Appendix A - Estimation of Hurst

Coefficient

A.1 Introduction

Montanari et al. [1997] provide three heuristic methods for the estimation of the Hurst
coefficient, h. The purpose of these methods is only to detect long memory and provide
arough estimation of the h value. They will be applied to the monthly Sydney rainfal
data to determine if there is any evidence of long-term memory. Monthly data is used
because daily data has zero values which make the calculation of long-term memory
useless [Montanari et al., 1997]. Annual data was not used because the reliable
estimation of long-memory can only be performed when the sample size is large enough
that the asymptotic properties hold [Montanari et al., 2000]. All the monthly values
were deseaonalized to remove the effects of any annual periodic component. Only the

results for the three methods will be presented. For full details of each method refer to
Montanari et al. [1997,2000].
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A.1l.1 Rescaled range statistic

The Rescaled Range (R/S) statistic is the best known method for estimating h. The R/S
statistic is calculated for 10 equally spaced vaues of the time step t and for 50
logarithmically spaced values of the lag, k. Figure A.1 shows a plot of logarithm of k
against the logarithm of the R/S statistic. The line of best fit through these points should
scatter along aline with slope h. The line best fit for this plot was estimated using only
the central region, as points in extreme left and right are subject to biases [Montanari et

al., 1997]. Using this method an estimate of h = 0.60 was obtained.
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Figure A.1 — R/S Statistic for Sydney’s deseasonalized monthly rainfall values.
The two vertical dashed lines delineate the region in which the slope d the best
straight line fit was estimated. The two solid lines represent the dopes
correspondingto h=0.5 and h=1.0.

A.1.2 Aggregated variance method

Figure A.2 shows the results of applying the aggregated variance (AV) method. The

logarithm of the sample variance when the data is divided into N/m blocks of size m
was calculated and plotted against the logarithm of m. The line of best fit though these

points should have a slope of 2h- 2. 50 logarithmically spaced values of m were used.
Again, only the central region of the plot was used. Using this method a value of

h = 0.52 was obtained.
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Figure A.2 — Aggregated variance plot for Sydney’'s deseaonalized monthly
rainfall values. The two vertical dashed lines delineate the region in which the
sope of the best straight line fit was estimated. The solid linesrepresent the slopes

correspondingto h=05.

A.1.3 Differenced variance method

The two heuristic methods used above can give h > 0.5 for time series that do not have
long term memory, but have shifts in the mean or a slowly decaying trend. When such
nonstationarity is present the differenced variance (DV) method can be used to detect
the long memory [Montanari et al., 1997]. Figure A.3 shows the results of applying this
method to the Sydney deseaonalized monthly rainfall data. The plot shows values of the
difference in the variance for 50 logarithmically spaced values of m (note 50 points are
not shown on the plot because those corresponding to a negative difference in the
variance must be ignored). Again, only the centra region of the plot was used to
estimate the line of best fit. The dope of the line of best fit through these points should
have adopeof 2h- 2. Hence, an estimate of h =0.66 was obtained.
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Figure A.3 — Differenced variance plot for Sydney’s deseaonalized monthly
rainfall values. The two vertical dashed lines delineate the region in which the
slope of the best straight line fit was estimated.

A.2 Summary

A value for the Hurst coefficient h equa to 0.5 means the absence of long memory.
The higher the h vaue is (up to a maximum value of 1.0) the higher is the intensity of
long memory. These three heuristic methods give conflicting results for the estimation
of h and hence the detection of long memory. Table A.1 shows that the R/S and the DV
method both indicate the presence of long memory, athough it is not very strong,

whereas the AV method indicates the absence of long memory.

Table A.1 — Estimates obtained for the Hurst coefficient, h for three different
heuristic methods

Heuristic Method Estimated h value
Rescaled Range Statistic 0.60
Aggregated Variance Method 0.52
Differenced Variance Method 0.66
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Montanari et al. [2000] showed that these three methods can give unreliable estimates
of h when there is a strong periodicity in the time series. The autocorrelation function
for the Sydney deseasonalized monthly rainfall values was calculated and no evidence

of a strong periodic component was found.

It is difficult to draw any clear conclusions from these results, except to say that there is
not strong evidence to suggest that there is long memory present in the Sydney monthly

time series.
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Appendix B - Filling-In and Correction
of Hydrological Data

B.1 Filling-in of Missing Data

In all the monthly rainfall records from the selected sites in the Warrgamba catchment
there were some months with missing data. This missing data was filled-in using the
following methodology. Firstly, the daily rainfall record for a particular station was
checked, because often the missing monthly value was due to only a missing day or
two. If this was the case the daily record was filled-in using data from neighbouring
gations, and the new monthly values were calculated. If the entire month was missing
from the daily record then the fill-in value was calculated using the rainfall values from
neighbouring stations and the correlations between these stations. If two or more
neighbouring stations were available then the rainfall values from each were averaged to
produce the fill-in value. In this case often this filled-in value was rounded to the nearest
5 or 10 mm. A higher degree of accuracy was not considered justifiable given the
inherent uncertainties when in-filling using data from neighbouring stations. In addition,
in this thesis these monthly values were aggregated to annual values. Hence any errors
produced by this in-filling process would be reduced by the aggregation procedure. It
was aso considered that a5 mm or 10 mm inaccuracy in an annual rainfall total which

averages around 1000 mm is arelatively small error.
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Table B.1 provides a summary of the neighbouring stations used for each of the selected
sites and the monthly correlations. For Mt. Victoria, Blackheath PO, Moss Vale PO and
Taralga PO, the monthly correlations with the majority of the neighbouring stations

were quite high (r2 > 0.8). For Yarra they were somewhat lower, but still considered

reasonably good, with average r? » 0.7. Table B.2 provides a list of the months with

missing data and the stations used to provide the fill-in values.

B.2 Correction of Inconsistencies in Monthly Data

Once the missing data was infilled, each of the monthly time series was examined to
ensure the data was consistent with neighbouring stations. Scatter plots of the monthly
values between the selected sites and the neighbouring stations were examined. If a
monthly value appeared as an outlier in these scatter plots it was highlighted as
potentially inconsistent data. Fortunately the data supplied by Sydney Water was quality
coded, code 26 referred to good quality data, while code 80 referred to average quality
data. If an outlier had quality code 80 this provided more evidence that the data maybe
inconsistent. The daily records for the suspect months were also examined for further
evidence. If strong evidence of an inconsistency was found the monthly value was
corrected. Examples of strong evidence include when a two or three day rain event
occurs at every neighbouring station but not at the selected station (e.g. Yarra, March
1976). For rainfall records taken at a post office the rainfall over a weekerd would often
be aggregated and entered as Monday’s rainfal value. When the weekend coincided
with a large rain event and a change of month this would produce an inconsistency in
the two monthly values (e.g. Moss Vale PO, April/May 1995). Other instances include
cases where the decimal place was clearly incorrectly placed e.g. 51 mm was entered
instead of 5.1 mm (e.g. Moss Vale PO, January 1990). Similar to the technique used for
the missing data the corrected monthly values were caculated using the rainfall
information from neighbouring stations. Table B.2 provides a list of the monthly values
that were corrected, the neigbouring stations used for the correction and brief

description of the reasons why the correction was deemed rnecessary.
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Table B.1 — Summary of the neighbouring sites and their monthly correlations for

each of the selected sites from the Warragamba catchment.

