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A.1 Introduction 

Montanari et al. [1997] provide three heuristic methods for the estimation of the Hurst 

coefficient, h . The purpose of these methods is only to detect long memory and provide 

a rough estimation of the h  value. They will be applied to the monthly Sydney rainfall 

data to determine if there is any evidence of long-term memory. Monthly data is used 

because daily data has zero values which make the calculation of long-term memory 

useless [Montanari et al., 1997]. Annual data was not used because the reliable 

estimation of long-memory can only be performed when the sample size is large enough 

that the asymptotic properties hold [Montanari et al., 2000]. All the monthly values 

were deseaonalized to remove the effects of any annual periodic component. Only the 

results for the three methods will be presented. For full details of each method refer to 

Montanari et al. [1997,2000]. 
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A.1.1 Rescaled range statistic 

The Rescaled Range (R/S) statistic is the best known method for estimating h . The R/S 

statistic is calculated for 10 equally spaced values of the time step t  and for 50 

logarithmically spaced values of the lag, k . Figure A.1 shows a plot of logarithm of k  

against the logarithm of the R/S statistic. The line of best fit through these points should 

scatter along a line with slope h . The line best fit for this plot was estimated using only 

the central region, as points in extreme left and right are subject to biases [Montanari et 

al., 1997]. Using this method an estimate of 60.0=h  was obtained. 

 

Figure A.1 – R/S Statistic for Sydney’s deseasonalized monthly rainfall values. 
The two vertical dashed lines delineate the region in which the slope of the best 
straight line fit was estimated. The two solid lines represent the slopes 
corresponding to 5.0=h  and 0.1=h . 

A.1.2 Aggregated variance method 

Figure A.2 shows the results of applying the aggregated variance (AV) method. The 

logarithm of the sample variance when the data is divided into mN  blocks of size m  

was calculated and plotted against the logarithm of m . The line of best fit though these 

points should have a slope of 22 −h . 50 logarithmically spaced values of m  were used. 

Again, only the central region of the plot was used. Using this method a value of 

52.0=h  was obtained. 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

lo
g1

0(
R

/S
)

log10(k)



Appendix A - Estimation of Hurst Coefficient 

Page A-3 

 

Figure A.2 – Aggregated variance plot for Sydney’s deseaonalized monthly 
rainfall values. The two vertical dashed lines delineate the region in which the 
slope of the best straight line fit was estimated. The solid lines represent the slopes 
corresponding to 5.0=h . 

A.1.3 Differenced variance method 

The two heuristic methods used above can give 5.0>h  for time series that do not have 

long term memory, but have shifts in the mean or a slowly decaying trend. When such 

nonstationarity is present the differenced variance (DV) method can be used to detect 

the long memory [Montanari et al., 1997]. Figure A.3 shows the results of applying this 

method to the Sydney deseaonalized monthly rainfall data. The plot shows values of the 

difference in the variance for 50 logarithmically spaced values of m  (note 50 points are 

not shown on the plot because those corresponding to a negative difference in the 

variance must be ignored). Again, only the central region of the plot was used to 

estimate the line of best fit. The slope of the line of best fit through these points should 

have a slope of 22 −h . Hence, an estimate of 66.0=h  was obtained.  
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Figure A.3 – Differenced variance plot for Sydney’s deseaonalized monthly 
rainfall values. The two vertical dashed lines delineate the region in which the  
slope of the best straight line fit was estimated.  

A.2 Summary 

A value for the Hurst coefficient h  equal to 0.5 means the absence of long memory. 

The higher the h  value is (up to a maximum value of 1.0) the higher is the intensity of 

long memory. These three heuristic methods give conflicting results for the estimation 

of h  and hence the detection of long memory. Table A.1 shows that the R/S and the DV 

method both indicate the presence of long memory, although it is not very strong, 

whereas the AV method indicates the absence of long memory. 

Table A.1 – Estimates obtained for the Hurst coefficient, h  for three different 
heuristic methods  

Heuristic Method Estimated h  value 

Rescaled Range Statistic  0.60 

Aggregated Variance Method 0.52 

Differenced Variance Method 0.66 
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Montanari et al. [2000] showed that these three methods can give unreliable estimates 

of h  when there is a strong periodicity in the time series. The autocorrelation function 

for the Sydney deseasonalized monthly rainfall values was calculated and no evidence 

of a strong periodic component was found.  

It is difficult to draw any clear conclusions from these results, except to say that there is 

not strong evidence to suggest that there is long memory present in the Sydney monthly 

time series. 
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B.1 Filling-in of Missing Data 

In all the monthly rainfall records from the selected sites in the Warrgamba catchment 

there were some months with missing data. This missing data was filled- in using the 

following methodology. Firstly, the daily rainfall record for a particular station was 

checked, because often the missing monthly value was due to only a missing day or 

two. If this was the case the daily record was filled- in using data from neighbouring 

stations, and the new monthly values were calculated. If the entire month was missing 

from the daily record then the fill- in value was calculated using the rainfall values from 

neighbouring stations and the correlations between these stations. If two or more 

neighbouring stations were available then the rainfall values from each were averaged to 

produce the fill- in value. In this case often this filled- in value was rounded to the nearest 

5 or 10 mm. A higher degree of accuracy was not considered justifiable given the 

inherent uncertainties when in-filling using data from neighbouring stations. In addition, 

in this thesis these monthly values were aggregated to annual values. Hence any errors 

produced by this in-filling process would be reduced by the aggregation procedure. It 

was also considered that a 5 mm or 10 mm inaccuracy in an annual rainfall total which 

averages around 1000 mm is a relatively small error.  
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Table B.1 provides a summary of the neighbouring stations used for each of the selected 

sites and the monthly correlations. For Mt. Victoria, Blackheath PO, Moss Vale PO and 

Taralga PO, the monthly correlations with the majority of the neighbouring stations 

were quite high ( )8.02 >r . For Yarra they were somewhat lower, but still considered 

reasonably good, with average 7.02 ≈r . Table B.2 provides a list of the months with 

missing data and the stations used to provide the fill- in values. 

B.2 Correction of Inconsistencies in Monthly Data 

Once the missing data was infilled, each of the monthly time series was examined to 

ensure the data was consistent with neighbouring stations. Scatter plots of the monthly 

values between the selected sites and the neighbouring stations were examined. If a 

monthly value appeared as an outlier in these scatter plots it was highlighted as 

potentially inconsistent data. Fortunately the data supplied by Sydney Water was quality 

coded, code 26 referred to good quality data, while code 80 referred to average quality 

data. If an outlier had quality code 80 this provided more evidence that the data maybe 

inconsistent. The daily records for the suspect months were also examined for further 

evidence. If strong evidence of an inconsistency was found the monthly value was 

corrected. Examples of strong evidence include when a two or three day rain event 

occurs at every neighbouring station but not at the selected station (e.g. Yarra, March 

1976). For rainfall records taken at a post office the rainfall over a weekend would often 

be aggregated and entered as Monday’s rainfall value. When the weekend coincided 

with a large rain event and a change of month this would produce an inconsistency in 

the two monthly values (e.g. Moss Vale PO, April/May 1995). Other instances include 

cases where the decimal place was clearly incorrectly placed e.g. 51 mm was entered 

instead of 5.1 mm (e.g. Moss Vale PO, January 1990). Similar to the technique used for 

the missing data the corrected monthly values were calculated using the rainfall 

information from neighbouring stations. Table B.2 provides a list of the monthly values 

that were corrected, the neigbouring stations used for the correction and brief 

description of the reasons why the correction was deemed necessary.  
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Table B.1 – Summary of the neighbouring sites and their monthly correlations for 
each of the selected sites from the Warragamba catchment.   

Selected Site Neighbouring Sites Monthly 

Correlation (r2) 

Mt. Victoria (063056) 0.93 

Little Hartley (Sheepcombe) (063048) 0.80 
Blackheath PO 

(063009) 
Leura (063045) 0.90 

Moss Vale PO (068045) 0.63 Mt. Victoria 

(063056) Blackheath PO (063009) 0.93 

Goulburn (070037) 0.50 

Mittagong Pool (068044)  0.80 

Bowral PO (068005) 0.90 

Exeter (068025) 0.87 

Moss Vale PO 

(068045) 

 

Bundanoon PO (068008) 0.87 

Goulburn (Pomeroy) (070071) 0.75 

Forest Lodge (070033) 0.71 

Woodhouse Lee (Leeston) (070131) 0.71 

Chatsbury (Maryland) (070020) 0.64 

Yarra (Wollogorang) 

(070088) 

 

Goulburn (070037) 0.80 

Woodhouse Lee (Leeston) (070131) 0.83 

Chatsbury (Maryland) (070020) 0.80 
Taralga PO 

(070080) 
Golspie (Aryston) (063032) 0.77 
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Table B.2 – Monthly rainfall data filled-in and corrected for the selected sites from the Warragamba catchment region. 
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Table B.2(cont) – Monthly rainfall data filled-in and corrected for the selected sites from the Warragamba catchment region. 
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C.1 Introduction 

Markov chain Monte Carlo (MCMC) methods provide a means to randomly sample 

from virtually any multivariate distribution. Chib and Greenberg [1995] give an 

excellent tutorial exposition of the theory behind MCMC methods. The explanation 

given here will take the reader through MCMC theory with particular care taken to 

explain the concepts behind the theory. The idea is to provide an intuitive explanation of 

how MCMC methods work. Detailed descriptions of the three commonly used members 

of the MCMC family, the Metropolis-Hastings (M-H) algorithm, the Metropolis 

algorithm and the Gibbs sampler will be given - the second two being special cases of 

the first. Because Chib and Greenberg [1995] provide possibly the best explanation for 

understanding MCMC methods the material in this appendix borrows heavily from their 

paper. As the emphasis is placed on explaining the concepts which underlay MCMC 

theory, on occasions the derivations given will not be theoretically rigourous. The 

presented theory focuses on continuous distributions. However, it equally applies to 

discrete distributions. The usual convention of denoting vectors as nonitalic bold type 

used in the rest of this thesis is not used this appendix.   
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C.2 Markov Chain Monte Carlo Simulation 

The aim of MCMC simulation is to draw samples from a target distribution. All that is 

required is that the target density, denoted by ( )xð , be calculable for a given vector x  

up to a known multiple, such that:  

 ( ) ( ) Kxfx =π  (C.1) 

where ( )xf  is the unnormalized density and K  is the (possibly unknown) normalizing 

constant. The approach used is to generate a Markov chain iterative sequence of 

samples nx,,x,x K21 . Now, due to the construction of the MCMC algorithm the 

distribution of these samples will eventually converge to a stationary distribution which 

corresponds to the target distribution. 

The proof that this Markov chain sequence converges to the target distribution has two 

parts. The first part is to demonstrate that the sequence of samples is a Markov chain 

that converges to a stationary distribution. This holds if the Markov chain is irreducible, 

aperiodic and not transient. The latter two conditions hold for a random walk on any 

proper probability distribution (except for certain trivial cases) [Gelman et al., 1995]. 

The term random walk is used to describe a sequence of samples where the next value is 

equal to the current value plus some noise. Irreducibility holds if the Markov chain has a 

positive probability of visiting every part of the target distribution from any other part of 

the target distribution. The second part of the proof is that the stationary distribution is 

the target distribution. This part is a little harder to prove. 

In Markov chain theory the usual approach is to start with a transition kernel ( )xAP  

which is the conditional probability function that represents the probability of moving 

from a point x  to a point in the region defined by A . The notation “a region A ” is used 

because the probability of moving to an exact point is zero. Also, it is permitted that the 

chain make a transition from x  to x , that is, the probability of moving from x  to x  is 

not necessarily zero. Now, the major concern of Markov chain theory is to determine 

under what conditions a stationary distribution ∗π  exists and under what conditions the 

iterations based on this transition kerne l ( )⋅⋅P  converge to the stationary distribution. 

The stationary distribution satisfies:  
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 ( ) ( ) ( )∫ π=π∗ dxxxdyPdy  (C.2) 

where ( )⋅π  represents the probability density of the stationary distribution ( )⋅π* . A 

subtle, but important point regarding the notation is explained here. The term dy  is used 

because the probability of sampling a point y  is zero, whereas the probability of 

sampling a region with “width” dy  represented by ( )dyyπ  has some measure, hence 

( ) ( )dyydy π=π∗ . A conceptual interpretation of Equation (C.2) is that if the 

distribution is stationary then the probability of moving to a region dy  from any point 

x  is equal to the probability of sampling that region; that is, it is independent of the 

starting point x . The necessary conditions for the convergence of the iterations of the 

Markov chain to this stationary distribution were discussed earlier. 

