
the compact operators, like the complementary sensitivity operator [e.g., Hagi-
wara and Araki, 1995]. Hybrid non-compact operators impose additional dif-
ficulties in the evaluation of frequency-gains and L2-induced norms Yamamoto
and Khargonekar [1993]. Perhaps most interesting in our results is the fact that
also the sensitivity operator, which is non-compact, can be characterized as a fi-
nite dimensional eigenvalue problem feasible of a numerically reliable implemen-
tation.

These formulas have immediate application in the analysis of stability robust-
ness for LTV unstructured perturbations, and H∞ control synthesis problems.
Particularly, since our expressions allow the use of GSHFs, they provide a reli-
able computational tool for the evaluation of performance of a general class of
sampled-data designs.