Selected Site Neighbouring Sites Monthly
Correlation (r?)
Mt. Victoria (063056) 0.93
Blackheath PO Little Hartley (Sh be) (063048) 0.80
ittle Hart combe :
(063009) e
Leura (063045) 0.90
Mt. Victoria Moss Vae PO (068045) 0.63
(063056) Blackheath PO (063009) 0.93
Goulburn (070037) 0.50
Moss Vale PO Mittagong Pool (068044) 0.80
(068045) Bowra PO (068005) 0.90
Exeter (068025) 0.87
Bundanoon PO (068008) 0.87
Goulburn (Pomeroy) (070071) 0.75
Yarra (Wollogorang) Forest Lodge (070033) 0.71
(070088) Woodhouse Lee (Leeston) (070131) 0.71
Chatsbury (Maryland) (070020) 0.64
Goulburn (070037) 0.80
Woodhouse L ee (Leeston) (070131) 0.83
Taralga PO
Chatsbury (Maryland) (070020) 0.80
(070080)
Golspie (Aryston) (063032) 0.77
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Table B.2 — Monthly rainfall data filled-in and corrected for the selected sites from the Warragamba catchment region.

Missing Data

Corrected Data

Gauge v Start - - - =
Nug Location Date |ENd Date Meighbouring Neighbouring Old Hew
Month 2 Month Reason 2
Stationis) Stationis) Value | Value
up to 15th norainfall recorded, while 063056 OE3045F
11901 -24 901 053056 041940 thres others did nE3045 25.9 1000
113940 [Code S0 over weekend, divided - TE.2 1237
121940 [eqgually over two days - 255 199 E
High rainfall in all other stations, little OE30S6S 0630458
053009 |Blackheath PO 1/1898 | 0B/15994 121947 e s R s 36 4500
Moved daily rainfall from 30541955 ta
041955 1154955 - 1796 2452
051955 146.6 75.0
2 Total [
THEr4-11M15874 053045
053056 Mt “ictoria 111872 1211939 121957 -1201985 03009
17 Total
12M870 Daily Record 111305 |Code 30 over end of month, divided DEEJEEIEDDDESEJEHU 79 a7 9
1ME71 FOOIT 121905 |use proportions from: " 157 ET.0
Rairfall on 18h v, high compared to 4
: ; 0630447 0650058
3METE Draily Record 021931 |(other gauges in area, monthly total OES025/ OEE00E 1723 Fo.o
reduced
- 063005 0650448
05045 | Moss SWale POlOSAE70] O/ 954 4 E578-8M 873 070037 063056 0413955 |Code 80 over end of month, divided OBE00S, IBE02S 55.3 1853
051955 (use proportions from: 247 4 1170
Rainfall on 14th v high compared to
021991 Draily Record 0119390 0630447 055005, recuced from S1mm ta 053044 Q65005 154 .1 1351
S.1mm
03199 E3044
10 Total b
0111554 Daily Record Mo raintfall recorded inmonth 3 other 0700205 07 31
121389 ] i oo E5.0
oz2Mssa o™ 31 surrounding gauges recorded S0 mm min. OE30352
120892 Draily Record onbky 9.01 mm recorded, while 2 ather
070020 | Taralga PO |O1A18582] 0741994 TR OB s 06994 e A S R 07 317 063032 8. s0.0
07954 070050
28 Total 2
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Table B.2(cont) — Monthly rainfall data filled-in and corrected for the selected sites from the Warragamba catchment region.

Missing Data Corrected Data
Gauge i Start = = - >
Location End Date Heighbouring Meighbouring Old New
Ho Date Month : Month Reason :
Stationis) Stationis) Yalue | Yalue
700717 0700338
10923 Draily Record 121347 (Mizssed Events 4th - 3=t 701 317 0Fa0208 2586 200.0
a7on3y
O7oo0y1 7 avaoz2oy oyooyF1 s avo1 31y
11M923-12M923 e 011904 |Walues too low, compared to Goulburn 070020 S0.E2 180.0
Daily Record Lero for period 41950 to
0s3M 947 Draily Record 0sM 920 |BEM930, = u} 100.0
ather stations give values
700717 0700338 .
0911 947 070131/ 070020¢ | 10magr ooy Fecord Zero for morith, except " 157 s0.0
31=t, other stations showe rain
a7o03y
DEM 951 Diaily Record daiasng| DalksRoosrd Fore fupmorthy. exeapkl st " 0.49 45.0
other stations show rain
O7yo0y 1y O7a033y
719511211951 0701317 070020¢ | 1141979 guatr:tohl_lli ¥ale 1og:levy, compaledto atiny " o 50.0
70037
Yarra Rain recorded on 8th to 14th deemed too aFooF1s 7ol 31y
o700z 9/1896 | 06/1994 041965 465 100.0
Mollogorang) Iy 070020/ 070057
. Mo rain recorded on 1 st to 4tk aFoo71s 0701 31y
1241969 Draily R d a3M9ve % 1461 E0.0
e surrounding stations had rain a7o0z20
ayooyF1 s ovo1 31y Moanthly value too low | compared to other ayoos1 s ovo1 31y
11970121970 asM 954 ' 5.539 40.0
ayo0z20 stations a7o0z20
1119753121975 "
10M955-11M985 "
a7 as7 Draily Record
Q70071 yoFod 31
05 957 o7o00
129587 Draily Record
12019585 i
091939 =
o7o07F1s 0701317
1095912195839 o7F00=0
37 Total [
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Appendix C - Markov Chain Monte

Carlo Methods: An Overview

C.1 Introduction

Markov chain Monte Carlo (MCMC) methods provide a means to randomly sample
from virtually any multivariate distribution. Chib and Greenberg [1995] give an
excellent tutorial exposition of the theory behind MCMC methods. The explanation
given here will take the reader through MCMC theory with particular care taken to
explain the concepts behind the theory. The idea is to provide an intuitive explanation of
how MCMC methods work. Detailed descriptions of the three commonly used members
of the MCMC family, the Metropolis-Hastings (M-H) agorithm, the Metropolis
algorithm and the Gibbs sampler will be given - the second two being special cases of
the first. Because Chib and Greenberg [1995] provide possibly the best explanation for
understanding MCMC methods the material in this appendix borrows heavily from their
paper. As the emphasis is placed on explaining the concepts which underlay MCMC
theory, on occasions the derivations given will not be theoretically rigourous. The
presented theory focuses on continuous distributions. However, it equally applies to
discrete distributions. The usual convention of denoting vectors as nonitalic bold type
used in the rest of this thesisis not used this appendix.
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C.2 Markov Chain Monte Carlo Simulation

The am of MCMC simulation is to draw samples from a target distribution. All that is
required is that the target density, denoted by &(x), be calculable for a given vector x

up to a known multiple, such that:
p(x) = f(x)/K (C.1)

where f(x) isthe unnormalized density and K is the (possibly unknown) normalizing
constant. The approach used is to generate a Markov chain iterative sequence of
samples x',x*,...,x". Now, due to the construction of the MCMC agorithm the

distribution of these samples will eventually converge to a stationary distribution which

corresponds to the target distribution.