MCMC methods turn this theory around. The stationary density is already known (up to 

a constant multiple) − it is ( )⋅π , the target density from which samples are desired − 

but the transition kernel is unknown. Therefore to generate samples from ( )⋅π  MCMC 

methods find and utilize a transition kernel ( )xdyP  whose thn  iterate converges to 

( )⋅π  for large n . The process is started at an arbitrary x  and iterated a large number of 

times. After this large number the distribution of samples generated by the transition 

kernel is approximately the target distribution.  

Of course the problem then is to find a suitable transition kernel. MCMC theory 

simplifies this choice by supposing that for some function ( )xyp  the transition kernel 

can be expressed as: 

 ( ) ( ) ( ) ( )dyxrdyxypxdyP xδ+=  (C.3) 

where ( ) 0=xxp , ( ) 1=δ dyx  if dyx ∈  and 0 otherwise and  

 ( ) ( )∫−= dyxypxr 1  (C.4) 
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which represents the probability that the chain remains at x . The ( ) ( )dyxr xδ  part of 

Equation (C.3) takes care of the requirement that the probability of the chain not 

moving is nonzero, even if ( ) 0=xxp .  

Now, the reversibility condition is introduced, which is stated as: 

 ( ) ( ) ( ) ( )yxpyxypx π=π . (C.5) 

This intuitively says that the unconditional probability of moving from x  to y  where x  

is sampled from ( )⋅π  [the left hand side of (C.5)] is equal to the unconditional 

probability of moving from y  to x  where y  is sampled from ( )⋅π  [the right hand side 

of (C.5)]. Chib and Greenberg [1995] show that if the reversibility condition holds then 

( )⋅π  is the stationary density of ( )xP ⋅ . This proof is reiterated here, by first 

considering the right hand side of Equation (C.2): 

 ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( ) ( )

( )[ ] ( ) ( ) ( )

( )

( )A

dyy

dxxxrdyyyr

dxxxrdydxyyxp

dxxxrdydxxxyp

dxxAxrdxxdyxypdxxxAP

A

A A

A A

A A

xA

∗=

=

+−=

+=

+=

+=

∫
∫ ∫
∫ ∫∫
∫ ∫∫
∫ ∫∫∫

π

π

ππ

ππ

ππ

πδππ

1
 

(C.6) 

The first line of the above proof uses the definition given in (C.3). In the second line the 

variables of the integration are exchanged. In the third line the reversibility condition 

given in (C.5) is applied. In the fourth line the definition in (C.4) is applied. Equation 

(C.6) shows that if the reversibility condition holds then ( )⋅π∗  is the stationary 

distribution for ( )⋅⋅P . Hence the reversibility condition provides a sufficient condition 

that must the satisfied by ( )xyp . Now, it will be explained how the Metropolis-

Hastings algorithm constructs a transition kernel that satisfies this condition.  
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C.3 The Metropolis-Hastings Algorithm 

The Metropolis-Hastings (M-H) algorithm is the most general implementation of the 

MCMC methods. It requires a candidate generating density from which the samples can 

be selected. As these candidates are to form a Markov chain, the density must be 

dependent on the current state of the process. Thus it is denoted as ( )xyq . This is 

interpreted as meaning that when the process is at a point x , the density samples a value 

y  from ( )xq ⋅ .  

It is now required that this density ( )xyq  satisfies the reversibility condition given in 

(C.5), which it is not likely to do all by itself. Suppose that for some ( )yx, : 

 ( ) ( ) ( ) ( )yxqyxyqx π>π  (C.7) 

which says that the process is more likely to move from x  to y  then to move from y  

to x . This does not satisfy the reversibility condition. To correct this situation in the M-

H algorithm a probability of move ( ) 1<α xy  is introduced to reduce the likelihood of 

the process moving from x  to y . If this move is not made the process returns x  as a 

value from the target distribution. Thus the transitions from x  to y  ( )xy ≠  are made 

according to: 

 ( ) ( ) ( ) yx,xyxyqp ≠α≡xyMH  (C.8) 

where ( )xyα  is yet to be determined. To define the corresponding probability ( )yxα  

the inequality given in (C.7) is considered again. It is desirable that the likelihood of the 

process moving from y  to x  is made as large as possible. Thus  ( )yxα  is defined to 

be as large as possible, and since it is a probability, its upper limit is 1. To determine the 

probability of move ( )xyα  we apply the reversibility condition to ( )xypMH , because 

then: 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )yxqy

yxyxqyxyxyqx

π=

απ=απ
 (C.9) 
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and therefore it follows that ( ) ( ) ( ) ( ) ( )xyqxyxqyxy ππ=α . If the inequality in (C.7) 

is reversed then ( )xyα  is set to 1 and ( )yxα  is derived similarly as above. The 

interpretation of the probabilities ( )xyα  and ( )yxα  is that they are introduced to 

“balance” both sides of the inequality given in (C.7) to ensure that ( )xyMHp  satisfies 

the reversibility condition. Hence for ( )xyMHp  to be reversible the formal definition 

of the probability of move is: 

 
( )

( ) ( )
( ) ( )

( ) ( )





 >π




π
π

=α
otherwise1

 0if1 xyqx,,
xyqx
yxqy

min
xy  (C.10) 

To provide a complete definition of the M-H process transition kernel, the possibility 

that the process remains at x  must be considered. Using (C.4) and (C.8) from above we 

get the result: 

 ( ) ( ) ( )∫ α−= dyxyxyqxr 1MH  (C.11) 

Hence the complete definition of the M-H transition kernel denoted by ( )xdyPMH  is 

given by: 

 ( ) ( ) ( ) ( ) ( )[ ]∫ α−+α= dyxyxyqdyxyxyqxdyP 1MH  (C.12) 

As shown above by its construction ( )xdyPMH  is reversible and hence it follows that 

the M-H kernal has ( )xπ as its stationary density.  

This completes the bulk of the theory that proves that the Markov chain sequence of 

samples generated by the M-H algorithm converges to the target distribution. The 

Metropolis-Hastings algorithm is potentially a very powerful algorithm because, 

theoretically at least, it can be used to sample from virtually any distribution. However 

there are several fundamental issues regarding the implementation of this algorithm 

which must be highlighted. 

Firstly, the Metropolis-Hastings algorithm is specified by its candidate generating 

density, ( )xyq . The selection of an appropriate density is crucial to the efficiency of 

the algorithm. This issue will be discussed further in the following sections. Secondly, if 
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a candidate value is rejected then the current value is taken as the next item in the 

sequence. Thirdly, the calculation of ( )xyα does not require knowledge of the 

normalizing constant of ( )⋅π  because it appears in both the numerator and denominator 

of (C.10). This result means the application of the M-H algorithm for simulating 

Bayesian posteriors is particularly appealing because calculation of the posterior 

normalizing constant ( )yp  [refer to Equation (5.2) in Section 5.2] is not needed. 

Finally, the implementation of the general M-H algorithm can be summarized in the 

following steps: 

Step 1. Initialise x  with arbitrary starting value 0x . 

Step 2. Repeat for ni ,...,2,1=  

Generate y  from ( )ixq ⋅  and u  from ( )10,U  

If ( )ixyu α≤   

  set yx i =+1  

else 

  set ii xx =+1  

Step 3. Return the values { }nx,...,x,x 21 . 

With any MCMC method the draws are only regarded as a sample from the target 

density ( )xπ  only after the chain has passed the transient stage and the effect of starting 

value has become so small that it can be ignored. Now, we know the conditions that are 

required for a Markov chain to converge, these have been previously discussed. 

However, these conditions do not determine the rate of convergence. This leaves us 

with the empirical question of how large is the sample size, say b , which should be 

discarded and how long should the sampling run be. This issue of MCMC convergence 

is a crucial one. It has been and still is the subject of a large amount of research work. 

Section 5.2.4.c provides further discussion on this topic including an outline of the 

methods used to determine if convergence has been achieved.   

As mentioned, the selection of an appropriate candidate generating density has a large 

influence on the performance of the M-H algorithm. Typically, this density is chosen 
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from a family of distributions that requires the specification of such tuning parameters 

as the location and the scale. Chib and Greenberg [1995] provide a good discussion of 

this subject with several examples. In this appendix the discussion will be centred on the 

families of candidate generating densities which lead to two special cases of the M-H 

algorithm, the Metropolis algorithm and the Gibbs sampler, as these are the MCMC 

methods which were applied in this thesis. 

C.4 The Metropolis Algorithm 

The Metropolis algorithm is a special case of the general Metropolis-Hastings algorithm 

where a symmetrical candidate generating density is chosen. Given that a symmetrical 

density satisfies ( ) ( )yxqxyq =  the probability of a move reduces to 

( ) ( ) ( )[ ]1min ,xyxy ππ=α . Therefore if ( ) ( )xy π≥π  the chain will always make the 

move from x  to y ; otherwise it moves with probability ( ) ( )xy ππ . An intuitive 

interpretation of this result is that if a jump goes “uphill” then it is always accepted, 

whereas if a jump goes “downhill” it is accepted with nonzero probability. 

In the implementation of the Metropolis algorithm used in this thesis the multivariate 

Gaussian density was chosen as suitable symmetrical candidate generating density. The 

algorithm was set up such that it was from the family of candidate generating densities 

that are characterized by the form ( ) ( )xyqyxq −= 1 . Thus the candidate y  is drawn 

according to the process zxy += , where z  is the incremental random variable that 

follows the distribution 1q  (which is multivariate Gaussian in this case). Because the 

candidate is equal to the current value plus some noise, this case is called a random 

walk chain. The advantage of this setup is that only the scale parameter of the candidate 

generating density is required to be tuned, the location parameter is given by the current 

value of the process x.   

This still leaves the important question of choosing the scale, or spread, of the candidate 

generating density. This has important implications for the efficiency of the algorithm. 

The spread of the candidate generating density affects the behaviour of the chain in at 

least two ways: One is the “acceptance” rate (the percentage of times a move is made to 

a new point) and the other is the ability of the chain to explore all regions of the target 

distribution. To understand this, consider the situation where the chain has converged 
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and is located at the mode of the target distribution. If the spread is too large then the 

samples from the candidate generating density will be a long way from the current  

value, and hence will have a low probability of being accepted (because the target 

probability density for the samples a long way from the mode will have a very low 

value compared to the density at the mode). Conversely, if the spread is too small the 

chain will take a long time to explore the entire target density and it is likely that low 

probability regions will be undersampled. Again, Chib and Greenberg [1995] provide a 

good discussion on this topic, including some references which provide guidance for 

appropriate acceptance rates. For the application of the Metropolis algorithm in this 

thesis, refer to Section 8.3.1 for a description of how the spread of the candidate 

generating density was determined.  

C.5 The Gibbs Sampler 

If the M-H algorithm is set up such that it is applied in turn to subblocks of the vector x  

rather than simultaneously to all elements of the vector then some powerful algorithms, 

such as the Gibbs sampler, can be formed. These “block-at-a-time” algorithms have 

many advantages, the main one is that often it simplifies the search for a suitable 

candidate generating density.  

The “block-at-a-time” concept is illustrated by considering the situation where the 

vector x  is divided into two blocks ( )21 ,xxx = . Suppose there exists a conditional 

transition kernel ( )2111 , xxdyP  which for a fixed value of 2x  has ( )221 x⋅π∗  as its 

stationary distribution [with corresponding density ( )221 x⋅π ]. Therefore applying 

Equation (C.2) to this subblock case we get: 

 ( ) ( ) ( )∫ π=π∗
1212121112121 dxxxx,xdyPxdy  (C.13) 

Also suppose the existence of a conditional transition kernel ( )1222 x,xdyP which has 

( )112 x⋅π∗  as its stationary distribution, analogous to (C.13). For example 1P  could be 

the transition kernel generated by a M-H chain applied to block 1x  with 2x  fixed for all 

iterations. Now initially it may seem there are some serious drawbacks to this subblock 

approach. For example, one may think that each of these kernels would have to run to 
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convergence for every fixed va lue of the conditioning variable. Thankfully, this is not 

the case because the product of kernels principle saves the day. This principle says that 

the product of these two transition kernels has ( )21,xxπ  as its stationary density. The 

practical significance of this result is enormous. Instead of having to run each kernel to 

convergence for each value of the conditioning variable it allows us to take draws in 

succession from each of the kernels. This has the added advantage because, as 

mentioned above, it is often easier to find several conditional kernels that converge to 

their respective conditional densities rather than to find one kernel that converges to the 

joint density. 

