
6
Stability Robustness

Since no mathematical model can completely describe the exact behavior of a
physical system, the consideration of model uncertainty in the analysis and de-
sign of feedback systems is an issue of unarguable theoretical and practical signif-
icance. In this respect, one of the fundamental problems is the analysis of the sta-
bility robustness of the control system, i.e., the property by which the closed-loop
system remains stable under perturbations. This is a well-studied problem for
FDLTI systems, where several useful tools, like H∞ and µ methods, have proven
successful.

The analysis of stability robustness for sampled-data systems is more difficult,
again due to their time-varying characteristics, and has attracted the attention of
a number of researchers in recent years. For example, Thompson et al. [1983]
and Thompson et al. [1986] have used conic sector techniques to obtain sufficient
conditions for robust stability. Similar results have been derived by Hara et al.
[1991] using the L2-induced norm and the Small-gain Theorem. More recently,
Sivashankar and Khargonekar [1993] have shown that the L2-induced norm ac-
tually gives both necessary and sufficient conditions for robust stability when the
class of unstructured perturbations include periodic time-varying perturbations.
However, as illustrated in Dullerud and Glover [1993], the L2-induced norm may
be a very conservative measure of robust stability under LTI perturbations, which
are a more natural class of uncertainties to consider since the plant is normally as-
sumed LTI. Indeed, under the assumption of stable LTI perturbations, Dullerud
and Glover [1993] have shown that the necessary and sufficient condition for ro-
bust stability reduces to a µ type of test. This result has now been generalized
to the case of unstable perturbations by Hagiwara and Araki [1995], who used
Nyquist type of arguments and the frequency-domain framework suggested in
Araki and Ito [1993] and Araki et al. [1993].

The approach followed in Dullerud and Glover [1993] is based on a state-
space representation of the sampled-data system, and uses time-domain lifting
techniques and a generalization of the Z-transform to obtain a representation
of the operators in frequency-domain. As pointed out by Yamamoto and Khar-
gonekar [1996], this detour through state-space to describe input-output opera-
tors might complicate the analysis.

In this chapter, we show how these results can be obtained in a very intu-
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itive and simple way — almost entirely by block-diagram manipulation — if the
problem is set up directly in frequency-domain. In §6.1 we consider stable LTI
multiplicative perturbations on the analog plant. Using the frequency-domain
framework introduced in Chapter 5, we derive a µ-test that corresponds with the
results of Dullerud and Glover. In the particular case of SISO systems, this test
can be reduced to an `1-type condition involving the fundamental complementary
sensitivity function, T0(s), introduced in §4.1. This has an important link with the
results of Chapter 4, since it shows that peaks of T0 will have direct deleterious
effects on the stability robustness properties of the system.

It is interesting to note that under our framework, the problem is easily brought
to the classical basic perturbation model of Figure 6.1 [see also Hagiwara and Araki,
1995]. Moreover — and perhaps unsurprisingly too — we shall see that the inter-
connection matrix G will be Tω, the infinite matrix representation of the sampled-
data complementary sensitivity operator introduced in §5.2. Note that this is in com-
plete analogy with the corresponding LTI case, where the interconnection matrix
is the complementary sensitivity function [e.g., Doyle et al., 1992].

Moreover, we shall see in §6.2 that
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Figure 6.1: Basic perturbation model.

this carries over to the problem of ro-
bust stability under a divisive perturba-
tion model. Again in analogy with the
LTI case, this time G is Sω, the infinite
matrix representation of the sampled-data
sensitivity operator. The corresponding
µ-test, though, will be only conjectured,
since the sensitivity operator is non-compact,
a fact that makes the analysis much more
intricate than the multiplicative case. Nevertheless, a necessary condition for ro-
bust stability with the divisive perturbation model is easily obtained in the SISO
case. This shows that peaks in the fundamental sensitivity function S0 will nec-
essarily reduce the stability margin of the hybrid system respect to this type of
perturbations.

6.1 Multiplicative Perturbation

Consider the multivariable sampled-data system depicted in Figure 6.2. The per-
turbed plant is represented by the multiplicative uncertainty model

P̃(s) = (I + W(s)∆(s))P(s) , (6.1)

where ∆(s) is a FDLTI perturbation given by a stable rational function satisfying
‖∆‖∞ < 1; we call such ∆ and admissible perturbation. The weighting function
W(s) is assumed a fixed stable, minimum-phase rational function, and such that
F(s)W(s)P(s) is proper. This type of uncertainty model is useful to represent high
frequency plant uncertainty Doyle and Stein [1981].