The proof that this Markov chain sequence converges to the target distribution has two
parts. The first part is to demonstrate that the sequence of samples is a Markov chain
that converges to a stationary distribution. This holds if the Markov chain is irreducible,
aperiodic and not transient. The latter two conditions hold for a random wak on any
proper probability distribution (except for certain trivial cases) [Gelman et al., 1995].
The term random walk is used to describe a sequence of samples where the next value is
equal to the current value plus some noise. Irreducibility holds if the Markov chain has a
positive probability of visiting every part of the target distribution from any other part of
the target distribution. The second part of the proof is that the stationary distribution is
the target distribution. This part is a little harder to prove.

In Markov chain theory the usua approach is to start with a transition kernel P(A| x)
which is the conditional probability function that represents the probability of moving
fromapoint x to apoint intheregion defined by A. The notation “aregion A” is used
because the probability of moving to an exact point is zero. Also, it is permitted that the
chain make a trangition from x to X, that is, the probability of moving from x to X is
not necessarily zero. Now, the mgor concern of Markov chain theory is to determine
under what conditions a stationary distribution p~ exists and under what conditions the

iterations based on this transition kernel P(>| ) converge to the stationary distribution.

The stationary distribution satisfies:
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p (dy) = P(dyx) p(x)dx (C.2)

where p(X) represents the probability density of the stationary distribution p* (). A
subtle, but important point regarding the notation is explained here. The term dy is used
because the probability of sampling a point y is zero, whereas the probability of
sampling a region with “width” dy represented by p(y)dy has some measure, hence
p (dy) =p(y)dy. A conceptua interpretation of Equation (C.2) is that if the
distribution is stationary then the probability of moving to aregion dy from any point
X 1S equa to the probability of sampling that region; that is, it is independent of the
starting point x. The necessary conditions for the convergence of the iterations of the

Markov chain to this stationary distribution were discussed earlier.

MCMC methods turn this theory around. The stationary density is already known (up to

a constant multiple) - itis p(X), the target density from which samples are desired -
but the transition kernel is unknown. Therefore to generate samples from p(x) MCMC
methods find and utilize a transition kernel  P(dy|x) whose nth iterate converges to
p(x) for large n. The processis started at an arbitrary x and iterated a large number of

times. After this large number the distribution of samples generated by the transition

kernel is approximately the target distribution.

Of course the problem then is to find a suitable transition kernel. MCMC theory
simplifies this choice by supposing that for some function p(y| x) the transition kernel

can be expressed as:
P(dy| x) = p(y| x)dy +r(x)d, (dy) (C.3)

where p(x|x)=0, d (dy)=1if xI dy and O otherwise and

r(x) =1- gp(y|x)dy (C4)
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which represents the probability that the chain remains a x. The r(x)d, (dy) part of

Equation (C.3) takes care of the requirement that the probability of the chain not

moving is nonzero, evenif p(x| x) = 0.
Now, the reversibility condition is introduced, which is stated as:

p(x)p(y| x) = p(y)p(x| y). (C5)

This intuitively says that the unconditional probability of moving from x to y where x
is sampled from p(x) [the left hand side of (C.5)] is equa to the unconditional
probability of moving from y to x where y issampled from p( %) [the right hand side
of (C.5)]. Chib and Greenberg [1995] show that if the reversibility condition holds then
p(¥ is the stationary density of P(x x). This proof is reiterated here, by first
considering the right hand side of Equation (C.2):

A& Py ¥ dylp(x)dx + ¢ (X)dl, (Ap(x) cx

p(y] ¥)p(x)ax] dy + A (x)p(x) dx

p(x| y)P(y)ddy + yr (x)p() dx

Q- r(y)lp(y)dy+ §r(x)p(x)dx

Qr(y)dy

p’(A) (C.6)

PP (K)ax

1
L’

[ (
o (

1
L’

The first line of the above proof uses the definition given in (C.3). In the second line the
variables of the integration are exchanged. In the third line the reversibility condition
given in (C.5) is applied. In the fourth line the definition in (C.4) is applied. Equation

(C.6) shows that if the reversibility condition holds then p'( %) is the stationary
distribution for P( %) . Hence the reversibility condition provides a sufficient condition
that must the satisfied by p(y| x). Now, it will be explained how the Metropolis-
Hastings algorithm constructs a transition kernel that satisfies this condition.
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C.3 The Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm is the most general implementation of the
MCMC methods. It requires a candidate generating density from which the samples can
be selected. As these candidates are to form a Markov chain, the density must be

dependent on the current state of the process. Thus it is denoted as q(y|x). This is

interpreted as meaning that when the processisat apoint x, the density samples avaue

y from g( % x) .

It is now required that this density q(y|x) satisfies the reversibility condition given in
(C.5), which it is not likely to do al by itself. Suppose that for some (x, y):

p(x)a(y| x) > p(y)a(¥y) (C.7)

which says that the process is more likely to move from x to y then to move from y
to X. This does not satisfy the reversibility condition. To correct this situation in the M-
H algorithm a probability of move a(y| x) <1 is introduced to reduce the likelihood of
the process moving from x to y. If this move is not made the process returns x as a
vaue from the target distribution. Thus the transitions from x to y (y! x) are made

according to:
Pun (Y[X) © d(y| X)aly[x),  xty (C.8)

where a(y| x) isyet to be determined. To define the corresponding probability a(x| y)
the inequality given in (C.7) is considered again. It is desirable that the likelihood of the

process moving from y to x is made as large as possible. Thus a(x|y) is defined to
be as large as possible, and since it is a probability, its upper limit is 1. To determine the
probability of move a(y| x) we apply the reversibility conditionto p,,, (y| x), because
then:

p(x)a(yl x)a(ylx) =p(y)a(xly)a(x|y)
(C.9)
p

(y)a(x]y)
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and therefore it follows that a(y| x) = p(y)a(x|y)/p(x)a(y|x). If the inequality in (C.7)
isreversed then a(y|x) issetto 1 and a(x|y) is derived similarly as above. The
interpretation of the probabilities a(y|x) and a(x|y) is that they are introduced to
“balance” both sides of the inequality given in (C.7) to ensure that p,,, (y| x) satisfies
the reversibility condition. Hence for p,,, (y| X) to be reversible the formal definition

of the probability of moveis:

(C.10)

a(ylx) = i minw'lg’ if p(x)a(y|x) >0

&(x)a(y| x)
1 1 otherwise
To provide a complete definition of the M-H process transition kernel, the possibility
that the process remains at X must be considered. Using (C.4) and (C.8) from above we
get the result:

rua (X) =1- cply| x)a(y| x) dy (C11)

Hence the complete definition of the M-H transition kernel denoted by B, (dy| x) is

given by:
P (dy[ %) = q(y] X)a(y| ) dy +[1- ca(y|x)a(y|x) dy] (C.12)

As shown above by its construction B, (dy| X) is reversible and hence it follows that

the M-H kernal has p(x)as its stationary density.