To prove the product of kernels principle, it is first necessary to specify the order that 

the elements of x  will be sampled. Suppose the transition kernel ( )21 ,xP ⋅⋅  samples 1y  

given 1x  and 2x , and the transition kernel ( )12 ,yP ⋅⋅ samples 2y  given 2x  and 1y . This 

means that the vector ( )21,xxx =  is sampled in two steps. In the first step 1y  is sampled 

from ( )21 ,xP ⋅⋅  to replace 1x  and in the second step 2y  is sampled from ( )12 ,yP ⋅⋅  to 

replace 2x . The kernel formed by multiplying these two conditional kernels together 

has ( )21,xxð∗  as its stationary distribution, as shown below: 

 ( ) ( ) ( )

( ) ( ) ( )[ ] ( )

( ) ( ) ( )

( )
( ) ( )

( )
( )

( ) ( ) ( )

( ) ( )

( )21
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212112222111

,dydyð

ydyðdyð

dxyxð,yxdyPdyð

dxxð
xð

dyðyxð
,yxdyP

dxxðxdyð,yxdyP

dxxðdxxxð,xxdyP,yxdyP

dxdx,xxð,yxdyP,xxdyP

∗

∗∗

∗

∗

∗

=

=

=

=

=

=

∫

∫

∫
∫ ∫

∫ ∫

 

(C.14) 

The first line follows from our assumption about the order that the elements of the 

vector x  will be sampled. The second line is simply a rearrangement. The third line 

follows from (C.13). In the fourth line Bayes theorem is applied. The fifth line is 

another rearrangement. The sixth line follows from applying (C.13) to 2P , while the last 

is a result of the law of total probability. 
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The proof of the product of kernels principle can also be generalized to cases where the vector x  is divided into more than two blocks. Consider 

the case where three blocks are used, ( )321 ,x,xxx = . Extending the two block example given above, x  is now sampled in three steps. For the first 

step, suppose the transition kernel  ( )321 ,x,xP ⋅⋅  samples 1y  given 1x , 2x  and 3x  (i.e. 1y  replaces 1x ). In the second step the transition kernel 

( )312 ,x,yP ⋅⋅  samples 2y  given 2x , 3x  and 1y , (i.e. 2y  replaces 2x ). Finally for the third step the transition kernel ( )213 ,y,yP ⋅⋅  samples 3y  

given 3x , 1y  and 2y , (i.e. 3y  replaces 3x ). The kernel formed by multiplying these three conditiona l kernels together has ( )321 ,x,xxð∗  as its 

stationary distribution, as shown below: 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( )

( ) ( ) ( )
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∫∫∫

 

(C.15) 
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This proof has a very similar format to the proof given in (C.14), except that the result 

from (C.14) is used in the third line. Furthermore this result follows on as x  is divided 

into additional subblocks. The transition kernel formed by multiplying all the subblock 

transition kernels together has ( )dy∗π  as its stationary distribution.  

Using this result an important special case of the M-H algorithm, the Gibbs sampler can 

now be derived. This algorithm is obtained by letting the transition kernels (for the two 

block case), ( ) ( )21212111 xdyx,xdyP ∗π=  and ( ) ( )12121222 ydyy,xdyP ∗π= ; that is, 

the samples are generated from their “full conditional distributions”. Note this method 

requires that it is possible to generate independent samples from each of the full 

conditional densities.  

The M-H probability of move ( )xyα  for this Gibbs sampling setup will now be 

calculated. Considering the two block case given above. Because the transition kernel is 

set to ( ) ( )21212111 xdyð,xxdyP ∗=  then the candidate generating density for the first 

step ( ) ( )212121121 xyð,xxyq = . Therefore, using Equation (C.10), the corresponding 

probability of move for this first step ( )21121 ,xxyá  can be determined: 

 
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1
21212121

21212121

211212121

211212121
21121

=

=

=

xyðxxð

xxðxyð
,xxyqxxð

,xyxqxyð
,xxyá

 

(C.16) 

It also follows from this that the probability of move for the second step 

( ) 112212 =,yxyá . As the probability of move for both the first and second steps is one 

then for the Gibbs sampler the overall probability of move, ( ) 1=α xy . This means that 

the candidate samples are always accepted.  This result also applies to the multi-block 

case. Furthermore it is important to note that because the samples are always accepted 

the Gibbs sampler is the most efficient implementation of the M-H algorithm. 

The Gibbs sampler is very useful for drawing samples from Bayesian posteriors. 

Consider the case where a parameter vector θ  with posterior dens ity ( )NYp θ  is split 
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into d  subblocks. As given above, in the Gibbs sampler the candidate generating 

density for each j th subblock is set to the corresponding subblock target density. In a 

general sense, this says ( ) ( )11111 −+− = jdjjjjdjjj ,y,,yx,xyð,y,,yx,xyq KKKK . 

Therefore, each subblock of the parameter vector jθ  can be sampled using ( ix  refers to 

the i th sample of parameter subblock x ): 

 ( )N
i
d

i
j

i
j

i
j

i
j Y,,...,è,è,...,èèèè 11

111p     −−
+−←  (C.17) 

This is very useful for situations where drawing samples of the full parameter vector 

directly from the posterior is not possible. Often it is found that it is a simple procedure 

to draw samples from the posteriors of a subblock of the parameter vector conditioned 

on the remaining fixed parameter values (the HSM model is good example). Therefore, 

the Gibbs sampler is an extremely important special case of the M-H algorithm. 

C.6 Summary 

Phew! This explanation of Markov chain Monte Carlo methods requires a large amount 

of statistical theory, which to the practicing stochastic hydrologist may seem a bit 

daunting. It is important to remember that the statistical theory is often full of details 

which sometimes can detract from the main conceptual ideas. Hence, the important 

ideas will be recapitulated to conclude this appendix:  

• The most general implementation of Markov chain Monte Carlo methods is the 

Metropolis-Hastings algorithm which provides a technique to sample from virtually 

any multivariate distribution. All that is required is that the “target” distribution be 

calculable up to a known multiple for a given vector x . 

• To do this it utilizies a candidate generating density to generate samples. As these 

samples are made to be dependent on the current value of process, they form a 

Markov chain. Markov chains possess a transition kernel, which represents the 

probability of moving from say x  to y . 

• Given certain mild conditions, this Markov chain will converge to a stationary 

distribution. To ensure that this stationary distribution is the target distribution the 
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samples from the candidate generating density are only accepted with a certain 

probability, denoted as the probability of move.  

• This probability of move modifies the transition kernel to ensure that the 

“reversibility” condition is satisfied.  

• The reversibility condition says that given x is generated from the target distribution 

then the unconditional probability of moving from x  to y  is equal to the 

unconditional probability of moving from y  to x , if y  is also generated from the 

target distribution.  

• Hence as the probability of move modifies the transition kernel such that the 

reversibility condition is satisfied, then the samples generated by the Markov chain 

induced by the Metropolis-Hastings algorithm will converge to the target 

distribution. 

• The major stumbling blocks for the implementation of the M-H algorithm are the 

specification of a suitable candidate generating density, which has a great influence 

on the efficiency of the algorithm, and determining when the Markov chain has 

achieved convergence, which is not always a straightforward task.  

• The  Metropolis algorithm is a special case of the Metropolis-Hastings algorithm 

where a symmetrical candidate generating density is chosen. This simplifies the 

calcula tion of  the probability of move. 

• “Block-at-a-time” algorithms refer to the implementation of the Metropolis-Hastings 

algorithm where the elements of x  are sampled one subblock at a time, rather than 

the entire vector at once. This often simplifies the choice of suitable candidate 

generating densities. The product of kernels principle means that each individual 

kernel used to produce samples for each subblock does not have to run to 

convergence, rather samples from each of the kernels can be drawn in succession 

and the entire algorithm can be then assessed for convergence.   

• For a special case of the M-H algorithm called the Gibbs sampler the actual 

conditional target distributions of each subblock are chosen as the candidate 

generating densities. “Conditional” target distributions refer to the target distribution 
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of one subblock of the vector x , conditioned on the remaining elements of x .  This 

results in the probability of move always equaling one, i.e. the samples are always 

accepted. This is the most efficient M-H implementation. 
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Appendix D Appendix D --  Sampling Distributions for Sampling Distributions for 

the Gibbs Sampler the Gibbs Sampler   

  

 

 

 
 
 
 
 
 
 
 
 
 
 

D.1 Introduction  

The procedures for sampling from each of the conditional posteriors required for the 

application of the Gibbs sampler to the single site and multi-site HSM model will be 

given. Gelman et al. [1995] provides an excellent reference text of the development of 

the Bayesian posteriors, and unless otherwise referenced, the majority of results derived 

here are from their book. As well as providing the details of the derivation of the 

sampling procedures a conceptual interpretation of the resulting expressions for the 

posteriors is also given. The aim is to give an appreciation of the respective roles played 

by the prior and the data in influencing the Bayesian posteriors. Also included is the 

derivation of the likelihood function for the HSM model. 

D.2 Sampling the Hidden State Time Series  

The general method for sampling the hidden state time series NS  for multi-state Markov 

mixture models as presented by Chib [1996] is terse. A fuller treatment for the two-state 
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case of the HSM model is presented here. For the following derivation it is convenient 

to adopt the notation,  as used by Chib [1996],  where: 

  { }nN ,...,ssS 1=  { }tt ,...,ssS 1=  { }nt
t ,...,ssS 1

1
+

+ =  

with a similar convention adopted for the observed data NY  , tY , and 1+tY . 

The entire state time series is simulated using the distribution ( )è,YSp NN  which is the 

joint posterior mass function of all the states given NY  and è . The derivation aims to 

develop a simple expression for this joint distribution exploiting the Markovian property 

( ) ( )111 −−− = ttttt ssp,YSsp . This will lead to a recursive simulation procedure where at 

each step, starting with the terminal state, ns , only a single state has to be drawn.  

Step 1: By initially rewriting the joint distribution of the states, ( )è,YSp NN  and 

applying the conditional probability theorem repeatedly to the right hand term a 

recursive expression results: 

 ( )è,YSp NN { }( )è,Ys,...,s,sp Nn21=  

  { }( ) { }( )è,Ys,...,spè,Y,s,...,ssp NnNn 221=  

  { }( ) { }( ) { }( )è,Ys,...,spè,Y,s,...,sspè,Y,s,...,ssp NnNnNn 33221=  

The summary of this recursion is: 

 ( ) ( ) ( ) ( )è,Ysp...è,Y,Ssp...è,Y,Sspè,YSp NnN
t

tNNN
12

1  +=  (D.1) 

The typical term, excluding the terminal point is therefore: ( )è,Y,Ssp N
t

t
1+  

Step 2: Expand and split the NY  term as { }1+t
t ,YY  from the typical term in (D.1), and 

apply Bayes theorem to the result. Further expand and split the 1+tS  term as { }2
1

+
+

t
t ,Ss  

and apply the conditional probability theorem: 

 ( )è,S,Ysp t
Nt

1+ ( )è,S,Y,Ysp tt
tt

11 ++=  

 ( ) ( ) ( )è,Y,S,Ypè,Yspè,Y,sS,Yp t
tt

tttt
tt 1111 ++++=  
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 ( ) ( )è,Yspè,Y,sY,S,sp tttt
tt

t
12

1
++

+∝  

 ( ) ( ) ( )è,Yspè,Y,sspè,Y,s,sY,Sp tttttttt
tt

11
12

++
++∝  

The term ( )è,Y,S,Yp t
tt 11 ++  is independent of ts  and hence becomes part of the 

normalizing constant. Due to the Markovian property of the states the term 

( ) ( ),è,Ys,YSp,èY,s,s,YSp tt
tt

ttt
tt

1
12

1
12

+
++

+
++ =  which is also independent of ts  and 

becomes part of the normalizing constant. Furthermore, the Markovian property of the 

states means that 1+ts  is purely dependent on knowledge of ts . Thus ( )è,Y,ssp ttt 1+  

becomes ( )è,ssp tt 1+ . Therefore a simplified expression for the typical term of the joint 

posterior density is the product of two terms: 

 ( ) ( ) ( )è,Yspè,sspè,S,Ysp tttt
t

Nt 1
1

+
+ ∝  (D.2) 

The first term is the transition probability of going from ts  to 1+ts , and the other term is 

the mass function of ts  given tY . The normalizing constant of this mass function is the 

sum of the numbers obtained using (D.2) as { }DRYWETst ,∈ .  