Assuming closed loop stability of the nominal hybrid system, i.e., for ∆(s) = 0,
we shall determine necessary and sufficient conditions for the perturbed system
to remain stable under the class of admissible perturbations.
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Figure 6.2: System with multiplicative uncertainty.

Suppose that we discretize the system of Figure 6.2 by opening the loop at the
input and output of the discrete controller Cd. Then, we obtain the simplified
discrete diagram of Figure 6.3, where (FP̃H)d is the discretized series of hold,
perturbed plant and anti-aliasing filter. Applying Corollary 2.1.4 to (FP̃H)d yields
the infinite sum representation

(FP̃H)d(esT ) =
1

T

∞∑
k=−∞ Fk(s)(I + Wk(s)∆k(s))Pk(s)Hk(s) . (6.2)

Equation (6.2) displays the multi
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Figure 6.3: Discretized perturbed system.

frequency structure induced by the
sampling operation. This relation can
be translated directly into the block
diagram of Figure 6.4. Note in this
picture that although the sampler is
not represented explicitly, its action
is structurally embedded in the block
diagram as the parallel of an infinite

number of direct paths where each harmonic component of the signals operates.
We use this representation to derivate an expression where all the perturbations
∆k are blocked together.

Take the k-harmonic direct path in Figure 6.4. Then, we can write

Vk(s) =
1

T
Pk(s)Hk(s)Ud(esT ), (6.3)

where Ud is the Z-transform of the output of the controller. To ease notation, we
shall drop the independent variables in the sequel of this derivation, understand-
ing that all signals and transfer functions are functions of s, save for the discrete
ones, like Cd and Ud, which are functions of esT . Now, we have that Ud is given
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Figure 6.4: Harmonic structure of the perturbed system.

by

Ud = −Cd

∞∑
k=−∞ Fk

(
WkYk +

1

T
PkHkUd

)

= −Cd

∑
k

FkWkYk − Cd

(
1

T

∑
k

FkPkHk

)
Ud . (6.4)

Noting that by Corollary 2.1.4 1/T
∑

k FkPkHk is the nominal discretized plant
(FPH)d, from (6.4) we get

Ud = −SdCd

∑
k

FkWkYk , (6.5)

where
Sd(z) = [I + Cd(z)(FPH)d(z))]

−1 (6.6)

is the nominal discrete Sensitivity Function. Now, replacing Ud from (6.5) and
Yk = ∆kVk into (6.3) yields

Vk =
1

T
PkHkSdCd

∑
m

FmWm∆mVm . (6.7)

In the lifted domain, (6.7) can be written as

(I + TωWω∆ω) v = 0, (6.8)
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where I is the infinite identity matrix (the identity operator in `2) and Tω is the
infinite matrix representation of the complementary sensitivity operator, defined
in (5.7). Wω and ∆ω are infinite-dimensional block diagonal matrices,

Wω , diag[. . . ,Wk(jω),Wk−1(jω), . . .],

and
∆ω , diag[· · · , ∆k(jω), ∆k−1(jω), · · · ],

while v is the lifted vector

v(ω) ,



...
V1(ω)
V0(ω)
V−1(ω)

...

 . (6.9)

Equation (6.8) collects system knowns and perturbations in two separated
blocks, as in the basic perturbation model of Figure 6.5. Thus, we can see clearly
in the form of ∆ω how the original time-varying problem with unstructured ana-
log perturbations conduces to a time-invariant, infinite-dimensional, problem
with a very structured class of perturbations. From this setup it is standard to
derive the conditions for the internal stability of the loop of Figure 6.5 as a µ-test.
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−

Figure 6.5: Basic perturbation model for multiplicative uncertainty.

Before proceeding, we need to recall a few definitions relative to the struc-
tured singular value µ required to state the results; we refer for example to Packard
and Doyle [1993] for more details. The structured singular value of a given n×n

complex matrix M is a nonnegative real number defined with respect to a set ∆

of perturbation matrices ∆ in Cn×n of prescribed structure. Denote by σ̄{∆} the
maximum singular value of ∆. Then we define µ∆(M) as

µ∆(M) ,
1

min
∆∈∆

{σ̄{∆} : det(I − M∆) = 0}
,

unless no ∆ ∈ ∆ makes (I − M∆) singular, in which case µ∆(M) , 0. The pertur-
bation set ∆ is defined as the set ol perturbations ∆ of the form

∆ = diag[δ1Ir1
, δ2Ir2

, . . . , δSIrS
, ∆S+1, . . . , ∆S+F], (6.10)
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where δi ∈ C, ∆S+j ∈ Cmj×mj , for i = 1, 2, . . . , S, and j = 1, 2, . . . , F. With Iri

we denote Cri×ri identity matrices. Note that for dimensional consistency it is
necessary that

∑S
i=1 ri +

∑F
j=1 mj = n.