This completes the bulk of the theory that proves that the Markov chain sequence of
samples generated by the M-H algorithm converges to the target distribution. The
Metropolis-Hastings agorithm is potentialy a very powerful agorithm because,
theoretically at least, it can be used to sample from virtually any distribution. However
there are several fundamental issues regarding the implementation of this algorithm

which must be highlighted.

Firstly, the Metropolis-Hastings algorithm is specified by its candidate generating
density, q(y| x). The selection of an appropriate density is crucial to the efficiency of

the algorithm. This issue will be discussed further in the following sections. Secondly, if
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a candidate vaue is reected then the current value is taken as the next item in the
sequence. Thirdly, the calculation of a(y|x) does not require knowledge of the
normalizing constant of p(X) because it appears in both the numerator and denominator

of (C.10). This result means the application of the MH algorithm for simulating
Bayesian posteriors is particularly appealing because calculation of the posterior

normalizing constant p(y) [refer to Equation (5.2) in Section 5.2] is not needed.

Finally, the implementation of the general M-H algorithm can be summarized in the
following steps:

Step 1. Initialise x with arbitrary starting value x°.

Step 2. Repesat for i =1,2,...,n

Generate y from q(X X' ) and u from U(02)

If uga(y|x)
st X" =y
else
st X=X

Step 3. Return the values {x*,x?,...,x"} .

With any MCMC method the draws are only regarded as a sample from the target
density p(x) only after the chain has passed the transient stage and the effect of starting

value has become so small that it can be ignored. Now, we know the conditions that are
required for a Markov chain to converge, these have been previously discussed.
However, these conditions do not determine the rate of convergence. This leaves us
with the empirical question of how large is the sample size, say b, which should be
discarded and how long should the sampling run be. This issue of MCMC convergence
isacrucia one. It has been and till is the subject of a large amount of research work.
Section 5.2.4.c provides further discussion on this topic including an outline of the

methods used to determine if convergence has been achieved.

As mentioned, the selection of an appropriate candidate generating density has a large

influence on the performance of the M-H algorithm. Typically, this density is chosen
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from a family of distributions that requires the specification of such tuning parameters
as the location and the scale. Chib and Greenberg [1995] provide a good discussion of
this subject with several examples. In this appendix the discussion will be centred on the
families of candidate generating densities which lead to two special cases of the M-H
algorithm, the Metropolis algorithm and the Gibbs sampler, as these are the MCMC
methods which were applied in this thesis.

C.4 The Metropolis Algorithm

The Metropolis algorithm is a special case of the general Metropolis-Hastings algorithm
where a symmetrical candidate generating density is chosen. Given that a symmetrical

density satisfies q(y|x)=q(x|y) the probability of a move reduces to
a(y|x) =min[p(y)/p(x) 1] . Therefore if p(y)3 p(x) the chain will dways make the
move from x to y; otherwise it moves with probability p(y)/p(x). An intuitive

interpretation of this result is that if a jump goes “uphill” then it is always accepted,

whereas if ajump goes “downhill” it is accepted with nonzero probability.

In the implementation of the Metropolis algorithm used in this thesis the multivariate
Gaussian density was chosen as suitable symmetrical candidate generating density. The
algorithm was set up such that it was from the family of candidate generating densities
that are characterized by the form q( x| y) =q,(y- X). Thus the candidate y isdrawn
according to the process y = x+z, where z is the incremental random variable that
follows the distribution g, (which is multivariate Gaussian in this case). Because the
candidate is equal to the current value plus some noise, this case is called a random
walk chain. The advantage of this setup is that only the scale parameter of the candidate

generating density is required to be tuned, the location parameter is given by the current

value of the process x.

This still leaves the important question of choosing the scale, or spread, of the candidate
generating density. This has important implications for the efficiency of the agorithm.
The spread of the candidate generating density affects the behaviour of the chain in at
least two ways: One is the “acceptance’ rate (the percentage of times a move is made to
a new point) and the other is the ability of the chain to explore all regions of the target

digtribution. To understand this, consider the situation where the chain has converged
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and is located at the mode of the target distribution. If the spread is too large then the
samples from the candidate generating density will be a long way from the current
value, and hence will have a low probability of being accepted (because the target
probability density for the samples a long way from the mode will have a very low
value compared to the density at the mode). Conversely, if the spread is too small the
chain will take a long time to explore the entire target density and it is likely that low
probability regions will be undersampled. Again, Chib and Greenberg [1995] provide a
good discussion on this topic, including some references which provide guidance for
appropriate acceptance rates. For the application of the Metropolis algorithm in this
thesis, refer to Section 8.3.1 for a description of how the spread of the candidate
generating density was determined.

C.5 The Gibbs Sampler

If the M-H agorithm is set up such that it is applied in turn to subblocks of the vector x
rather than smultaneoudly to al elements of the vector then some powerful agorithms,
such as the Gibbs sampler, can be formed. These “block-at-a-time” agorithms have
many advantages, the main one is that often it smplifies the search for a suitable

candidate generating density.

The “block-at-a-time” concept is illustrated by considering the situation where the
vector X is divided nto two blocks x =(x;,X,). Suppose there exists a conditional
transition kernel P,(dy, |x,,x, ) which for a fixed value of x, has p,,(¥x,) asits
stationary distribution [with corresponding density puz(#xz)]. Therefore applying

Equation (C.2) to this subblock case we get:
P2 (Aya] X, ) = P (dyalX,, %, ) Py (XX, ) dx, (C.13)

Also suppose the existence of a conditiona transition kernel P, ( dy, | X,,X, ) which has
po.(Ax,) as its stationary distribution, analogous to (C.13). For example P, could be

the transition kernel generated by a M-H chain applied to block x;, with x, fixed for all

iterations. Now initially it may seem there are some serious drawbacks to this subblock

approach. For example, one may think that each of these kernels would have to run to
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convergence for every fixed value of the conditioning variable. Thankfully, this is not
the case because the product of kernels principle saves the day. This principle says that
the product of these two transition kernels has p(x;,x,) as its stationary density. The

practical significance of this result is enormous. Instead of having to run each kernel to
convergence for each value of the conditioning variable it alows us to take draws in
succession from each of the kernels. This has the added advantage because, as
mentioned above, it is often easier to find several conditional kernels that converge to
their respective conditional densities rather than to find one kernel that converges to the
joint density.