The final stage of the calculation is to determine the mass function ( )è,Ysp tt  given in 

(D.2). The method developed is applied recursively for all ts  from t  = 1 to n . Assume 

that the function ( )è,Ysp tt 11 −−  is available. Then repeat the following steps: 

Prediction Step: Determine ( )è,Ysp tt 1−  using the total probability theorem: 

 ( ) ( ) ( )
{ }
∑

∈
−−−− ===

DRYWETk
tttttt èYkspèksspèYsp

,
1111 ,,,  (D.3) 

where the Markovian property of the states means that ( ) ( )è,sspè,Y,ssp ttttt 111 −−− =  

Update Step:  Determine ( )è,Ysp tt  first by splitting the tY  term so that it becomes 

( )è,Y,ysp ttt 1−  and then applying Bayes theorem: 
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 ( ) ( )
( ) ( )
( ) ( )èYspèsyp

èYspèYsyp

èYyspèYsp

tttt

ttttt

ttttt

,,

,,,

,,,

1

11

1

−

−−

−

∝
=
=

 

(D.4) 

The left hand term ( ),è,Ysyp ttt 1−  becomes ( ),èsyp tt  because ty  only depends on ts  

and è . This result is the probability density of the rainfall at time t, ty , given the 

climate state, ts . As the rainfall distribution is assumed Gaussian this is easily 

evaluated. The right hand term is calculated in the prediction step. The normalizing 

constant for mass function given in (D.4) is the sum of all the terms for 

{ }DRYWETst ,∈ . At 1=t  these steps can be initialized by ignoring the prediction 

step and using the stationary Markovian state probabilities derived from the state 

transition probability matrix P  for ( )è,Ysp 01 . 

Using the expressions derived previously, the simulation of the state time series is a 

relatively simple procedure. First the prediction and update steps are run recursively to 

compute the mass functions ( )è,Ysp tt , for all t = 1 to n. The sampling of the state time 

series starts by initially simulating ns  using ( )è,Ysp Nn . The remaining states, from 

1−ns  through to 1s  can be simulated using the mass function ( )è,S,Ysp t
Nt

1+  

calculated using the expression given in (D.2). An example illustrates this procedure. 

Suppose that 1+ts  was sampled as a wet state. Then the probability of sampling ts  as 

state k , is calculated as follows: 

 ( ) ( ) ( )
( ),èk|YspWet)p(k

,èk|Yspk,èsWetsp,è,SYksp

tt

tttt
t

Nt

=∗→∝
===∝= +

+
1

1

 (D.5) 

where  )( Wetkp →  is the probability of jumping from state k  to a wet state.  

D.3 Derivation of the Likelihood Function for the HSM Model 

In an earlier work, Chib [1995] outlines a methodology for deriving the likelihood 

function for the HSM model which utilises some of the results given above. This is 

done without including the hidden state time series as a model parameter. Hence, the 

vector of unknown model parameters is as given in Equation (5.5), where: 
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 ( )P,,,,' DDWWè σµσµ=∗  (D.6) 

The procedure for calculating the likelihood function ( )∗θNYp  is derived by first 

rewriting ( )∗θNYp  and repeatedly applying the conditional probability theorem, to 

develop a recursive expression, similar to Step 1 in Section D.2 above: 

( ) ( )
( ) ( )
( ) ( ) ( )∗

−
∗

−−
∗

−

∗
−

∗
−

∗
−

∗

=
=
=

èYpèYypèYyp

èYpèYyp

èYypèYp

NNnNn

NNn

NnN

2211

11

1

,,

,

,

 

The summary of this recursion is: 

 ( ) ( ) ( ) ( )∗∗
−

∗
−

∗ = èypèYypèYypèYp ttNnN 111 ,, KK  (D.7) 

The typical term, excluding the terminal point is therefore: ( )∗
− èYyp tt ,1  

Now, given the HSM modelling structure if the total probability theorem is applied to 

this typical term then: 

 ( ) ( ) ( )
{ }

( ) ( )
{ }
∑
∑

∈

∗
−

∗
∈

∗
−

∗
−

∗
−

===

===

DRYWETk
tttt

DRYWETk
ttttttt

èYkspèksyp

èYkspèksYypèYyp

,
1

,
111

,,

,,,,
 

(D.8) 

The second line follows because the rainfall ty  is purely dependent on knowledge of 

ts . The result is the probability density of the rainfall ty  given the state ts . As 

mentioned, because the rainfall distribution is assumed Gaussian this is easily evaluated. 

The right hand term of Equation (D.8) is the time varying probability mass function that 

is given in the prediction step in Section D.2 above. For the terminal point ( )∗èyp 1  the 

likelihood function can be evaluated using the stationary Markovian state probabilities 

derived from the state transition probability matrix P  for ( )∗èYsp ,01 . 

Given the likelihood value for this typical term the full likelihood function can therefore 

be calculated using: 
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 ( ) ( )∏
=

∗
−

∗ =
n

t
ttN èYypèYp

1
1 ,  (D.9) 

Hence a relatively simple procedure for calculating the likelihood function value for a 

given parameter vector ∗θ  of the HSM model is illustrated. This can be applied to either 

the single or multi-site HSM modelling framework. The only difference is the 

probability density function used to calculate ( )∗= èksyp tt , . For the single site case 

it is the univariate Gaussian and in the multisite case it is the multivariate Gaussian 

probability density function.  

D.4 Sampling the State Transition Probabilities 

Given knowledge of the hidden state time series the transition probabilities become 

independent of the data, NY . This leads to a straightforward procedure for deriving their 

conditional posterior ( )NSp P . Chib [1996] provides a method for sampling from the 

state transition probability matrix of a multi-state hidden Markov model. Presented here 

will be a method for the two-state case of the HSM model. 

The conditional posteriors for both the transition probabilities W Dp  and  DWp  given in 

P  are equivalent. Thus this derivation will be given for a single ijp  ( )ji ≠ , which can 

represent either W Dp  or DWp .  

The first step in determining the conditional posterior ( )Nij Spp  is to determine the 

likelihood function ( )ijN pSp . Now given the number of times a particular state i  

appears in the hidden state time series in  the number of times a transition is made from 

that state to the opposing state j , ijn  is referred to as the number of ‘successes’ (a 

success here refers to a successful state transition) in a sequence of in  iid Bernouilli 

trials. Therefore the likelihood for the probability of a state transition ijp  follows a 

Binomial distribution such that: 
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 ( )
( ) ( ) ( ) ijiij nn

ij
n

ijijN

ijiijN

pppSp

,pnBin~pS
−−∝ 1

 
(D.10) 

This likelihood represents the probability of ijn  state transitions in in  trials with a given 

state transition probability ijp . If we assume a Beta distribution for the prior of ijp  

then: 

 ( )

( ) ( ) ( ) 11
1 −− −∝ â

ij

á

ijij

ij

pppp

á,â~Betap
 

(D.11) 

where α  and β  are prior parameters. If this prior is updated by the likelihood given in 

(D.10) then the resulting posterior is:   

 ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) 11

11

1

11
−β+−−α+

−β−α−

−∝

−−∝

∝

ijiij

ijiij

nn
ij

n

ij

ijij
nn

ij

n

ij

ijijNNij

pp

pppp

pppSpSpp

 (D.12)  

which has the form of a Beta distribution, and therefore: 

 ( )ijiijNij nn,âná~BetaSp −++  (D.13) 

This provides a good illustration of a conjugate prior distribution. A conjugate prior has 

the property that when it is updated using the likelihood it forms a posterior that is from 

the same parametric family. In the example above, the Beta distribution is the conjugate 

prior for the Binomial likelihood. Conjugate priors are mathematically convenient 

because it means that the posterior is from a known parametric family and is therefore 

easy to work with. To calculate the posterior the parameters of the prior are simply 

updated using information contained in the data, as shown above. The concept of a 

conjugate prior will be applied repeatedly in the following sections of this appendix.   

Now, if the prior parameters βα,  are not fixed then they would be known as 

hyperparameters. In this case the Beta distribution is uniform if 1=β=α . As 

uninformative priors are desirable in a Bayesian framework, these parameter values will 
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be used for the prior. Often the choice of suitable prior and appropriate hyperparameter 

values is not so simple.  

To sample values for both W Dp  and DWp  from the posterior given in (D.12) a Gamma 

distribution can be used [Chib, 1996]: 

 ( )11 ,nGamma~x
xx

x
p

xx
x

p ijij
DDDW

DW
DW

W WW D

W D
W D +

+
=

+
=  

D.5 Sampling the State Rainfall Parameters 

In this section the methodology for sampling the state rainfall parameters in both the 

single site and multi-site context will be given. As explained in Appendix E, the results 

presented in this thesis for the single site HSM model used the prior specification for the 

state rainfall parameters given in Equations (5.10) and (5.11), referred to as the P3 prior. 

However, a different prior specification (referred to as the P1 prior) was originally used 

for the state rainfall parameters for the results published in Thyer and Kuczera [2000a]. 

The conditional posteriors for the state rainfall parameters slightly change depending on 

whether the P1 or P3 prior is used. The P3 prior assumes µ  and σ  are jointly unknown, 

hence their conditional posterior is ( )NYp σµ, . This can be further broken down using 

the relationship ( ) ( ) ( )NNN YpYpYp σσµ=σµ ,, . The conditional posterior for σ  is 

therefore only conditioned on the data NY . In contrast using the P1 prior formulation the 

conditional posterior for σ  is conditioned on known µ  and the data, ( )NYp ,µσ . For µ  

the conditional posterior is still ( )NYp ,σµ . Both these formulations are allowable in the 

Gibbs sampling framework. However, as stated in Appendix E, changing the 

hyperparameter values for the P1 prior depending on the sampled hidden state time 

series is not allowable. This is the reason why the P1 prior is not used in this thesis.  

For completeness the conditional posteriors for the P1 prior (unknown µ  conditioned 

on known σ  and unknown σ  conditioned on known µ ) will be given. This will 

provide an excellent introduction to working with Gaussian distributions for the 

evaluation of Bayesian posteriors. As the motivation for using the P3 prior stems from 

the multi-site context [refer to Section 10.2.1] the conditional posteriors for the multi-
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site state rainfall parameters will then be derived. Finally, the equivalent conditional 

posteriors for the P3 prior in the single site context (µ  and σ  jointly unknown) will be 

given.  

Similar to the transitions probabilities the conditional posteriors for the rainfall 

parameters of both the wet and dry states are equivalent. Hence in the following 

sections µ , 2σ ,  ì  and Ó represent a generic state mean, variance, mean vector and 

covariance matrix respectively for either the wet or dry state rainfall distributions and 

NY  (or NY ) refers to the n  points (or vectors) of data classified in either the wet or dry 

states. 

D.5.1 Sampling the state mean conditioned on the state variance 

The likelihood function for the state mean, given a known variance and NY  data which 

is assumed to follow a Gaussian distribution is written as: 

 ( ) ( )
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∏

∏
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Now, if a conjugate prior distribution with the following parameterization is used: 

 
( ) ( ) 



 µ−µ

τ
−∝µ 2

02
02

1
expp  (D.15) 

such that ( )2
00 τµµ ,N~ , with prior mean 0µ  and variance 2

0τ  the resulting posterior 

density for the state mean, conditioned on the data and the variance is: 
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Algebraic simplification of this expression leads to the result that the posterior depends 

only the data NY  through the average of the state data, ∑
=

=
n

i
in yy

1

1 . This results in the 

following expression for the posterior: 

 ( ) ( ) 



 µ−µ

τ
−∝σµ 2
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2

2
1

n
n

exp,yp  (D.17) 

where 
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Again, the property of a conjugate prior can be seen because the posterior given in 

Equation (D.17) is a Gaussian distribution with: 

 ( )22 ,~, nnNy τµσµ  (D.19) 

Using these updated values, the posterior mean nµ  and posterior variance 2
nτ , the state 

mean can be sampled from a Gaussian distribution. When working with Gaussian 

distributions the inverse of the variance, termed the precision, plays an important role. 

In a parameter estimation context it represents the degree of uncertainty about the true 

value for that parameter. If the posterior precision ( )2
1

nτ
 is high (low variance) then the 

uncertainty is low, and conversely if the precision is low (high variance) then the 

uncertainty is high. Equation (D.18) demonstrates that the posterior precision equals the 

prior precision plus the data precision. The posterior mean is a expressed as a weighted 

average of the prior mean and the average of the observed data, with weights 

proportional to the precision.    