With these definitions, we can now state necessary and sufficient conditions
for robust stability of the hybrid system of Figure 6.2, adapted from the result ob-
tained by Dullerud and Glover [1993]. The result reduces to a µ-problem on the
infinite dimensional matrices of Figure 6.5, and it is expressed as a sequence of
all the finite dimensional µ-problems obtained by truncating the original matri-
ces. Denote by [Tω]n, [Wω]n and [∆ω]n the corresponding truncations keeping
all harmonics between −n and n, for some positive integer n. For each ω in ΩN,
[∆ω]n has a block diagonal structure, where each block ∆k(jω) is as in (6.10).
Let ∆n denote the set of all these finite dimensional block diagonal matrix per-
turbations, ∆n , {diag[∆n, . . . , ∆−n] : ∆i ∈ ∆}. Then, we have the following
proposition.

Proposition 6.1.1 (Dullerud and Glover [1993])
For all ∆ such that ‖∆‖∞ < 1 the system of Figure 6.2 is internally stable if and
only if for each integer n > 0 the following inequality is satisfied

max
ω∈ΩN

µ∆n([Tω]n[Wω]n) ≤ 1 . (6.11)

◦

As mentioned before, although we started with unstructured perturbations
on the analog plant, they are mapped into a very structured type of perturba-
tions in the lifted space L2(`2; ΩN). In general, assuming also ∆ω unstructured
Sivashankar and Khargonekar [1993] will lead to a small-gain type of test in terms
of the L2-induced norm

‖TωWω‖ ≤ 1.

This small-gain condition is only sufficient for LTI perturbations, and it may be
quite conservative. This has been analyzed by means of example by Dullerud
and Glover [1993]. Other interesting related remarks are given in Hagiwara and
Araki [1995].

A necessary condition for robust stability may be stated in terms of the fun-
damental complementary sensitivity function of Chapter 4.

Theorem 6.1.2 (Necessary Condition for Robust Stability)
A necessary condition for the the system of Figure 6.2 to remain stable for all ∆

such that ‖∆‖∞ < 1 is that

‖T0(jω)W(jω)‖∞ ≤ 1. (6.12)

Proof: It is necessary for closed loop stability that

S̃d(z) = [I + Cd(z)(FP̃H)d(z)]−1 (6.13)
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have no poles in DC. Rearranging yields

S̃d(z) = [I + Sd(z)Cd(z)(FW∆PH)d(z)]−1Sd(z). (6.14)

Since the nominal system is stable, then S̃d will have no poles in DC if and only if

det[I + Sd(ejωT )Cd(ejωT )(FW∆PH)d(ejωT )] 6= 0 for all ω. (6.15)

The proof proceeds by contradiction, following that in Chen and Desoer [1982,
Theorem 2]. Denote Q(jω) , T0(jω)W(jω), and suppose that (6.12) is violated.
Then there exists a frequency ω1 such that σ1 , σ̄{Q(jω1)} > 1, where σ̄{·}, recall,
denotes the maximum singular value. Performing a singular value decomposi-
tion of Q(jω1) yields

Q(jω1) = U diag[σ1 . . .]V∗,

where U , {uij} and V , {vij} are unitary matrices. Now assume for the moment
that there exists an admissible ∆̌ that also satisfies

∆̌(jω1) =

v11

...
vn1

 (−σ1)−1
[
u∗11 . . . u∗n1

]
= V diag[(−σ1)−1, 0, . . . , 0]U∗,

(6.16)

and

∆̌(j(ω1 + kωs)) = 0 for k = ±1,±2, . . ., and k 6= −2ω1/ωs. (6.17)

The assumptions on W, and ∆, imply that Corollary 2.1.4 may be used to calculate
(FW∆̌PH)d. Using (6.16) and (6.17) yields

(FW∆̌PH)d(ejω1T ) = −
1

T
F(jω1)W(jω1)V diag[−

1

σ1
, 0, . . . , 0]U∗P(jω1)H(jω1),

(6.18)
and therefore1

det[I + Sd(ejω1T )Cd(ejω1T )(FW∆̌PH)d(ejω1T )]

= det[I + SdCd
1

T
FWV diag[(−σ1)−1, 0, . . . , 0]U∗PH]

= det[I + V diag[(−σ1)−1, 0, . . . , 0]U∗ 1

T
PHSdCdFW]

= det[I + V diag[(−σ1)−1, 0, . . . , 0]U∗Q(jω1)]

= [I + V diag[−1, 0, . . . , 0]V∗]

= det[V ] det[diag[0, 1, 1, . . . , 1]] det[V∗]

= 0.