To prove the product of kernels principle, it is first necessary to specify the order that

theelementsof x will be sampled. Suppose the transition kernel B (¥ xx, ) samples y,
given x, and X, , and the transition kernel P,( X %y, ) samples y, given x, and y,. This
means that the vector x =(x;,x,) is sampled in two steps. In the first step y, is sampled
from B (X xx,) toreplace x, and in the second step y, issampled from B,(¥ xy,) to

replace X,. The kernel formed by multiplying these two conditional kernels together

has 8 (x,,%,) asits stationary distribution, as shown below:

OGP (dy] X, %) Py (dy| X, y1)8 (%, %,) dx, dx,

= O, (vl %, Y)IGR (Al %,%,)8,, (%) %,) ok ] 8, (x,) o,
= 0P, (ay,] X, %) 83,(ayy] X, ) 8, (%, )dx,

)%(le y,)3; (dy,)

= djz (dy,| XM 3,(%,) 8,(x;) dx,

=8, (dy, )P, (ay,] %,.%) 85 (%] ;) 0%,

=8, (dy,)d,, (ay,ly,)

=8 (dyl’dY2) (Cl4)

The first line follows from our assumption about the order that the elements of the
vector X will be sampled. The second line is simply a rearrangement. The third line
follows from (C.13). In the fourth line Bayes theorem is applied. The fifth line is

another rearrangement. The sixth line follows from applying (C.13) to P,, while the last

isaresult of the law of total probability.
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The proof of the product of kernels principle can also be generalized to cases where the vector x is divided into more than two blocks. Consider

the case where three blocks are used, x =(x,x,,%). Extending the two block example given above, x is now sampled in three steps. For the first
step, suppose the transition kernel B (X xx, ,x,) samples y, given x,,x, and x, (i.e. y, replaces x,). In the second step the transition kernel
R(X xy,.%;) samples y, given Xx,, X, and Y, (i.e. y, replaces x,). Finally for the third step the transition kernel  B,( ¥ Xy, .y,) samples y,
given x,, y, and y,, (i.e. y, replaces x,). The kernel formed by multiplying these three conditional kernels together has 8" (x,%,,X;) as its

stationary distribution, as shown below:

QP (Y] X,.%,,%) B, (dy, | X, %Y, )Py (dys] XY, )8 (%%, %) dx, dx, dx,

= % (2] X, YY) [GR (Al X, 3, Py (0] %,,¥,,%, )8 (5%, | 3, )b, i, |8, (x,) dix,

= O (A5 X5, %,Y,)8; 5 (Y, 0y, | %8, (%) dx,

8412 (%] V.Y, )8y »(dly; dy, )
3;(%s)

=8, (dly,dy, ) O (dys| X5, Y0Y,) B30 (X ¥1.Y,) 0,

=3, (dly,,dy, )3, 5 (AY,]¥1.Y,)

=& (dy,,dy,.dy,)

8, (%) dx,

= O (dys| X, .Y,)

(C.15)
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This proof has a very similar format to the proof given in (C.14), except that the result

from (C.14) is used in the third line. Furthermore this result follows on as x is divided

into additional subblocks. The transition kernel formed by multiplying all the subblock
transition kernels together has p” (dy) asits stationary distribution.

Using this result an important special case of the M-H algorithm, the Gibbs sampler can

now be derived. This algorithm is obtained by letting the transition kernels (for the two
block case), R,(dy,|%,,%, ) =py,(dy|x) and P,(dy,|x, ,y;) = py(dy,|y,); thet is,

the samples are generated from their “full conditional distributions’. Note this method
requires that it is possible to generate indeperdent samples from each of the full

conditional densities.

The M-H probability of move a(y|x) for this Gibbs sampling setup will now be

calculated. Considering the two block case given above. Because the transition kernel is

setto R(dy,|x x,)=8,(dy]|x,) then the candidate generating density for the first
step 0y, (Vi %.%,) = 8y,(yil %) . Therefore, using Equation (C.10), the corresponding

probability of move for thisfirst step &,,(y;|x,x,) can be determined:

_ O (%1% )ty (%] Y2.%5)
8y, (%%, ) Gy (Yl %0.%;)
_ Oy (

( (

éﬂz(y1| X X,) =

e (Va[%2)8y, (%] %)
3,,(%0%,)8 (V%)

(C.16)

H

It dso follows from this that the probability of move for the second step
an(Y, |X,,y;) =1. As the probability of move for both the first and second steps is one
then for the Gibbs sampler the overall probability of move, a(y|x) =1. This means that
the candidate samples are always accepted. This result also applies to the multi-block

case. Furthermore it is important to note that because the samples are always accepted

the Gibbs sampler is the most efficient implementation of the M-H algorithm.

The Gibbs sampler is very useful for drawing samples from Bayesian posteriors.

Consider the case where a parameter vector g with posterior density p(q|Y,) is split
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into d subblocks. As given above, in the Gibbs sampler the candidate generating

density for each | th subblock is set to the corresponding subblock target density. In a
general  sense, this  says g (Y[ X, XYoo Y1) =80V, X s X Ve Ya)
Therefore, each subblock of the parameter vector g, can be sampled using ( X' refersto

the i th sample of parameter subblock x):

el - plefel,..e et ey, (C.17)

This is very useful for situations where drawing samples of the full parameter vector
directly from the posterior is not possible. Often it is found that it is a Ssmple procedure
to draw samples from the posteriors of a subblock of the parameter vector conditioned
on the remaining fixed parameter values (the HSM model is good example). Therefore,

the Gibbs sampler is an extremely important special case of the M-H algorithm.

C.6 Summary

Phew! This explanation of Markov chain Monte Carlo methods requires a large amount
of datistical theory, which to the practicing stochastic hydrologist may seem a hit
daunting. It is important to remember that the statistical theory is often full of details
which sometimes can detract from the main conceptual ideas. Hence, the important

ideas will be recapitulated to conclude this appendix:

The most general implementation of Markov chain Monte Carlo methods is the
Metropolis-Hastings algorithm which provides a technique to sample from virtually
any multivariate distribution. All that is required is that the “target” distribution be

calculable up to a known multiple for a given vector x.

To do this it utilizies a candidate generating density to generate samples. As these
samples are made to be dependent on the current value of process, they form a
Markov chain. Markov chains possess a transition kernel, which represents the
probability of moving fromsay x to y.

Given certain mild conditions, this Markov chain will converge to a stationary
distribution. To ensure that this stationary distribution is the target distribution the
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samples from the candidate generating density are only accepted with a certain

probability, denoted as the probability of move.

This probability of move modifies the transition kernel to ensure that the

“reversibility” condition is satisfied.

The reversibility condition says that given x is generated from the target distribution
then the unconditional probability of moving from x to y is equa to the
unconditional probability of moving from y to x,if y is also generated from the
target distribution.

Hence as the probability of move modifies the transition kernel such that the
reversibility condition is satisfied, then the samples generated by the Markov chain
induced by the Metropolis-Hastings algorithm will converge to the target
distribution.

The major stumbling blocks for the implementation of the M-H algorithm are the
specification of a suitable candidate generating density, which has a great influence
on the efficiency of the algorithm, and determining when the Markov chain has

achieved convergence, which is not always a straightforward task.

The Metropolis algorithm is a special case of the Metropolis-Hastings algorithm
where a symmetrical candidate generating density is chosen. This simplifies the

caculation of the probability of move

“Block-at-a-time” agorithms refer to the implementation of the Metropolis-Hastings
algorithm where the elements of x are sampled one subblock at a time, rather than
the entire vector at once. This often simplifies the choice of suitable candidate
generating densities. The product of kernels principle means that each individua
kernel used to produce samples for each subblock does not have to run to
convergence, rather samples from each of the kernels can be drawn in succession

and the entire algorithm can be then assessed for convergence.