An intuitive interpretation of the respective roles of the prior and the data can be seen by 

considering some extreme cases using Equation (D.18). As the number of data is 

increased ( )∞→n  or the prior precision is decreased ( )∞→τ0  then the posterior will 

be largely dependent on the data ( )n,y nnn
22 σ→τ→µ . If the prior precision is 

increased ( )00 →τ , or the number of data is decreased ( )0→n  then the prior and the 
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posterior will become identical ( )000 →τ→τµ→µ nn , . If σ=τ0  then the prior 

distribution has the same weight as one extra data point with the value 0µ . For all other 

cases in between the posterior represents a compromise between the prior and the 

observed data. 

The values used for the prior hyperparameters 0µ  and 2
0τ   are given in Appendix E. 

D.5.2 Sampling the state variance conditioned on the state  mean 

The derivation of the conditional posterior for the state variance 2σ  follows a similar 

line as the results for the state mean. The likelihood function of the state variance 2σ  

given a known mean µ  and vector of state data NY  which is assumed to follow a 

Gaussian distribution is written as: 
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(D.20) 

where 2s  is the average squared deviation of the data, such that ( )∑
=

µ−=
n

i
in ys

1

212 , 

which is constant for a given  µ   and NY .  

A suitable conjugate prior density is the scaled inverse 2χ−  distribution, with prior scale 

2
0σ  and 0ν   prior degrees of freedom, such that: 
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This prior distribution can be thought of as providing information equivalent to 0ν  

observations with average squared deviation 2
0σ . When this prior is updated with the 

likelihood given in (D.20), the posterior is: 
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 where 

 

n

ns
nn +ν

σν+
=σ+ν=ν

0

2
00

2
2
n0 and  (D.23) 

which is a scaled inverse 2χ−  distribution, with posterior degrees of freedom, nν  and 

posterior scale 2
nσ  , such that: 

 ( )222
nnN ,Inv~,Y σνχ−µσ  (D.24) 

The roles of the prior and the data are similar to the case for the state mean. From 

Equation (D.23) it can be seen that the posterior scale is the weighted average of the 

prior scale and the data scale, with the weights proportional to the prior and data degrees 

of freedom. The posterior degrees of freedom is the sum of the prior and data degrees of 

freedom. Thus similar results also hold for the extreme cases, as given for the state 

mean, e.g, as the number of data increases ( )∞→n  the posterior becomes dominated 

by the data, sn →σ . The values used for the hyperparameters 0ν  and 2
0σ  are given in 

Appendix E. 

D.5.3 Sampling the state multivariate mean and covariance matrix jointly 

The conditional posteriors for the multi-site state distribution parameters are derived 

assuming that both the mean vector ì  and covariance matrix Ó are jointly unknown.  

This setup is used because of the chosen prior specification, refer to Section 10.2.1 for 
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more details. It is possible to derive the conditional posteriors for the univariate case 

where both µ  and σ  jointly unknown. However, in this thesis the multivariate 

derivation will be given and then the univariate equivalent of the conditional posteriors 

will be outlined.    

Now, given n  vectors of dimension r  of observed data { }nN yyY ,,K1=  that are 

assumed to follow a r -dimensional multivariate Gaussian distribution with a rr ×  

covariance matrix Ó and r -dimensional mean vector, ì , the joint likelihood of  

( )1, −Óì  can be written as: 
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(D.25) 

where y  is the average vector of the observed data, ∑
=

=
n

i
in

1

1 yy . The notation ( )Atr  

refers to the trace of the matrix A , which is sum of the diagonal elements of the matrix, 

and SS  is the sum of squares matrix about the sample mean, where 

 
( )( )∑

=

−−=
n

1i

T
ii yyyySS  (D.26) 

The last step of the derivation of the joint likelihood uses a result given by DeGroot 

[1970], that  

 
( ) ( ) ( ) ( ) ( )11T

n

1i

1T trn −−

=

− ⋅+−−=−−∑ ÓSSyìÓyììyÓìy ii  (D.27) 

The reasons for rearranging the joint likelihood into an expression of the form given in 

(D.25) will become clear further on. 

The conjugate joint prior distribution for the joint likelihood given in (D.25) is known 

as the multivariate Gaussian-Wishart distribution. This is derived using the relationship 
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that ( ) ( ) ( )111 pp,p −−− = ÓÓìÓì . For the ( )1p −Óì  prior a multivariate Gaussian 

distribution is parameterized in the following form: 
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(D.28) 

where 0ì  is the prior mean vector and 0κ  represents the number of prior measurements 

on the Ó scale.  

For the prior ( )1−Óp  the following parameterisation is used: 
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(D.29) 

where ( )W,Wr ν  represents a Wishart distribution in r  dimensions with v  degrees of 

freedom and scale matrix W . The Wishart distribution is the multivariate generalisation 

of the scaled inverse 2χ−  distribution. The prior parameter 0ν  represents the number of 

prior degrees of freedom and because 0W  controls the form of the precision matrix 1−Ó  

it is known as the prior precision matrix. 
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 Using (D.28) and (D.29) the joint prior density can be written as:   
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Now it can be seen why the likelihood was rearranged in the form given in (D.25), because it gives a similar form to the prior density. When this 

prior is updated using the likelihood the following posterior results: 
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Now DeGroot [1970] gives the result that: 
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where an expression for nì will be given later. Furthermore as the rightmost term of (D.32) can be written as follows: 
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then the posterior from (D.31) can be rewritten as: 
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As expected this posterior has the same parametric form as the conjugate prior density given in (D.30). The full list of updated parameter values 

is given: 
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To sample from the joint posterior of ( )1, −Óì , one must use the following procedure: 

first draw ( )nN WYÓ ,W~ nν−1 , and then draw ( )nr ,N~, κ− ÓìYÓì nN
1 .  

Again, the respective role of the priors and data which was shown in the univariate 

cases, similarly follows for the multivariate case. The posterior mean is again the 

weighted sum of the prior mean and data average, with weights proportional to the 

number of prior measurements and data observations. If 10 =ν , then the prior 

information is equivalent to one prior observation with squared deviation matrix, 
1−

0W . As the number of prior measurements on the Ó scale is increased, then the 

posterior of the mean will be concentrated at the prior mean, 0n ìì → . 

An important thing to note with these multivariate distributions is that if improper 

uninformative priors are chosen e.g. 000 =νκ , , then the posteriors can be become 

improper if the number of observations is less than the dimension of the distributions 

rn < .  Improper posteriors can also result if the priors are chosen such that rn <ν . 

This has important implications for the choice of hyperparameter values and is 

further discussed in Section 10.2.1 

D.5.4 Sampling the state mean and variance jointly 

The univariate version of the multivariate posterior density given in (D.34) is the 

conditional posterior of the state mean and variance assuming they are jointly 

unknown. For the univariate case 1=r , ì  becomes ì , Ó becomes 2σ , and hence 
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with 



Appendix D - Sampling Distributions for the Gibbs Sampler  

Page D-18 

 

( )
( ) nyì

n
n

ns

n
n

ynì
ì

nnn

nn

+ν=ν−
+κ

κ
++σν=σν

+κ=κ
+κ
+κ

=

0
2

0
0

022
00

2

0
0

00

 (D.37) 

where 2
nnσν  has replaced 1

nW− , and 2
00σν  has replaced 1

0W− . The posterior density 

given in (D.36) for the case where µ  and σ  are jointly unknown can be seen to have 

similar form to the posterior dens ities given in (D.17) and (D.22), for the cases where  

µ  is unknown conditioned on known σ  and σ  is unknown conditioned on known µ  

respectively. Hence sampling from this univariate posterior is equivalent to sampling 

( )222
nnN ,Inv~Y σνχ−σ  and ( )nnN ,N~,Y κσµσµ 22 , with equivalent priors: 
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κσµµ
 (D.38) 

Note that the equation for calculating 2
nσ  is slightly different from that given in 

(D.23). This is because in this case the mean and the variance are assumed to jointly 

unknown. The third term in the equation fo r 2
nσ  represents the additional uncertainty 

conveyed by the difference between the prior mean and the sample mean.  
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Appendix E Appendix E --  Original Single Site Prior Original Single Site Prior 

Specification Specification   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E.1 Introduction 

In the results published in Thyer and Kuczera [2000a] where the single site HSM model 

was calibrated to the rainfall data from Sydney, Brisbane and Melbourne the prior 

specification used for the state rainfall parameters was different to the one given in 

Section 5.2.4.a. In this Appendix it will be shown why it was deemed necessary to 

change the prior specification for the state rainfall parameters in the single site HSM 

model.   

E.2 Original Prior Specification 

In the original prior specification, deemed the P1 prior specification, a conjugate prior 

Gaussian distribution with prior mean 0µ  and prior variance 2
0τ  was used. Hence: 
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 ( )2
00 ,~ τµµ Nk  (E.1) 

For both the wet and dry state the values 010000 .=µ  and 010000 .=τ  were used for 

the prior as simulations revealed that it provided a suitably diffuse proper prior. For the 

state variance a scaled inverse 2χ−  distribution with prior scale 2
0σ  and 0ν  prior 

degrees of freedom, was used: 

 ( )2
00

22 σνχ−σ ,Inv~  (E.2) 

As explained in Section 5.2.4.a when 00 =ν  this represents an uninformative improper 

prior. In the P1 prior this improper prior was used when at least two data points were 

sampled in a particular state, as a proper posterior still results. However, when no data 

was sampled in a particular state, then the posterior also becomes improper. Also when 

only one data point is sampled in a particular state, this can result in what is termed by 

Gelman et al. [1995] as an “uninteresting” mode where there is one single data point 

with no variance. For these cases a different set of hyperparameter values 

( )03002 00 ., =σ=ν  were used which resulted in a relatively diffuse proper prior. The 

motivation for using this scheme was to alleviate the problem that improper priors could 

not be used because the posterior becomes improper when no data was sampled in a 

particular state. By changing to an uninformative improper prior when there was enough 

data to ensure a proper posterior the aim was to let the data dominate the inferences. 

Further investigations undertaken during the development of the calibration procedure 

for the multi-site HSM model revealed that a different prior formulation, called the P3 

prior specification, was required for successful implementation of the Gibbs sampler in 

a multi-site context. Refer to Chapter 10 for further details and an explanation of what 

happened to the P2 prior specification. The single site equivalent of this P3 prior 

specification is given in Equations (5.10) and (5.11). It is repeated here for convenience: 

 ( )
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22
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=σ=νχ−σ

σ=µµ
 (E.3) 
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where y  is the empirical mean and 2s  is empirical variance (average squared deviation 

from the empirical mean) of the entire data series NY . 

It is worth noting that the P1 prior slightly changes the conditional posteriors given in 

Equation (5.9) for sampling the state rainfall parameters in the single site context. The 

P3 prior assumes µ  and σ  are jointly unknown, hence their conditional posterior is 

( )NYp σµ, . This can be further broken down using the relationship 

( ) ( ) ( )NNN YpYpYp σσµ=σµ ,, . Hence the conditional posterior for σ  is only 

conditioned on the data NY . In contrast using the P1 prior formulation the conditional 

posterior for σ  is conditioned on known µ  and the data, ( )NYp ,µσ . For µ  the 

conditional posterior is still ( )NYp ,σµ . Therefore using the P1 prior the conditional 

posteriors for the state rainfall parameters given in Equation (5.9) change to:  
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i
k
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k
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k
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YSp
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,, 1

µσ←σ
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 (E.4) 

These are the conditional posteriors given in Thyer and Kuczera [2000a]. Either one of 

the formulations given in Equations (5.9) or (E.4) is allowable in the Gibbs sampler 

framework. The methodology for sampling from the conditional posteriors given in 

(E.4) is described in Appendix D. 

E.3 Comparison of Results 

The Sydney rainfall data was reanalyzed with the P3 prior and compared to the results 

given in Thyer and Kuczera [2000a] for the original P1 prior to determine whether the 

results were sensitive to the choice of the prior. A comparison between the posteriors 

that resulted from the P1 and P3 prior for all the single site HSM model parameters for 

the Sydney annual (June to May water year) rainfall data is given in Figure E.1. The 

June to May water year was used because Thyer and Kuczera [2000a] stated it had the 

strongest wet and dry state signal.  