1We suppress dependence on the transform variable when convenient, meaning will be clear from
context.
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Hence, (6.15) fails and so the perturbed system is unstable.
It remains to show that ∆̌ satisfying the required properties exists. We do this

following a construction in Chen and Desoer [1982]. Consider

∆̌(s) ,

α1(s)
...

αn(s)

(−
1

σ1

)
fq(s)k ′

z(s)
[
β1(s), . . . , βn(s)

]

where k ′ is a natural number, and

fq(s) ,
ω1s

q(s2 + ω2
1) + ω1s

, q > 0

αi(s) ,
s

ω1
Im {vi1} + Re {vi1}

βi(s) , −
s

ω1
Im {ui1} + Re {ui1}

z(s) ,
HZOH(s − jω1)HZOH(s + jω1)

T |HZOH(j2ω1)|
η(s),

η(s) ,

(
−

s

ω1
sin(^HZOH(j2ω1)) + cos(^HZOH(j2ω1))

)
,

where HZOH(s) is the frequency response function of the ZOH, and ^ denotes
the phase of a complex number. It is then straightforward to verify that

(i) ∆̌(jω1) satisfies (6.16) and (6.17), and

(ii) by choosing both k ′ and q large enough, ∆̌ is exponentially stable and, for
all ω 6= ±ω1, limω→∞ σ̄{∆̌(jω)} → 0, i.e., ‖∆̌‖∞ < 1 is satisfied.

�

In relation to the results of Chapter 4, for SISO systems follows that if |T0(jω)|
is very large at any frequency, then the hybrid system will exhibit poor robustness
to uncertainty in the analog plant at that frequency.

The necessary and sufficient condition of Proposition 6.1.1 yields an explicit
expression that also involves T0 in the SISO case. We state this in the following
corollary.

Corollary 6.1.3 (Robust Stability Test — SISO case)
If the system of Figure 6.2 is SISO, then, for all ∆ satisfying ‖∆‖∞ < 1, the system
is internally stable if and only if

∞∑
k=−∞ |T0(j(ω + kωs))W(j(ω + kωs))| ≤ 1 for all ω in ΩN (6.19)

Proof: By Proposition 6.1.1, the system will be robustly stable if and only if all
truncated systems satisfy µ-condition (6.11). Fix an integer n > 0 and ω in ΩN.
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The standard approach to evaluate µ∆n([Tω]n[Wω]n) is through the computa-
tion of upper and lower bounds. Define the sets

Q , {Q ∈ ∆n : Q∗Q = I} (6.20)
D , {D ∈ ∆n : D = D∗ > 0 and D∆n

ω = ∆n
ωD for all ∆n

ω ∈ ∆n} . (6.21)

Then we have the following inequalities Packard and Doyle [1993]

max
Q∈Q

ρ(Q[Tω]n[Wω]n) ≤ µ∆n([Tω]n[Wω]n) ≤ inf
D∈D

σ̄{D[Tω]n[Wω]nD−1} .

(6.22)
Note that the structure of the uncertainty in this case is diagonal,

∆n
ω = diag[δn(jω), . . . , δ−n(jω)],

with δi(jω) in C. As the truncated [Tω]n[Wω]n is rank-one, we can work out in
closed form the values of ρ(Q[Tω]n[Wω]n) and σ̄{D[Tω]n[Wω]nD−1} in (6.22).
We show that there exist matrices Q0 and D0 such that upper and lower bounds
in (6.22) coincide, yielding the expression for µ∆n([Tω]n[Wω]n). To lighten nota-
tion we write in the remaining TW for [Tω]n[Wω]n.

We compute first the lower bound, i.e., the spectral radius ρ(QTW). Since
in the SISO case the complementary sensitivity operator is rank-one, so is TW,
and its matrix may then be written as a dyad, i.e., in an outer product form,
TW = g w∗, where the vectors

g =
1

T
Sd Cd


Pn Hn

Pn−1 Hn−1

...
P−n H−n

 and w =


F∗nW∗

n

F∗n−1W∗
n−1

...
F∗−nW∗

−n

 .