For a specia case of the M-H agorithm called the Gibbs sampler the actual
conditional target distributions of each subblock are chosen as the candidate

generating densities. “Conditional” target distributions refer to the target distribution
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of one subblock of the vector x, conditioned on the remaining elementsof x. This
results in the probability of move aways equaling one, i.e. the samples are always

accepted. Thisis the most efficient M-H implementation.
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Appendix D - Sampling Distributions for
the Gibbs Sampler

D.1 Introduction

The procedures for sampling from each of the conditional posteriors required for the
application of the Gibbs sampler to the single site and multi-site HSM model will be
given. Gelman et al. [1995] provides an excellent reference text of the development of
the Bayesian posteriors, and unless otherwise referenced, the majority of results derived
here are from their book. As well as providing the details of the derivation of the
sampling procedures a conceptual interpretation of the resulting expressions for the
posteriorsis aso given. The aim is to give an appreciation of the respective roles played
by the prior and the data in influencing the Bayesian posteriors. Also included is the
derivation of the likelihood function for the HSM model.

D.2 Sampling the Hidden State Time Series

The general method for sampling the hidden state time series §; for multi-state Markov
mixture models as presented by Chib [1996] is terse. A fuller treatment for the two-state
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case of the HSM model is presented here. For the following derivation it is convenient
to adopt the notation, as used by Chib [1996], where:

Sy ={s-8:} S ={s,...s} S ={s§,,...S)
with asimilar convention adopted for the observed data Y,, , Y,, and Y'**.

The entire state time series is simulated using the distribution p(S,|Y, ,&) whichisthe

joint posterior mass function of all the states given Y, and &. The derivation aims to
develop asimple expression for thisjoint distribution exploiting the Markovian property
p(s| S...Y,. 1) = p(s| s.,) - Thiswill lead to a recursive simulation procedure where at

each step, starting with the terminal state, s,, only a single state has to be drawn.

Step 1: By initially rewriting the joint distribution of the states, p (S,|Y,.€) and
applying the conditional probability theorem repeatedly to the right hand term a

recursive expression results:

P(Su [Yy.8) = p(8{S; 8} [ Yy .€)
= P(si{s, 8.}, Yy €) PS8} Yy 1€)
= PSS 8} Yo 8) P(S:HSy 0080t Y 8) PS8} Y 8)

The summary of thisrecursion is:
p(S|Yy.8) = p(s|S%.Y,.8) ... p(s|S™, Y, &) ... p(s,|Yy &) (D.1)
The typical term, excluding the terminal point is therefore: p(s| S™,Y,, &)

Step 2: Expand and split the Y, term as {Y,,Y'**} from the typical term in (D.1), and

apply Bayes theorem to the result. Further expand and split the S*! termas {s,,,5""?}
and apply the conditional probability theorem:

p(s|Y,.5™.&)=p(s|Y,, Y™, S ¢8)

s.Y,.8) p(slY,,&)/ ply'*,s"Y, &)

p(Yt+1 , St+l
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W p(s.., S"2 Y8, Y, &) p(s|Y, &)

W p(S™2. Y™ s,.,8,Y, &) p(s.i] s, .8) p(s]Y,.8)

The term p(Y'™*,S'*,Y, @) is independent of § and hence becomes part of the
normalizing constant. Due to the Markovian property of the states the term

p(S"2 Y 5.5, Y..8) = p(S"2, Y™ 5., Y..8) which is also independent of s and

becomes part of the normalizing constant. Furthermore, the Markovian property of the

states means that s, is purely dependent on knowledge of s . Thus p(s.,|s.Y,.&)
becomes p(s.,| s .&). Therefore asimplified expression for the typical term of the joint

posterior density is the product of two terms:

p(s|Yy .S &) 1 PSS, @) P(s] Y, &) (D.2)

The first term is the transition probability of going from s to s,,, and the other termis
the mass function of s given Y, . The normalizing constant of this mass function is the

sum of the numbers obtained using (D.2) as s T { WET, DRY} .

The fina stage of the calculation is to determine the mass function p(s|Y,,e) givenin
(D.2). The method developed is applied recursively for all s from t = 1to n. Assume

that the function p(s,,|Y.,,&) isavailable. Then repeat the following steps:

Prediction Step: Determine p(s,|Y,_,.e) using the total probability theorem:

p(sM. )= & plsls,=ke) pls, =k|Y,,.) 03

kT{ WET,DRY}

where the Markovian property of the states meansthat p(s|s,.,.Y.;.€) = p(s] S.1.€)

t-17"t-17

Update Step:  Determine p(s,|Y, &) first by splitting the Y, term so that it becomes

p(s|y, .Y, ..€) and then applying Bayes theorem:
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p(s]Y..e) = p(s|y.Y...€)
= p(yt| St’Yt-yé) p(St|Yt-11é)
b p(Yls.€) p(s|Y..e) (D.4)

The left hand term p(y,| s,Y,.,,€) becomes p(y,|s.e) because y, only dependson s
and é. This result is the probability density of the rainfall at time t, y,, given the

climate state, 5. As the rainfall distribution is assumed Gaussian this is easily
evaluated. The right hand term is calculated in the prediction step. The normalizing
constant for mass function given in (D.4) is the sum of al the terms for
s T {WET,DRY}. At t=1 these steps can be initialized by ignoring the prediction
step and using the stationary Markovian state probabilities derived from the state
transition probability matrix P for p(s|Y,.e).

Using the expressions derived previously, the simulation of the state time series is a
relatively smple procedure. First the prediction and update steps are run recursively to
compute the mass functions p(s,|Y,,e), for dl t = 1to n. The sampling of the state time
series starts by initially simulating s, using p(s,| Y, ,€). The remaining states, from
s,, through to s can be smulated using the mass function p(s|Y,,S™.¢)
calculated using the expression given in (D.2). An example illustrates this procedure.
Suppose that 5,, was sampled as a wet state. Then the probability of sampling s as

date k, is calculated as follows:

p(s =K Y,.S™&) 1 p(s. =Wet]s =k&)p(s =K|Y,.&)

. (D.5)
H p(k® Wet)* p(s =KY,.e)

where p(k ® Wet) isthe probability of jumping from state k to awet state.

D.3 Derivation of the Likelihood Function for the HSM Model

In an earlier work, Chib [1995] outlines a methodology for deriving the likelihood
function for the HSM model which utilises some of the results given above. This is
done without including the hidden state time series as a model parameter. Hence, the

vector of unknown model parameters is as given in Equation (5.5), where:
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e¢'=(m,,Sy,.M,Sy, P) (D.6)

The procedure for calculating the likelihood function p(YN|q*) is derived by first
rewriting p(YN|q*) and repeatedly applying the conditional probability theorem, to

develop arecursive expression, similar to Step 1 in Section D.2 above:

= P(Yal Yo 1@ )P(Y,al Yy 2@ )LV, [)
The summary of thisrecursion is:
p(Vule) = p(y,l Yy &) p(yl Y 1€7)... plyil &) (D.7)
The typical term, excluding the terminal point is therefore: p(y,|Y,.,,&")

Now, given the HSM modelling structure if the total probability theorem is applied to
this typical term then:

plylY...&) = & p(vYens =ke’)p(s =k|Y.,.e")
k1§ WET,DRY} . .
= A& plyls=ke)pls =k|Y. &)
k1{ WET,DRY} (D.8)

The second line follows because the rainfall 'y, is purely dependent on knowledge of

S . The result is the probability density of the rainfall y, given the state §. As
mentioned, because the rainfall distribution is assumed Gaussian thisis easily evaluated.
The right hand term of Equation (D.8) is the time varying probability mass function that
isgiven in the prediction step in Section D.2 above. For the terminal point p(y1| é*) the
likelihood function can be evaluated using the stationary Markovian state probabilities
derived from the state transition probability matrix P for p(s|Y,,&").