The results indicate that the inferences are sensitive to the choice of the prior, especially 

for the wet state rainfall parameters, Wµ  and Wσ , and the wet to dry state transition 
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probability, W Dp . It is believed this is mainly due to the scheme used in the P1 prior for 

the state variance. The Wσ  posterior using the P1 prior is shown to be bimodal, whereas 

using the P3 prior it is unimodal [Figure E.1(f)]. The reasons for this bimodality are 

believed to be because the prior on the state variance is changed from an informative 

prior to an uninformative prior depending on the number of data in the state with the P1 

prior. In the Wσ  posterior using the P1 prior the mode that corresponds to the larger 

parameter value is similar to the mode for Wσ  posterior using the P3 prior and is 

therefore believed to be caused by the data. The other mode in the Wσ  posterior using 

the P1 prior (corresponding to the smaller parameter value) is believed to be due to the 

P1 prior scheme for the informative proper, which is denoted as SD prior P1 in Figure 

E.1(f). The difference between the location of the mode is because the curve denoted as 

SD prior P1 is not actually the true SD prior as it does not include the uninformative 

case where ( ) 22 1 σ∝σp .  
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Figure E.1 – Comparisons of the posterior densities for the single site HSM model 
parameters for the Sydney annual rainfall data (June to May water year) for the 
P1 and P3 prior specifications. Also shown are the P1 and P3 prior densities (SD 
stands for standard deviation). 

 

E.4 Implications 

Sensitivity of the inferences to the choice of prior is not desirable in a Bayesian 

framework. Given the above result the P1 prior specification was re-examined and it 

was realized that it is not permitted in the Gibbs sampler framework to change the prior 

depending on the hidden state time series NS . The hidden states are part of the data for 

the conditional posteriors of µ  and σ .  In Bayesian inference it is not allowed to have 

the prior change dependent on the data. The prior should remain constant and be 

independent of the data. Because the priors used were diffuse, this flaw only affected 
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the inferences when the number of data in a particular state was generally low. As 

Figure E.1 illustrates, the posteriors for the dry state parameters changed very little 

whether prior P1 or P3 was used because the number of data classified in the dry state 

was quite high.  

It is important note that the overall conclusions from the inferences remained the same. 

Therefore the important findings given in Thyer and Kuczera [2000a] still stand. A two-

state persistence structure was identified for the Sydney rainfall data. It was only the 

strength of the persistence structure and the wet state rainfall parameters that changed 

slightly. 

E.5 Conclusion 

Given the discovery of this violation in the P1 prior framework it was considered 

unacceptable for use in the Gibbs sampler and the P3 prior was therefore adopted for the 

use in the single site HSM model. 
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Appendix F Appendix F --  Verification of Single Site Verification of Single Site 
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F.1 Introduction 

To verify that the Gibbs sampler had been correctly formulated and the computer code 

used to implement the Gibbs sampler was free of any gross errors, synthetic calibration 

runs were used. Synthetic data was generated using the HSM model and then the Gibbs 

sampler was used to determine if it could recover the true parameter values. The results 

of this analysis are presented in this appendix for two different sets of parameters. The 

first set of parameters (denoted as set S1) had wet and dry rainfall distributions which 

were considered very well separated, i.e. examination of the marginal distribution of the 

entire time series clearly showed two separate distributions [Figure F.1(a)]. The 

transition probability values corresponded to an expected state residence of around 5 

years. The second set of parameters (denoted as set S2) had wet and dry rainfall 

distributions which were much close together, compared to set S1 [Figure F.1(b)]. For 

this set the transition probability values were decreased slightly to correspond to an 

expected state residence time of 10 years for the wet state and 7 years for the dry state. 

Synthetic time series with 100, 1000, and 10,000 data points were applied because it 

would be expected that as the number of data points increases the posterior should 

converge to the true parameter value. The synthetic parameter values for set S1 and S2 

are given in Table F.1. 

Table F.1 – Synthetic parameter values. 
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Figure F.1 – Wet and dry state rainfall distributions for the synthetic eainfall 
series. 

F.2 Results  

The posteriors for W Dp  and Wµ  are shown in Figure F.2 for the S1 set and Figure F.3 

for the S2 set. The posteriors are compared using percentile box plots. The bottom and 

top of the box correspond to the 5th and 95th percentiles respectively, the middle solid 

line is the median (50th percentile) and the two dashed lines are the 25th and 75th 

percentiles.  It is clearly seen that as the number of the data points increases the 

posterior of each parameter converges to the true parameter value. A similar result was 

found for all the other HSM model parameters.  

Wet State Dry State Transition Probabilities Parameter 

Set 
Wµ  Wσ  Dµ  Dσ  W Dp  DWp  

S1 1000 5.0 500 5 0.2 (5) 0.2 (5) 

S2 1200 240 800 160 0.1 (10) 0.15 (7) 
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Figure F.2 – Posteriors for selected HSM model parameters for synthetic series 
set S1 with varying number of data points. Dark line indicates true parameter 
value.  
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Figure F.3 – Posteriors for selected HSM model parameters for synthetic series 
set S2 with varying number of data points. Dark line indicates true parameter 
value. 

F.3 Conclusion 

The results indicated that as expected the posteriors shrunk towards the true parameter 

values as the number of data points in the synthetic series was increased. These 

synthetic calibration runs verify that the application of the Gibbs sampler to the HSM 

model has been correctly formulated and the computer code used to generate these 

results is working correctly. 
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Appendix G Appendix G --  Comparison of Priors to Comparison of Priors to 

Posteriors for Single Site HSM Model Posteriors for Single Site HSM Model   

  

  

 

 

 

 

 

 

 

 

 

G.1 Introduction 

In the calibration procedure for the single site HSM model informative prior 

distributions were used for the state rainfall parameters. The prior parameter values 

were chosen to ensure the priors were as diffuse as possible. An important part of post-

calibration analysis is to ensure these priors were actually diffuse compared to the 

posteriors. In this Appendix the priors are compared to the posteriors to verify this for 

each of the sites.   
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G.2 Results 

For each of data sets used to calibrate the single site HSM model the prior and 

posteriors for the state rainfall parameters are compared in Figure G.1 to Figure G.16. 

As the same prior was used for both the wet and dry state only one prior is shown in the 

diagrams, while both the posteriors for the wet and dry state means and standard 

deviations are shown. These plots confirm that, as intended, the priors are relatively 

diffuse compared to the posteriors. It is worth commenting that for the state standard 

deviations for some of the sites, especially Melbourne, Adelaide, Perth, Clarence Town 

and Dungog, the priors are not as diffuse compared to the results for the other sites. 

However, as they do not dominate the posteriors they are not considered to have a large 

influence on the inferences. The priors for the state transition probabilities were not 

compared because the prior parameter values chosen resulted in a uniform prior [refer to 

Appendix D for details]. 
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Figure G.1 – Sydney annual (September to August) rainfall – state mean and 
standard deviation. 
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Figure G.2 – Brisbane  annual (July to June) rainfall data – state mean and 
standard deviation. 
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Figure G.3 – Melbourne annual (September to August) rainfall data - state mean 
and standard deviation. 
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Figure G.4 – Adelaide annual (June to May) rainfall data - state mean and 
standard deviation. 
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Figure G.5 – Perth annual (June to May) rainfall data - state mean and standard 
deviation. 
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Figure G.6 – Burdekin River reconstructed runoff – transformed state mean and 
standard deviation. 
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Figure G.7 – Mt. Victoria composite annual (January to December) rainfall data - 
state mean and standard deviation. 
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Figure G.8 – Moss Vale annual (May to April) rainfall data - state mean and 
standard deviation. 
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Figure G.9 – Taralga annual (January to December) rainfall data - state mean 
and standard deviation. 
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Figure G.10 – Yarra composite annual (April to March) rainfall data - state mean 
and standard deviation. 
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Figure G.11 – Cataract Dam annual (May to April) rainfall data - state mean and 
standard deviation. 
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Figure G.12 – Clarence Town annual (September to August) rainfall data - state 
mean and standard deviation. 
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Figure G.13 –  Dungog annual (September to August) rainfall data - state mean 
and standard deviation. 
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Figure G.14 – Raymond Terrace annual (September to August) rainfall data - 
state mean and standard deviation. 
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Figure G.15 – Stroud annual (February to January) rainfall data - state mean and 
standard deviation. 
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Figure G.16 – Branxton annual (December to January) rainfall data - state mean 
and standard deviation. 

G.3 Conclusion 

The results given in this appendix confirm that the informative priors for the state 

rainfall parameters in the calibration procedure for the single site HSM model were 

diffuse compared to the posteriors. Hence they exert only a minor influence on the 

inferences.  
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H.1 Introduction 

The posterior predictive distribution of the replicated data ( )N
rep Yyp , as defined in 

Section 6.4.1, is simulated for the single site HSM model using the posteriors as given 

in Chapter 7. Comparison of the sampling distribution of drawing N  samples from this 

posterior predictive distribution to the observed data distribution provides an indication 

whether the model is a good fit to the observed data. The results presented here are for 

all the rainfall data sets that are not shown in the main body of this thesis. Inspection of 

Figure H.1 to Figure H.13 shows that the observed data was within the 5% and 95% 

confidence limits of the simulated data for all the data sets. This is considered to be a 

good fit to the data. 
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Figure H.1 – Melbourne annual (Sep. to Aug.) rainfall data. 
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Figure H.2 – Adelaide annual (June to May) rainfall data. 
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Figure H.3 – Perth annual (June to May) rainfall data. 
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Figure H.4 – Mt. Victoria composite annual (Jan. to Dec.) rainfall data. 
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Figure H.5 – Moss Vale annual (May to April) rainfall data. 
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Figure H.6 – Taralga annual (Jan. to Dec.) rainfall data. 
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Figure H.7 – Yarra composite annual (April to March) rainfall data. 

FILE: CAD_AT5nSAMPLES.OUT SITE: CAD: Site No  1
HSM RAIN  1 Year OverLap Seq Avg, Start Year:  1 FULL POSTERIOR

0.01 0.1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

PERCENTILE

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

C
A
D
:
 
S
i
t
e
 
N
o
 
 
1
 
R
A
I
N
F
A
L
L
 
(
m
m
)

Observed Rainfall
5% Confidence Limit
95% Confidence Limit
Median

 
Figure H.8 – Cataract Dam annual (May to April) rainfall data. 
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Figure H.9 – Clarence Town annual (Sep. to Aug.) rainfall data. 
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Figure H.10 – Dungog annual (Sep. To Aug.) rainfall data. 
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Figure H.11 – Raymond Terrace annual (Jan. to Dec.) rainfall data. 
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Figure H.12 – Stroud annual (Feb. to Jan.) rainfall data. 
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Figure H.13 – Branxton annual (Dec. to Jan.) rainfall data. 
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I.1 Introduction 

In this Appendix the likelihood function for the AR(1) model given a time series of 

rainfall data NY , ( )θNYp  will be derived. This is not straightforward because of the 

complications caused by the Box-Cox transformation. To motivate this derivation the 

explantion of the AR(1) modelling framework given in Section 8.2 will be reiterated. 

As given in Equation (8.1) the AR(1) model has the form: 

 ( ) ttt zz ε+µ−φ+µ= −11  (I.1) 

where tz  is the value of the time series at time step, t , µ  is the mean of the time series, 

1φ  is the lag-one autoregressive parameter tε  is an uncorrelated Gaussian random 

variable, with zero mean and variance, 2
εσ , such that ( )20 εσε ,N~t . 

From Equation (I.1) it can be seen that given the value 1−tz  the tz  also follows a 

Gaussian distribution, such that ( )( )2
111 ,~ ε−− σµ−φ+µ ttt zNzz . Hence, to use the 
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AR(1) model to simulate a rainfall time series { }nN y,,yY K1=  it is first necessary to 

ensure that the rainfall data follow a Gaussian distribution. If this is not the case a Box-

Cox transformation [Box and Cox, 1964] is commonly applied to the rainfall data such 

that: 

 







=λ

≠λ
λ
−

=
λ

0log

0
1

t

t

t

y

y
z  (I.2) 

where the transformation parameter λ  is usually chosen to ensure the tz ’s follow a 

Gaussian distribution.  

In this analysis the transformation parameter is treated as unknown, hence the vector of 

unknown model parameters for the AR(1) model is: 

 ( )λφσµ=θ′ ε ,,, 1  (I.3) 

I.2 Derivation of the Likelihood 

The derivation of the likelihood function for the AR(1) model parameters for a time 

series of rainfall data ( )θNYp  will first be derived in terms of the transformed data 

( )θNZp .  

To derive the likelihood function for a single tranformed data point tz  it must be 

realized that there are complications caused by the Box-Cox transformation. If Equation 

(I.2) is rearranged in terms of tz , then: 

 ( )




=λ
≠λ+λ=

λ

0)exp(

01
1

t

t
t

z

zy  (I.4) 

This places a constraint on the transformed rainfall values that 01 >+λtz . Hence the 

tz ’s actually follow a truncated Gaussian distribution, such that: 

 ( )( )2
111 ,~ ε−− σµ−φ+µ ttt zTNzz  (I.5) 
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where ( )2σµ,TN  denotes a truncated Gaussian distribution subject to some constraint, 

in this case 01 >+λtz .  

