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ABSTRACT 

This study reports results obtained and the approach taken in investigating the 

temporal sodium flux in a woodlot soil receiving secondary treated effluent at 

Branxton, NSW. Previous research has shown woodlot soils receiving secondary treated 

effluent undergo an increase in exchangeable sodium percentage (ESP) over time. 

Increased soil ESP influences micro-aggregate/soil pore stability and, particularly when 

subject to irrigation waters of specific low-electrolyte concentrations, results in 

decreased soil permeability and a subsequent need to reduce effluent application rates. 

Therefore, in irrigated woodlot soils it has been necessary to implement 

strategies to remove excess sodium from the root zone to maintain optimum 

permeability of the receiving soil, that is, maintaining the cation balance (as soil ESP) to 

promote optimum soil pore size. To maintain optimum permeability, an understanding is 

needed of temporal variations in the accumulation/leaching (flux) of sodium within a 

soil under secondary treated effluent irrigated conditions. The ability to define the 

sodium flux depends on the frequency of soil sampling and the ability to interpret the net 

loss/gain in soil sodium in relation to the applied hydraulic load over time. Past research 

has measured changes in soil ESP on an annual basis, or longer, making it impossible to 

interpret temporal sodium flux within a given year. 

The rate of change of soil ESP has ramifications for optimum permeability 

within an effluent irrigated woodlot. With respect to increasing/decreasing soil ESP, a 

major response of the clay particles within micro-aggregates is the deformation of 

conducting soil pores and reduced hydraulic conductivities. In addition, clay dispersion 

is governed by the soil ESP and electrolyte concentration of the infiltrating waters at the 

time, where dispersed clay particles may block conducting soil pores and further reduce 

hydraulic conductivity. Therefore, investigating the temporal sodium flux in conjunction 

with the temporal variation in electrolyte concentration of infiltrating waters will give 

greater insight into the response of effluent irrigated soils to sodium-rich waters over 

time. 
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Three research aims were formed to investigate temporal sodium flux. These 

include: 

1. To investigate trends in the dominant water balance components for a 

woodlot soil receiving secondary treated effluent (STE); 

2. To examine temporal and spatial variation in both the water balance 

components and measured soil properties, particularly the sodium flux; and 

3. To investigate the implications of the sodium flux on the loss of soil structure 

and drainage over time (dispersion events), particularly in relation to 

temporal changes in soil ESP and effluent SAR. 

 

Monitoring programs for water balance components and soil parameters covered 

the period January 2002 – October 2003. Every two months, soil samples were taken at 

designated sites and at different depths (10, 20, 40, 60, and 80 cm). These samples were 

analysed for exchangeable cations (Ca2+, Mg2+, Na+ and K+), from which the ESP 

values were derived. Also, this appears to be the first time that soil sampling at this 

frequency, which enables the temporal sodium flux to be determined, has been carried 

out. 

Column leaching experiments were also performed over the study period to 

illustrate the response of the woodlot soil, in terms of micro-aggregate stability, to 

hydraulic loads of varying SAR. Column leaching experiments also confirmed the rate 

of solute movement through the soil profile and the woodlot soil’s ability to 

bind/exchange sodium under different hydraulic loads and electrolyte concentrations. 

Soil extraction plate methods were used to determine wilting point and field capacity 

for these soils. 

The Sodium Adsorption Ratio (SAR), which is the solutional equivalent to soil 

ESP, was used to define the electrolyte concentration of the applied effluent and rainfall 

to the woodlot. The net loss/gain of exchangeable sodium (∆ESP) at different depths 

and times was determined and compared with changes in water balance components 

and the measured volumetric soil water (θ ) over time. The soil water surplus/deficit 

was recorded at a daily time-step and a cumulative approach was used to determine the 
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long-term soil water surplus/deficit. In addition, variations in groundwater levels were 

monitored to observe if surplus irrigation events were reflected in temporal trends. 

As a result of determining the temporal variation in soil ESP, effluent and 

rainfall SAR, daily soil water deficit/surplus (short-term), cumulative soil water 

deficit/surplus (long-term) and volumetric soil moisture, temporal trends are presented. 

The sodium flux was then investigated by interpreting trends in the monitored data with 

respect to the dominant water balance components. All parameters were then used to 

model the potential dispersive behaviour of the receiving soil over time and depth, in 

relation to the volume and electrolyte concentration of the effluent and rainfall applied 

over time. The implications for soil structure and permeability depend on variations in 

soil ESP and effluent SAR.  

Results from this research show that soil ESP varied by as much as 24 % over a 

four-month period and is shown to be a function of the sodium loading (from STE) and 

soil water surplus/deficit. On each sampling occasion, soil ESP generally increased with 

depth at all irrigated sites. Soil ESP at non-irrigated sites was much lower than irrigated 

sites, although the variability in soil ESP was much greater. Variations in SAR of the 

waters received by the woodlot soil (effluent and rainfall) over the study period ranged 

from 0.5 to 5.9. It is shown that the SAR range, coupled with variations in soil ESP, has 

ramifications for maintaining long-term soil structure. Soil structure at different sites 

within a woodlot will respond differently according to the soil ESP/effluent SAR 

relationship. 

The dispersive potential of soil at a given ESP receiving irrigation waters of 

known SAR was assessed in light of the relationship between soil ESP and effluent 

SAR. This showed the dynamic response of effluent irrigated soils to the long-term 

temporal variation in electrolyte concentration of rainfall/effluent. The relationship 

between soil ESP and effluent SAR is graphically presented as a continuum, which in 

turn can be used as a management tool for assessing the potential for dispersion of clay 

particles in a soil of known ESP and irrigated with waters of known SAR. By 

identifying trends in the temporal sodium flux, the optimum permeability of the 

receiving soil can be assessed in relation to the electrolyte concentration of the applied 

waters and the soil exchangeable sodium percentage (ESP). 
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Secondary treated effluent application rates can then be corrected to prevent 

“dispersive” irrigation events over the long term and/or management strategies applied 

to remove excess sodium from the soil profile. The significance of the research is that a 

better understanding of the temporal dynamics of sodium in the soil profile will allow 

improved management of effluent irrigated woodlots, with the aim of making the 

practice sustainable with respect to controlling accumulating soil sodium and 

maintaining soil structure for future landuse. 


