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ABBREVIATIONS, ACRONYMSAND SYMBOLS

Abbreviation Term

A symbol prefix for “change in “

(7 volumetric soil moisture

Gy gravimetric soil moisture

cmol(+)/kg centimole per kilogram pertaining tdioaic charge
Cru threshold concentration

Cru turbidity concentration

CEC cation exchange capacity

Cl confidence interval

C final concentration (solubility curves)
Co initial concentration (solubility curves)
D deep drainage

DDL diffuse double layer theory

EAT Emerson Aggregate Test

EC electrical conductivity (dS/m)

EP equivalent populations

ESP Exchangeable Sodium Percentage
AESP change in soil ESP

ET evapotranspiration

FC field capacity

Al irrigation surplus/deficit

ACI cumulative irrigation surplus/deficit
ICP-AES inductively coupled plasma atomic emisspactrometer
IL interception loss

Ksat saturated hydraulic conductivity
meq/L milliequivalent per litre

mmol/L millimole per litre

(ON) outside solution

PET potential evapotranspiration
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Qp
Qe

RSD
SAR
SAR,
STE
WP
WWTW

S.A.Lucas

polyvinylchloride

precipitation

applied effluent

runoff

retardation factor (solubility curves)

relative standard deviation

Sodium Adsorption Ratio

Sodium Adsorption Ratio for soil in 1:5 distdlevater
secondary treated effluent

wilting point

wastewater treatment works
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ABSTRACT
This study reports results obtained and the apprséaken in investigating the

temporal sodium flux in a woodlot soil receivingceadary treated effluent at
Branxton, NSW. Previous research has shown woagdits receiving secondary treated
effluent undergo an increase in exchangeable sogiementage (ESP) over time.
Increased soil ESP influences micro-aggregateyeoé stability and, particularly when
subject to irrigation waters of specific low-eledyte concentrations, results in
decreased soil permeability and a subsequent naeduce effluent application rates.

Therefore, in irrigated woodlot soils it has beeacessary to implement
strategies to remove excess sodium from the rocte ztb maintain optimum
permeability of the receiving soil, that is, maintag the cation balance (as soil ESP) to
promote optimum soil pore size. To maintain optimpgnmeability, an understanding is
needed of temporal variations in the accumula@aeting (flux) of sodium within a
soil under secondary treated effluent irrigated dittons. The ability to define the
sodium flux depends on the frequency of soil samgpéind the ability to interpret the net
loss/gain in soil sodium in relation to the appliediraulic load over time. Past research
has measured changes in soil ESP on an annua) bakisager, making it impossible to
interpret temporal sodium flux within a given year.

The rate of change of soil ESP has ramifications dptimum permeability
within an effluent irrigated woodlot. With respédot increasing/decreasing soil ESP, a
major response of the clay particles within micgop@gates is the deformation of
conducting soil pores and reduced hydraulic condties. In addition, clay dispersion
is governed by the soil ESP and electrolyte comagan of the infiltrating waters at the
time, where dispersed clay particles may block ootidg soil pores and further reduce
hydraulic conductivity. Therefore, investigating ttemporal sodium flux in conjunction
with the temporal variation in electrolyte concatittn of infiltrating waters will give
greater insight into the response of effluent ategl soils to sodium-rich waters over

time.
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Three research aims were formed to investigate aeshsodium flux. These
include:

1. To investigate trends in the dominant water balanoeponents for a
woodlot soil receiving secondary treated effluitE);

2. To examine temporal and spatial variation in bolle twater balance
components and measured soil properties, partigute sodium flux; and

3. To investigate the implications of the sodium ftux the loss of soil structure
and drainage over time (dispersion events), paailyu in relation to

temporal changes in soil ESP and effluent SAR.

Monitoring programs for water balance componentsswil parameters covered
the period January 2002 — October 2003. Every twaths, soil samples were taken at
designated sites and at different depths (10, 206@, and 80 cm). These samples were
analysed for exchangeable cations {C#g®*, Na" and K), from which the ESP
values were derived. Also, this appears to be itlsé time that soil sampling at this
frequency, which enables the temporal sodium ftuké¢ determined, has been carried
out.

Column leaching experiments were also performed ¢he study period to
illustrate the response of the woodlot soil, inmerof micro-aggregate stability, to
hydraulic loads of varying SAR. Column leaching esments also confirmed the rate
of solute movement through the soil profile and tweodlot soil's ability to
bind/exchange sodium under different hydraulic ®atd electrolyte concentrations.
Soil extraction plate methods were used to deternaiiiting point and field capacity
for these soils.

The Sodium Adsorption Ratio (SAR), which is theusioinal equivalent to soil
ESP, was used to define the electrolyte conceatrati the applied effluent and rainfall
to the woodlot. The net loss/gain of exchangeabtiusn AESP) at different depths
and times was determined and compared with chamgester balance components
and the measured volumetric soil watér)(over time. The soil water surplus/deficit

was recorded at a daily time-step and a cumulapgroach was used to determine the
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long-term soil water surplus/deficit. In additiorgriations in groundwater levels were
monitored to observe if surplus irrigation eveneyevreflected in temporal trends.

As a result of determining the temporal variation soil ESP, effluent and
rainfall SAR, daily soil water deficit/surplus (sitderm), cumulative soil water
deficit/surplus (long-term) and volumetric soil rstire, temporal trends are presented.
The sodium flux was then investigated by interpigetirends in the monitored data with
respect to the dominant water balance componettitpatameters were then used to
model the potential dispersive behaviour of theeingng soil over time and depth, in
relation to the volume and electrolyte concentratib the effluent and rainfall applied
over time. The implications for soil structure gmefmeability depend on variations in
soil ESP and effluent SAR.

Results from this research show that soil ESP ddreas much as 24 % over a
four-month period and is shown to be a functiothef sodium loading (from STE) and
soil water surplus/deficit. On each sampling oamassoil ESP generally increased with
depth at all irrigated sites. Soil ESP at non-ategl sites was much lower than irrigated
sites, although the variability in soil ESP was mugeater. Variations in SAR of the
waters received by the woodlot soil (effluent aaohfiall) over the study period ranged
from 0.5 to 5.9. It is shown that the SAR rangeypted with variations in soil ESP, has
ramifications for maintaining long-term soil struct. Soil structure at different sites
within a woodlot will respond differently according the soil ESP/effluent SAR
relationship.

The dispersive potential of soil at a given ESRerdng irrigation waters of
known SAR was assessed in light of the relationdlg@tween soil ESP and effluent
SAR. This showed the dynamic response of effluaigated soils to the long-term
temporal variation in electrolyte concentration rafnfall/effluent. The relationship
between soil ESP and effluent SAR is graphicallgspnted as a continuum, which in
turn can be used as a management tool for assehbsipptential for dispersion of clay
particles in a soil of known ESP and irrigated wittaters of known SAR. By
identifying trends in the temporal sodium flux, tleptimum permeability of the
receiving soil can be assessed in relation to kberelyte concentration of the applied

waters and the soil exchangeable sodium perce(Ezfe).
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Secondary treated effluent application rates cam the corrected to prevent
“dispersive” irrigation events over the long termdfr management strategies applied
to remove excess sodium from the soil profile. Shymificance of the research is that a
better understanding of the temporal dynamics dfuso in the soil profile will allow
improved management of effluent irrigated woodlotsth the aim of making the
practice sustainable with respect to controllingcusmeulating soil sodium and

maintaining soil structure for future landuse.
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