The corresponding probability density of a single observation tz  assumed to follow this 

trunated Gaussian distribution, is written as: 
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where λ
tP  is a normalising probability introduced to compensate for the truncation of 

the distribution. For a distribution to be a proper probability distribution the integral of 

its density must sum to 1. When a distribution is truncated the integral will not sum to 1. 

Therefore λ
tP  represents the cumulative probability of the region of the distribution that 

is not truncated, such that: 
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When the probability density is normalized by this λ
tP  factor then the integral will sum 

to 1 and it becomes a proper probability distribution.  

To determine the probability density of a single rainfall data point ty  the following 

change of variable transformation is applied to the density given in Equation (I.6): 
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(I.8) 

Now to calculate the full likelihood function for a time series of rainfall data NY  the 

following relationship is used (as adopted by Chib [1996] the notation { }tt yyY K,1=  is 

used): 
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In the first line the conditional probability theorem is applied and in the second the 

assumed Markovian property of the rainfall data is used. By repeatedly applying these 

two theorems to the right hand term, it can be seen that a recursive expression will 

result. The summary of this recursion is:  

 ( ) ( ) ( ) ( ) ( )θθθθ=θ −− 11211 ,...,, ypyypyypyypYp ttnnN K  (I.10) 

The probability density of the typical term in this recursion ( )θ− ,1tt yyp  is given in 

Equation (I.8).  

When all the probability densities for each of the terms given in (I.9) are multiplied 

together the following expression for the full likelihood results: 
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 (I.11) 

where λ
tP and tz  are as given above. It is important to note that the normalizing factor 

λ
tP  changes for each data point tz  because it is dependent on ( )µ−φ+µ −11 tz . 

In general terms, the likelihood for the terminal point ( )θ1yp  could be calculated based 

on the marginal density: 

 ( ) ( ) ( ) 00011 , dyypyypyp θθ=θ ∫  (I.12) 

However, this marginal density is not easily derived. Instead, in this analysis the 

following expression is used: 

 ( ) ( )

( )θ=

θ=θ

−λ
1

1

1

1

1

1
1

zpy

zp
dy
dz

yp
 

(I.13) 

which applies the change of variable used in Equation (I.8) to ( )θ1yp . The density for 

the terminal point in transformed space ( )θ1zp  can be calculated because if the 
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truncation is ignored then the marginal density for tz , as given by Box and Jenkins  

[1970], is:  

 
( ) ( )2

1

2

1
,~

φ−

σεµθ Nzp t  
(I.14) 

Ignoring the truncation for only the terminal point is not expected to have a major 

impact on the inferences. Hence, this method was used to calculate the likelihood 

function for the terminal point, ( )θ1yp . 

I.3 Relationship Between Parameters in Transformed and 

Untransformed Space 

Using first-order approximations it is possible to derive a relationship between the 

parameters of the AR(1) model, µ  and εσ  which are in transformed space to their 

equivalents in untransformed space, yµ  and yσ .  This derivation begins by using the 

knowledge that ( )tt yfz = , as defined in Equation (I.2). Applying a Taylor series 

expansion to this function gives: 
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(I.15) 

where in the second line expectations are taken, in the third line because 

( )[ ] [ ] [ ] 0=µ−=µ− ytyt EyEyE  that term drops out and the fourth line follows because 

of the relationship given in Equation (I.2). Hence, Equation (I.15) gives an expression 

that relates the mean in transformed space µ  to its equivalent first order approximation 

in untransformed space yµ . 

To derive a similar expression for εσ  the Taylor series expans ion is also utilised, such 

that: 
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where expectations are taken to produce the second line and the third line again uses the 

relationship given in Equation (I.2). Using the knowledge that 2
1

2
2

1 φ−
σ=σ ε

z  [Box and 

Jenkins, 1970] then Equation (I.16) can rearranged to give an expression in terms of εσ , 

where:  
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(I.17) 

Hence an expression that relates the standard deviation in transformed space εσ  to its 

equivalent first order approximation in untransformed space yσ  again results.  

For an explanation of why this derivation was undertaken refer to Section 8.3.2. 
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J.1 Introduction 

To verify that the Metropolis algorithm and the likelihood function for the AR(1) model 

had been correctly formulated and the computer code used was free of any errors 

synthetic calibration runs were used. Initially in the first batch of synthetic calibration 

runs synthetic data generated from a bivariate Gaussian distribution was used to verify 

that the Metropolis algorithm had been correctly coded. Because the jump distribution 

used in the Metropolis algorithm was multivariate Gaussian, if the Metropolis algorithm 

has been correctly formulated it should have no trouble recovering the true synthetic 

parameter values for bivariate Gaussian data. The second batch of calibration runs 

undertaken was to ensure that the likelihood function for AR(1) model was formulated 

correctly. Synthetic data was generated using the AR(1) modelling structure with a Box-

Cox transformation as given in Section 8.2. The posteriors for both sets were examined 

for time series of length 100, 1000 and 10,000 data points to verify that they converged 

to the true parameter values as the number of data points increased. 
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J.2 Results 

J.2.1 Bivariate Gaussian synthetic data 

To generate the synthetic bivariate Gaussian data the following parameter values were 

used: 
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It can be seen that both components have the same parameter values. Therefore the 

posteriors for the bivariate Gaussian synthetic data are shown in Figure J.1 only for one 

component and the correlation. Percentile plots were again used [refer Appendix F] to 

compare the posteriors for varying length data series. It can be clearly seen that as the 

number of data points increases the posteriors converge towards the true parameter 

values. In addition the acceptance rate was within the optimal range [as given in Section 

8.3.1.a]. These results verified that the Metropolis algorithm has been correctly 

formulated.  
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Figure J.1 – Posteriors for the parameters of one component of the bivariate 
Gaussian model for a varying number of data points. Dark line indicates true 
parameter value.  

J.2.2 AR(1) synthetic data 

To test that the likelihood function for the AR(1) model with Box-Cox transformation 

had been formulated correctly synthetic data was generated using two different 

parameter sets, denoted as the S3 and S4 set. Their values are summarized in Table J.1. 

The procedure followed was to generate synthetic tz  values using an AR(1) model and 

then to transform it with a Box-Cox transformation. The Metropolis algorithm was then 

applied to determine if the true synthetic values of the AR(1) modelling parameters and 

the transformation parameter could be recovered. During the generation of the synthetic 

data it was checked whether any values generated by the AR(1) model violated 

01 >+λtz  prior to applying the transformation. If they did, they were resampled as this 

is a constraint of this modelling structure - refer to Appendix I for more details. This 

causes a truncation in the distribution of transformed values. The likelihood function 
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was derived to allow for this truncation. The aim of these synthetic calibration runs is to 

verify that this likelihood function is correct.  

Table J.1 – Synthetic Parameter Values for AR(1) model with Box-Cox 
transformation. 

It is possible to calculate the proportion of the transformed data distribution that is 

truncated. Using the fact that the mean of the tz  values is simply the AR(1) mean 

parameter, while the variance 2
zσ  is calculated by ( )2

1
22 1 φ−σ=σ εz  [Box and Jenkins, 

1970] the proportion that violates the constraint 01 >+λtz  can be calculated. For the 

S3 set of parameter values this proporation is very close to 0, while for set S4 it is closer 

to 15%.  Hence, set S3 verifies that the AR(1) model likelihood function is correct, 

while set S4 verifies that the AR(1) model likelihood function with the truncation due to 

the transformation is correct. This is the reason for choosing two different sets of 

parameter values.  

The posteriors for all the parameters are shown in Figure J.2 and Figure J.3 for set S3 

and S4 respectively. It can be clearly seen that in all cases the posterios converge 

towards the true parameter values as the number of data points increased.  

 

   

Parameter 
Set 

 Mean µ   Stan. dev. εσ  Lag-one autoregressive 
coefficient 1φ  

Transformation 
parameter λ  

S3 10.0 3.0 0.5 0.5 

S4 3.0 4.0 0.5 0.5 
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Figure J.2 – Posteriors of the AR(1) model parameters for synthetic parameter set 
S3 for a varying number of data points. Dark line indicates true parameter value.  
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Figure J.3 – Posteriors of the AR(1) model parameters for synthetic parameter set 
S4 for a varying number of data points. Dark line indicates true parameter value.  

J.3 Conclusion 

The results indicated that, as expected, the posteriors converged towards the true 

parameter values as the number of data points in the synthetic series was increased. 

These synthetic calibration runs verify that the implementation of the Metropolis 

algorithm and the derivation of the likelihood function for the AR(1) model with a Box-

Cox transformation was indeed correct.  
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Appendix K Appendix K --  Simulated Rainfall Results Simulated Rainfall Results 

for AR(1) Model  for AR(1) Model    

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

K.1 Introduction 

The posterior predictive distribution of the replicated data ( )N
rep Yyp , as defined in 

Section 6.4.1, is simulated for the AR(1) model using the posteriors as given in Chapter 

8. Comparison of the sampling distribution of drawing N  samples from this posterior 

predictive distribution to the observed data distribution provides an indication whether 

the model is a good fit to the observed data. Inspection of Figure K.1 to Figure K.10 

shows that the observed data was within the 5% and 95% confidence limits of the 

simulated data for all the data sets. This is considered to be a good fit to the data.  
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Figure K.1 – Sydney annual (Sep. to Aug.) rainfall data. 
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Figure K.2 – Brisbane annual (July to June) rainfall data. 
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Figure K.3 – Melbourne annual (Sep. to Aug.) rainfall data. 
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Figure K.4 – Adelaide annual (June to May) rainfall data. 
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Figure K.5 – Perth annual (June to May) rainfall data. 
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Figure K.6 – Mt. Victoria composite annual (Jan. to Dec.) rainfall data. 
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Figure K.7 – Moss Vale annual (May To April) rainfall data. 
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Figure K.8 – Taralga annual (Jan. to Dec.) rainfall data. 



Appendix K - Simulated Rainfall Results for AR(1) Model 

Page K-6 

FILE: YGC_AT4n_AR1metro.samples SITE: YGC: Site No  1
AR RAIN  1 Year OverLap Seq Avg, Start Year:  1 FULL POSTERIOR

0.01 0.1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

PERCENTILE

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Y
G
C
:
 
S
i
t
e
 
N
o
 
 
1
 
R
A
I
N
F
A
L
L
 
(
m
m
)

Observed Rainfall
5% Confidence Limit
95% Confidence Limit
Median

 

Figure K.9 – Yarra composite annual (April to March) rainfall data. 

FILE: CAD_AT5n_AR1metro.samples SITE: CAD: Site No  1
AR RAIN  1 Year OverLap Seq Avg, Start Year:  1 FULL POSTERIOR

0.01 0.1 1 5 10 20 30 50 70 80 90 95 99 99.9 99.99

PERCENTILE

0

300

600

900

1200

1500

1800

2100

2400

2700

3000

C
A
D
:
 
S
i
t
e
 
N
o
 
 
1
 
R
A
I
N
F
A
L
L
 
(
m
m
)

Observed Rainfall
5% Confidence Limit
95% Confidence Limit
Median

 

Figure K.10 – Cataract Dam annual (May to April) rainfall data. 
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Appendix L Appendix L --  Verification of Verification of   

MultiMulti--site HSM Model Calibration site HSM Model Calibration 

Procedure Procedure   

  
 
 
 
 
 
 

L.1 Introduction 

To verify that the Gibbs sampler had been correctly formulated for the multi-site HSM 

model and the computer code used to implement the Gibbs sampler was free of any 

gross errors, synthetic calibration runs were used. Multi-site synthetic data was 

generated using the multi-site HSM model and the Gibbs sampler was used to determine 

if the true parameter values could be recovered. Multi-site data from five sites was 

generated because five is maximum of number of sites that will be used for calibration 

in this thesis.  The synthetic parameter values used for the state rainfall distributions 

were similar to the expected values from the posterior for the Warragamba catchment 

rainfall data [refer Table 7.2] because for these sites a two-state persistence structure 

was identifiable. The spatial correlation between all the sites was set to 0.8 for both the 

wet and dry states, as this was the approximately the average value of the spatial 

correlation for the Warragamba catchment rainfall sites. The values for the transition 

probabilities were chosen which corresponded to a medium wet and dry persistence 

structure. Synthetic time series of 100, 1000, and 10,000 data points were used to 

calibrate the HSM model to determine if the posteriors converged towards the true 

synthetic parameter value as the number of data points increased.  
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In addition, it was also verified that the method for sampling missing data values was 

correctly implemented. The method used was to take the synthetic rainfall data for one 

of the sites and remove a portion of the data series to mimic that the data was missing. 