Then, QTW is also a rank-one matrix, and its only eigenvalue is λ = w∗Qg, so
ρ(QTW) = |w∗Qg|.

Consider the particular matrix Q0 = diag[Qn,Qn−1, . . . ,Q−n], with

Qi ,


P∗i H∗

i C∗
d S∗d F∗iW

∗
i

|Pi Hi Cd Sd FiWi|
if Pi Hi Cd Sd Fi Wi 6= 0

1 otherwise

Then

ρ(Q0TW) =

n∑
i=−n

|Pi Hi Cd Sd Fi| Wi, (6.23)

and Q0 is certainly in Q.
We now consider the upper bound σ̄{DTWD−1}. The 2-norm of a rank-one

matrix TW = g w∗ is given by σ̄{TW} = ρ(TW∗TW)1/2 = σ̄{g} σ̄{w}. Consider
σ̄{D0TWD−1

0 } with D0 = diag[Dn, Dn−1, . . . , D−n] and let

Di ,


∣∣∣∣ TFiWi

PiHiCdSd

∣∣∣∣1/2

if PiHiCdSdFiWi 6= 0,

1 otherwise.
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Therefore,

σ̄{D0TWD−1
0 } =

n∑
i=−n

|Pi Hi Cd Sd Fi Wi| , (6.24)

with D0 in D.
From (6.22), (6.23), and (6.24), we conclude that

µ∆n(QTW) =

n∑
i=−n

|Pi Hi Cd Sd Fi Wi| . (6.25)

Note that (6.25) is valid for an arbitrary integer n > 0 and ω in ΩN.
The proof is completed by recalling that

T0(s) =
1

T
P(s)H(s)Cd(esT )Sd(esT )F(s)

and using Proposition 6.1.1. �

Again, as for Theorem 6.1.2, we see from this result that a large value of T0

at any frequency reduces the stability robustness properties of the system at that
frequency. Notice that in this case the condition is an `1-type condition on the
lifted vector representing T0, in contrast to that of Theorem 6.1.2, which is an
`∞-type condition. Hence, for the SISO case, the condition of Theorem 6.1.2 is
straightforwardly implied by condition (6.19), since `1 ⊂ `∞.

Remark 6.1.1 This result may also be obtained dispensing with the µ-framework,
in a similar way to Theorem 6.1.2. An outline of this alternative proof is provided
in Appendix A, §A.5. �

6.2 Divisive Perturbation

We now consider the stability robustness properties of the sampled-data system
of Figure 6.6, i.e., with a divisive type of uncertainty model. We assume that ∆

and W satisfy the conditions stated in §6.1. The perturbed plant is represented by

P̃(s) = (I + W(s)∆(s))−1 P(s) . (6.26)

The derivation of necessary and sufficient conditions for robust stability of
the hybrid system with this class of perturbations is considerably more difficult
than the multiplicative case, and remains as a challenging open problem. In this
section we show that the problem can be also represented by a basic perturbation
model, where the infinite dimensional matrix Sω appears in the interconnection
matrix. A small-gain type sufficient condition follows immediately from this rep-
resentation. We also provide a necessary condition for the SISO case, that imposes
a bound on the values of the fundamental sensitivity function of Chapter 4 on the
jω-axis.
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Figure 6.6: System with divisive uncertainty.

Again, we have for ∆ and W the same assumptions made for the multiplica-
tive uncertainty in the previous subsection. This time, the discretized perturbed
plant is given by

(FP̃H)d(esT ) =
1

T

∞∑
k=−∞ Fk(s)(I + Wk(s)∆k(s))−1Pk(s)Hk(s) . (6.27)

Following similar steps to those for the multiplicative case, we obtain the
block diagram of Figure 6.7 displaying the harmonic structure of the system aris-
ing from the sampling process.
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Figure 6.7: Harmonic structure of the perturbed system with divisive uncertainty.

Based on this picture, we compute an expression analogous to (6.7) for the
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k-harmonic of the input to the uncertainty block, V , getting this time

Vk = −Wk∆kVk +
1

T
PkHkSdCd

∑
m

FmWm∆mVm . (6.28)

The lifted version of (6.28) is then

(I + SωWω∆ω) v = 0 , (6.29)

with the same notation used in the preceding subsection. As could have been
intuitively expected, now the sensitivity operator appears in the formula through
its infinite matrix representation Sω, defined in (5.8). As before, the underlying µ-
problem is evident from (6.29), also represented in the basic perturbation model
of Figure 6.8.