Given the likelihood value for this typical term the full likelihood function can therefore
be calculated using:
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p(vue) =O plylY..e) (D.9)

t=1

Hence a relatively simple procedure for calculating the likelihood function value for a

given parameter vector g° of the HSM model is illustrated. This can be applied to either

the single or multi-site HSM modelling framework. The only difference is the
probability density function used to calculate p (yt| S = k,é*). For the single site case

it is the univariate Gaussian and in the multisite case it is the multivariate Gaussian

probability density function.

D.4 Sampling the State Transition Probabilities

Given knowledge of the hidden state time series the transition probabilities become

independent of the data, Y,, . Thisleads to a straightforward procedure for deriving their
conditional posterior p(P | S, ). Chib [1996] provides a method for sampling from the

state transition probability matrix of a multi-state hidden Markov model. Presented here
will be a method for the two-state case of the HSM model.

The conditional posteriors for both the transition probabilities p,,, and p,,, givenin

P are equivalent. Thus this derivation will be given for asingle p, (i * j), which can

represent either p,,, or Py -

The first step in determining the conditional posterior p(pij|SN) is to determine the
likelihood function p(3“|pij). Now given the number of times a particular state |
appears in the hidden state time series n, the number of times a trangition is made from

that state to the opposing state j, n. is referred to as the number of ‘successes (a

i
success here refers to a successful state transition) in a sequence of n, iid Bernouilli
trials. Therefore the likelihood for the probability of a state transition p; follows a

Binomial distribution such that:
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SN|pij~ Bi“(mpij)
p(SN|pij) H (pij )nij (1' pij)n-rhj (D.10)

This likelihood represents the probability of n;; state transitionsin n; trials with agiven
state transition probability p; . If we assume a Beta distribution for the prior of p;
then:
p,~Beta(a,a)
a-1 a-
p(pij)u (pij) (1' pu') ' (D.11)
where a and b are prior parameters. If this prior is updated by the likelihood given in

(D.10) then the resulting posterior is:

p(p,ISy) 1 p(Sy|p;) p(p;)
w(p,)" @ o) " (p,) - o) (D.12)
u (pij )qi+a-l(1_ pij)q»nii+b—l

which has the form of a Beta distribution, and therefore:
pij|SN~Beta(é+ N atn - nij) (D.13)

This provides agood illustration of a conjugate prior distribution. A conjugate prior has
the property that when it is updated using the likelihood it forms a posterior that is from
the same parametric family. In the example above, the Beta distribution is the conjugate
prior for the Binomia likelihood. Conjugate priors are mathematicaly convenient
because it means that the posterior is from a known parametric family and is therefore
easy to work with. To calculate the posterior the parameters of the prior are ssmply
updated using information contained in the data, as shown above. The concept of a

conjugate prior will be applied repeatedly in the following sections of this appendix.

Now, if the prior parameters a,b are not fixed then they would be known as
hyperparameters. In this case the Beta distribution is uniform if a=b=1. As

uninformative priors are desirable in a Bayesian framework, these parameter values will
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be used for the prior. Often the choice of suitable prior and appropriate hyperparameter

valuesis not so smple.

To sample values for both p,,, and p,,, from the posterior given in (D.12) a Gamma

distribution can be used [Chib, 1996]:

)<'\/\/D XDW
Pyp =——L p,, =—22 — x. ~Gamma(l+n, ])
? )(\ND + )(\NW W XDW + XDD : :

D.5 Sampling the State Rainfall Parameters

In this section the methodology for sampling the state rainfall parameters in both the
single site and multi-site context will be given. As explained in Appendix E, the results
presented in this thesis for the single site HSM model used the prior specification for the
state rainfall parameters given in Equations (5.10) and (5.11), referred to as the P3 prior.
However, a different prior specification (referred to as the P1 prior) was originally used
for the state rainfall parameters for the results published in Thyer and Kuczera [2000a].
The conditional posteriors for the state rainfall parameters slightly change depending on

whether the P1 or P3 prior is used. The P3 prior assumes i and s are jointly unknown,
hence their conditional posterior is p(msJY, ). This can be further broken down using
the relationship  p(ms|Y, ) = p(nfs,Y, ) p(s]Y, ). The conditiona posterior for s is
therefore only conditioned on the data Y|, . In contrast using the P1 prior formulation the
conditional posterior for s isconditioned on known m and the data, p(sjmY, ). For m

the conditional posterior is still p(njs,Y,, ) . Both these formulations are alowable in the

Gibbs sampling framework. However, as stated in Appendix E, changing the
hyperparameter values for the P1 prior depending on the sampled hidden state time

seriesis not alowable. Thisis the reason why the P1 prior is not used in this thesis.

For completeness the conditional posteriors for the P1 prior (unknown n conditioned
on known s and unknown s conditioned on known rr) will be given. This will

provide an excellent introduction to working with Gaussian distributions for the
evaluation of Bayesian posteriors. As the motivation for using the P3 prior stems from

the multi-site context [refer to Section 10.2.1] the conditional posteriors for the multi-
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dite state rainfall parameters will then be derived. Findly, the equivalent conditional

posteriors for the P3 prior in the single site context (i and s jointly unknown) will be

given.

Similar to the transitions probabilities the conditional posteriors for the rainfall

parameters of both the wet and dry states are equivalent. Hence in the following
sections m, s?, i and O represent a generic state mean, variance, mean vector and
covariance matrix respectively for either the wet or dry state rainfall distributions and
Y, (or Y, ) refersto the n points (or vectors) of data classified in either the wet or dry

states.

D.5.1 Sampling the state mean conditioned on the state variance

The likelihood function for the state mean, given a known variance and Y,, data which

is assumed to follow a Gaussian distribution is written as:

b (D.14)

Now, if a conjugate prior distribution with the following parameterization is used:
() 0 Se(m-m ) D.15
pim p pS 22 m (D.15)

such that m~ N(m,,t2), with prior mean m, and variance t?2 the resulting posterior

density for the state mean, conditioned on the data and the variance is:

p(MYy.s?) n |0(YN |ms 2)p(m

1 zﬂo e 1 2(]
eXpa — (M- A ) eXpx - p
H &Pe 2t§( m) 4 Ve 257 Mg (D.16)
e 161 19 Vo)
b expe 2 e (m m)" + 5 a (v - m g
Ze 0 S" in ug
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Algebraic smplification of this expression leads to the result that the posterior depends

only the data Y, through the average of the state data, y =1 é y. . This resultsin the
i=1

following expression for the posterior:

1 2U

é
p(ny.s?) p expy —(m- m)*; (D.17)
e 2t u
where
1 n \y
My +5y 1 1 n
t S
==L "k agd —=—+—
m, o tﬁ tg o (D.18)

,_,

on
n

=N

Again, the property of a conjugate prior can be seen because the posterior given in

Equation (D.17) is a Gaussian distribution with:
my,s” ~N(m,t?) (D.19)

Using these updated values, the posterior mean m, and posterior variance t 2, the state
mean can be sampled from a Gaussian distribution. When working with Gaussian
distributions the inverse of the variance, termed the precision, plays an important role.
In a parameter estimation context it represents the degree of uncertainty about the true
value for that parameter. If the posterior precision (t%) is high (low variance) then the
uncertainty is low, and conversely if the precision is low (high variance) then the
uncertainty is high. Equation (D.18) demonstrates that the posterior precision equals the
prior precision plus the data precision. The posterior mean is a expressed as a weighted

average of the prior mean and the average of the observed data, with weights

proportional to the precision.