This was completed for the 100 and 1000 time series lengths, where 10% and 5% of the 

values were removed respectively. It was not done for 10,000 time series as removing 

10% of the data for one site means 1000 missing data points and 1000 extra parameters.  

The computer code developed to implement the Gibbs sampling procedure was not 

designed to handle 1000 parameters. 

L.2 Results  

The posteriors for W Dp  and DWp  , the rainfall parameters for site 1 and the correlation 

between site 1 and site 2 are shown in Figure L.1. Again, percentile box plots are used 

to compare the posteriors [refer Appendix F]. It is clearly seen that as the number of 

data points increases the posterior of each parameter converges to the true parameter 

value. A similar result was found for all the other multi-site HSM model parameters.  
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Figure L.1 – Posteriors for selected HSM model parameters for multi-site 
synthetic series with varying number of data points. Dark line indicates true 
parameter value.  
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Figure L.1(cont.) – Posteriors for selected HSM model parameters for multi-site 
synthetic series with varying number of data points. Dark line indicates true 
parameter value.  
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The results for the verification of the missing data procedure are shown in Figure L.2 

for the 100 year case when 10% of the data was removed from one site. The posteriors 

of selected parameters are shown for the site with the missing data. These are compared 

to the case when the data was not missing for the 100 year time series. It can be seen 

that there was little difference in the posterior variance when the data was missing. Only 

the dry state mean [Figure L.2(d)] showed a slight increase in the posterior variance. 

This is likely to be because there was a low proportion of missing data from only one 

site and the rainfall information data from four other sites was used to estimate the 

missing rainfall data values for that one site. 
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Figure L.2 – Comparison of posteriors for selected HSM model parameters for 
multi-site synthetic series with 10% missing data (one site) and without missing 
data for the 100 year time series. Dark line indicates true parameter value.  
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Figure L.3 shows the posterior of the missing data values compared to the actual 

synthetic value for the 100 year time series. This shows that the majority of the 

posteriors for the missing data values are in the vicinity of the actual synthetic data 

value. It would not be expected that the posterior should capture the true synthetic data 

values because these values are estimated based on correlations from four data points 

from four sites. However, these results do illustrate how close the missing data 

posteriors are to the actual synthetic parameter value.  
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Figure L.3 – Comparison of posteriors for the missing data values to the actual 
synthetic values (shown as crosses) for the 100 year time series.   

Similar results to the above were also found for the 1000 year time series, the posteriors 

did not show any distinct changes when missing data was sampled. These results 

verified that the method for sampling the missing data values has been correctly 

implemented.   

L.3 Conclusion 

It was found that as the number of the data points increased the posterior of every 

parameter would converge to the true parameter value. This was as expected and 

verified that the implementation of the Gibbs sampler for the multi-site HSM model, 

including the procedure for handling the missing data, has been successfully formulated 

and coded.  
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Appendix M Appendix M --  Comparison of Priors to Comparison of Priors to 

Posteriors for MultiPosteriors for Multi--site HSM Model site HSM Model   

  

  

 

 

 

 

 

 

 

 
 
 
 
 
 

M.1 Introduction 

Similar to Appendix G for the single site HSM model in this Appendix the priors are 

compared to the posteriors for the multi-site HSM model. This is to verify that these 

priors were actually diffuse compared to the posteriors.  
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M.2 Results 

The priors and posteriors for the state mean and standard deviation for the Warragamba 

catchment rainfall data four-site analysis are compared in Figure M.1 to Figure M.4. 

Note that compared to the single site results given in Appendix G the priors are more 

diffuse. The prior and posterior comparisons for the state correlation parameters are 

given in Figure M.5. The priors can be seen to be diffuse. Interestingly it can be seen 

that the dry state correlations are generally higher than the wet state correlations. For the 

Warragamba catchment rainfall data five-site analysis all the priors will not be shown as 

the results are similar to the four-site analysis – the priors are relatively diffuse 

compared to the posteriors. The priors for the extra site included in the analysis, 

Cataract Dam, are shown in Figure M.6. The state rainfall correla tions between that site 

and the four other sites are shown in Figure M.7. Again, the priors can be seen to be 

diffuse compared to the posteriors. 

For the Williams River catchment three-site analysis the comparison of the priors to the 

posteriors for the state mean and standard deviation is shown in Figure M.8 to Figure 

M.10. For the state correlation this comparison is shown in Figure M.11. It can be seen 

that the priors are diffuse compared to the posteriors. 

In these results for the Warragamba and the Williams River catchments there is a 

feature in the priors that warrants a comment. The priors for the state rainfall 

correlations have a peak at a correla tion of one. This result was unexpected, and it was 

questioned whether the priors had been correctly formulated. DeGroot [1970] provides 

a function to calculate the distribution of a correlation for the bivariate Gaussian case. It 

was found to be of the same form as shown in this Appendix with the prior mode 

located at a correlation of one. This is a minor concern and it may have to be 

investigated if alternative priors are available as part of the future research. However, 

given that generally the priors for the correlations were relatively diffuse over the range 

of the posteriors this was considered adequate for this analysis. 
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Figure M.1 – Mt. Victoria (MtV) state rainfall parameters, four-site analysis. 
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Figure M.2 – Moss Vale (MV) state rainfall parameters, four-site analysis. 
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Figure M.3 – Taralga (TR) state rainfall parameters, four-site analysis. 
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Figure M.4 – Yarra (YA) state rainfall parameters, four-site analysis. 
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(a) MtV and MV correlation  
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(b) MtV and TR correlation 
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(c) MtV and YA correlation  
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(d) MV and TR corre lation 
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(e) MV and YA correlation  

HISTOGRAM PLOT OF HSM PARAMETER SAMPLES
FILENAME: MBC,MV,TAR,YGC_AMT5aSAMPLES.OUT

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

PARAMETER VALUE

0

100

200

300

400

500

600

700

800

900

1000

N
o
r
m
a
l
i
z
e
d
 
F
r
e
q
 
(
P
r
o
b
a
b
i
l
i
t
i
e
s
 
-
 
%
)

HISTOGRAM PLOT OF HSM PARAMETER SAMPLES
FILENAME: MBC,MV,TAR,YGC_AMT5aSAMPLES.OUT

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

PARAMETER VALUE

0

100

200

300

400

500

600

700

800

900

1000

N
o
r
m
a
l
i
z
e
d
 
F
r
e
q
 
(
P
r
o
b
a
b
i
l
i
t
i
e
s
 
-
 
%
)

Percentage of Samples outside plot =   0.00%

TAR,YGC_COR(Wet)[3,4 Mean:   0.774 SD:   0.08
TAR,YGC_COR(Dry)[3,4 Mean:   0.796 SD:   0.05
PRIOR

 
(f) TR and YA correlation 

Figure M.5 – State rainfall correlation parameters for the Warragamba 
catchment four-site analysis. 
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Figure M.6 – Cataract Dam (CD)  state rainfall parameters, five-site analysis. 
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(a) CD and MtV correlation  
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(b) CD and MV correlation 
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(c) CD and TR correlation  

HISTOGRAM PLOT OF HSM PARAMETER SAMPLES
FILENAME: MB,MV,TR,YG,CT_AMT5SAMPLES.OUT

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000
PARAMETER VALUE

0

100

200

300

400

500

600

700

800

900

1000

N
o
r
m
a
l
i
z
e
d
 F
r
e
q
 (
P
r
o
b
a
b
i
l
i
t
i
e
s
 -
 %
)

HISTOGRAM PLOT OF HSM PARAMETER SAMPLES
FILENAME: MB,MV,TR,YG,CT_AMT5SAMPLES.OUT

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000
PARAMETER VALUE

0

100

200

300

400

500

600

700

800

900

1000

N
o
r
m
a
l
i
z
e
d
 F
r
e
q
 (
P
r
o
b
a
b
i
l
i
t
i
e
s
 -
 %
)

Percentage of Samples outside plot =   0.03%

YG,CT_COR(Wet)[4,5] Mean:   0.536 SD:   0.11
YG,CT_COR(Dry)[4,5] Mean:   0.554 SD:   0.09
PRIOR

 
(d) CD and YA correlation 

Figure M.7 – State rainfall correlation parameters between Cataract Dam and 
the four other Warragamba catchment sites, five-site analysis. 
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Figure M.8 – Clarence Town (CT) state rainfall parameters . 
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Figure M.9 – Dungog (DG) state rainfall parameters. 
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Figure M.10 – Raymond Terrace (RT) state rainfall parameters. 
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(a) CT and DG correlation  
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(b) CT and RT correlation 
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(c) DG and RT correlation  

Figure M.11 – State rainfall correlation parameters for William River catchment 
three-site analysis. 

M.3 Conclusion 

The results given in this Appendix confirmed that the informative priors for the state 

rainfall parameters in the calibration procedure for the multi-site HSM model were 

diffuse compared to the posteriors. Hence they exert only a minor influence on the 

inferences.  
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Appendix N Appendix N --  Williams River Catchment Williams River Catchment 

MultiMulti--site Resultssite Results  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

N.1 Introduction 

For the Williams River three-site analysis with Clarence Town, Dungog, and Raymond 

Terrace it was found that the Gibbs sampler had difficulty converging for the majority 

of water years. A similar result was also found for the Williams River five-site analysis, 

except none of the water years were able to achieve convergence. In this Appendix 

iterative sequences of parameter samples are used to provide a further explanation of 

why the Gibbs sampler could not converge. 
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N.2 Results  

During the iterative sequence of the Gibbs sampler some of the chains would flip 

between what seemed to be two different modes in the posterior. The two different 

modes had hidden state time series which were the basically the inverse of one another. 

This is shown in Figure N.1 for the Williams River three-site analysis, January to 

December water year. Similar results were found for other water years, except for the 

April to March water year, which was able to achieve convergence to the equivalent of 

mode 1 shown in Figure N.1.  

Iterative sequences of selected parameter samples show the differences between the two 

modes. One mode corresponded to a strong wet and dry separation for Clarence Town 

[Figure N.2] but not for Dungog [Figure N.3] or Raymond Terrace [Figure N.4]. The 

other mode had the opposite, low separation for Clarence Town and high separation for 

Dungog and Raymond Terrace. The standard deviation (SD) for Dungog would also flip 

from the wet SD being higher than the dry to the dry SD being higher than wet [Figure 

N.5]. There was little change in remaining parameters for the different modes.  

N.3 Conclusion 

As stated in Section 11.2.2 various techniques were trialled to alleviate this problem.  

However none were able to facilitate convergence. The reasons for nonconvergence 

remain unknown. It is likely that the high correlation (close to 0.9) between the sites 

maybe a contributing factor. It is recommended that further investigations using 

synthetic calibration runs be undertaken to develop a greater understanding of the multi-

site HSM model and its calibration procedure. 
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Figure N.1 – State frequency time series for the two different modes in the 
posterior of the Williams River three-site analysis.  

 
Figure N.2 – Iterative sequence of parameter samples for Clarence Town (CLT) 
wet and dry mean showing a transition between the two modes.   

Mode 1: Wet State Frequency  
Mode 2: Wet State Frequency  
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Figure N.3 – Iterative sequence of parameter samples for Dungog (DOG) wet and 
dry mean showing a transition between the two modes.   

 
Figure N.4 – Iterative sequence of parameter samples for Raymond Terrrace 
(RAT) wet and dry mean showing a transition between the two modes.   
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Figure N.5 – Iterative sequence of parameter samples for Dungog (DOG) wet and 
dry standard deviation showing a transition between the two modes.   

 

 

 


	Appendix A - Estimation of Hurst Coefficient
	Appendix B - Filling-In and Correction of Hydrological Data
	Appendix C - Markov Chain Monte Carlo Methods: An Overview
	Appendix D - Sampling Distributions for the Gibbs Sampler
	Appendix E - Original Single Site Prior Specification
	Appendix F - Verfiication of Single Site HSM Model Calibration Procedure
	Appendix G - Comparison of Priors to Posteriors for Single Site HSM Model
	Appendix H - Simulated Rainfall Results for Single Site HSM Model
	Appendix I - Derivation of Likelihood Function for AR(1) Model
	Appendix J - Verification of AR(1) Model Calibration Procedure
	Appendix K - Simulated Rainfall Results for AR(1) Model
	Appendix L - Verificatrion of Multi-site HSM Model Calibration Procedure
	Appendix M - Comparison of Priors to Posteriors for Multi-site HSM Model
	Appendix N - Williams River Catchment Multi-site Results