A sufficient condition for stability of the perturbed system is evident from
(6.29). Indeed, if the following inequality is satisfied,

‖SωWω‖ ≤ 1,

then the operator (I+SωWω∆ω) is non-singular, which implies internal stability
of the basic perturbation model.

�

-

SωWω

∆ω

−

v

Figure 6.8: Basic perturbation model for divisive uncertainty.

Remark 6.2.1 (Robust Stability Test under Divisive Perturbations) We conjecture
that a result analogous to Proposition 6.11 will be valid in this case also, i.e., the
system will be robust stable under divisive perturbation if and only if all the
truncated µ-problems corresponding to Figure 6.8 satisfy a stability condition. In
other words, if and only if for all admissible LTI perturbations and each integer
n > 0

max
ω∈ΩN

µ∆n(Sn
ωWn

ω) ≤ 1 . (6.30)

A proof for this result is not obvious to us at present, and it remains as a
topic for future research. We can foresee a greater difficulty in this case since the
sensitivity operator is non-compact, and non-compact operators are not necessar-
ily approximable by a sequence of finite-rank operators. Therefore, special care
should be taken to show that the infinite sequence of µ-problems in (6.30) indeed
converges when n → ∞.

Nevertheless, a hint that a proof for this conjecture could be possible is per-
haps suggested by the same fact that allowed us to compute a “closed form” for
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the frequency-gain of this operator in Chapter 5, i.e., the sensitivity operator S is
not an arbitrary non-compact operator, since it can be written as

S = I − T,

where T is always finite-rank. Moreover, notice that a condition like (6.30) would
in principle be valid if we impose additional restrictions on the weighting func-
tion W, e.g., if it is assumed stable and strictly proper. In this case the corre-
sponding infinite matrix Wω represents a compact operator, which also makes
the product SωWω compact. �

A necessary condition for robust stability is easily obtained in the SISO case.
In parallel with the result of Theorem 6.1.2, this condition involves the funda-
mental sensitivity function S0, as we see next.

Lemma 6.2.1
A necessary condition for the the system of Figure 6.6 to remain stable for all ∆

such that ‖∆‖∞ < 1 is that

‖S0(jω)W(jω)‖∞ ≤ 1. (6.31)

Proof: The proof follows the same lines of that of Theorem 6.1.2 after noting that
we can alternatively write the perturbed discrete sensitivity function as

S̃d =
[
1 + Cd(FP̃H)d

]−1

=

[
1 + Cd(FPH)d − Cd

(
F∆WPH

1 + W∆ d

)]−1

=

[
1 − SdCd

(
F∆WPH

1 + W∆ d

)]−1

Sd. (6.32)

That the nonsingularity of the term between brackets in (6.32) implies (6.31) may
be shown by a contrapositive argument similar to that for the proof of Theo-
rem 6.1.2, and is omitted here to avoid repetition. �

In connection with the results of Chapter 4, this lemma shows that if |S0(jω)|
is large at any frequency, then the system will have poor robustness to divisive
uncertainties in the analog plant at that frequency.

6.3 Summary

In this chapter we have considered the stability robustness of a hybrid system to
unstructured LTI perturbations of the analog plant.

Using the frequency-domain lifting introduced in Chapter 5, we have derived
a robust stability test in the form of a structured singular value for the case of mul-
tiplicative perturbations. The expression obtained was first given by Dullerud
and Glover [1993] based on time-domain lifting techniques. Our procedures,



6.3 Summary 109

though, are considerably simplified by the use of the frequency-domain lifting
technique.

For the case of divisive perturbations, our framework allows the problem to
be easily recasted as a basic perturbation model, from which a small-gain type
sufficient condition for robust stability is directly obtained. The derivation of
necessary and sufficient conditions for this type of perturbation model is a much
harder problem than that of multiplicative perturbations, and is left as subject of
ulterior research.

For both types of perturbation models, we have drawn important connections
with the discussion of Chapter 4 by obtaining necessary conditions for robust sta-
bility of the hybrid system in terms of the fundamental sensitivity and comple-
mentary sensitivity functions S0 and T0. A key conclusion of these results is that
large peaks in either S0 or T0 will necessarily degrade the robustness stability
properties of the hybrid system respect to uncertainty in the analog plant.