An intuitive interpretation of the respective roles of the prior and the data can be seen by

considering some extreme cases using Equation (D.18). As the number of data is

increased (n® ¥) or the prior precision is decreased (t, ® ¥ ) then the posterior will
be largely dependent on the data (m ® y,t2® s?/n). If the prior precision is
increased (t, ® 0), or the number of data is decreased (n® 0) then the prior and the
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posterior will become identicad (m, ® m,,t, ® t,® 0). If t,=s then the prior

distribution has the same weight as one extra data point with the value my,. For all other

cases in between the posterior represents a compromise between the prior and the
observed data

The values used for the prior hyperparameters m, and t2 are given in Appendix E.

D.5.2 Sampling the state variance conditioned on the state mean

The derivation of the conditional posterior for the state variance s? follows a similar
line as the results for the state mean. The likelihood function of the State variance s?
given a known mean m and vector of state data Y, which is assumed to follow a

Gaussian distribution is written as;

_A_L é 20
_91@5 “Pe 252(y' m A
n é 19 ZU
s "exp - mPY
Hsepg oza (V- My
-n/2 é ns? u
s?) " expa- .
h(s?) " erg 5oy 020
where s? is the average squared deviation of the data, such that s* =3 (y, - m?,

i=1

which is constant for agiven m and Y, .

A suitable conjugate prior density is the scaled inverse- ¢? distribution, with prior scale

s and n, prior degrees of freedom, such that:

s2~Inv-c?(n,,s?)

7 2~
52 g2 - (vo/2+1) ex € Vosol;I
o) (57) gl Y538 o
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Appendix D - Sampling Distributions for the Gibbs Sampler

This prior distribution can be thought of as providing information equivalent to n,

observations with average squared deviation sZ. When this prior is updated with the
likelihood given in (D.20), the posterior is:

p(s?Yy.m 1 p(Yyls®mp(s?)

ns? l;l(s 2). (vof2+1)

W2 @ é V,S2U
s?) epar — 0=0-
U( ) pg 252

expa

g 2s?f

((n+noyza) @1 2 2\U
s? exp = ns? +n,s2);
“’ ( ) p@ 252( 0 0)g
(mf2r1) € V. S2U
i (s?) & oot
g 257 H (D.22)
where
ns®+ns?
n,=n,+n ad s?=— 20 (D.23)
n, +n

which is a scaled inverse. ¢? distribution, with posterior degrees of freedom, n_ and

posterior scale s , such that:
s?Y, ,m~Inv- c?(n,,s?) (D.24)

The roles of the prior and the data are similar to the case for the state mean. From
Equation (D.23) it can be seen that the posterior scale is the weighted average of the
prior scale and the data scale, with the weights proportional to the prior and data degrees
of freedom. The posterior degrees of freedom is the sum of the prior and data degrees of
freedom. Thus similar results aso hold for the extreme cases, as given for the state

mean, e.g, as the number of data increases (N® ¥) the posterior becomes dominated

by the data, s, ® s. The values used for the hyperparameters n, and s’ are given in

Appendix E.
D.5.3 Sampling the state multivariate mean and covariance matrix jointly

The conditional posteriors for the multi-site state distribution parameters are derived

assuming that both the mean vector i and covariance matrix O are jointly unknown.

This setup is used because of the chosen prior specification, refer to Section 10.2.1 for
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more details. It is possible to derive the conditional posteriors for the univariate case

where both m and s jointly unknown. However, in this thesis the multivariate

derivation will be given and then the univariate equivalent of the conditioral posteriors

will be outlined.

Now, given n vectors of dimension r of observed data Y, ={y,,...,y,} that are

assumed to follow a r -dimensiona multivariate Gaussian distribution witha r” r

covariance matrix O and r-dimensional mean vector, i, the joint likelihood of

(i,0?) can be written as:
(v, 0%) =Oplyfi 6)
=§ (20) O exp - 3y, - 1) Oy, - 1)
w Ol el 1y~ 176y 1)
O epE 18 1,-1) 0, 1)

1[0 e (400 - 9700 - 7)+ulssor))  (©29)

where y is the average vector of the observed data, =%é y. . The notation tr(A)

i=1
refers to the trace of the matrix A, which is sum of the diagonal elements of the matrix,

and SS isthe sum of squares matrix about the sample mean, where

n

ss=a (vi- V) - ) (D.26)

i=1

The last step of the derivation of the joint likelihood uses a result given by DeGroot
[1970Q], that

2 (y,-1) Oy, -1)=n(i - y)' O - y)+tr(sS>0?) (D.27)

i=1

The reasons for rearranging the joint likelihood into an expression of the form given in

(D.25) will become clear further on.

The conjugate joint prior distribution for the joint likelihood given in (D.25) is known
as the multivariate Gaussian-Wishart distribution. This is derived using the relationship
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that p(i,0") =p(i|0*)p(G"). For the pli |O‘1) prior a multivariate Gaussian

distribution is parameterized in the following form:

110"~ N, (i 4, Ok,)
p(i |o-1) H exp(— sko(i - 1,)° 0™ -1 o)) (D.28)

where 1 , isthe prior mean vector and k, represents the number of prior measurements

onthe O scae.

For the prior p(O'l) the following parameterisation is used:

o! ~W, (ny, W,)
p(OY) p | exp(- Ltr(w, 'GY)) (D.29)

where W, (n,W) represents a Wishart distribution in r dimensions with v degrees of
freedom and scale matrix W . The Wishart distribution is the multivariate generalisation
of the scaled inverse- c? distribution. The prior parameter n, represents the number of
prior degrees of freedom and because W, controls the form of the precision matrix O'*

it is known as the prior precision matrix.
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Using (D.28) and (D.29) the joint prior density can be written as:

p(.0%) =p(i|6*)p(0)
pep(- k(i - 1,)T O - O)HO 7 ap(- 1tr(w, 0
w6 " el sk, 170 -1 o) +r(w; 0% (0.30)

Now it can be seen why the likelihood was rearranged in the form given in (D.25), because it gives a similar form to the prior density. When this

prior is updated using the likelihood the following posterior results:

pli, OY,) up(Yafi.Op(i, O2)
RIO e (- 3G - 9)70°0 - ) +r(s9OHOY expl- lkyf1 - 10)701 - 1) +tr{w 6]
M |Gl|(n+v0.r-1)/2@(p(- %[n y) ol(| - )+k (i - ) Ol(i - 0)+tr((WO'l+S)Ol)]) (.31

Now DeGroot [1970] gives the result that:

( O+n)(|o'7) o ('o'y) (D.32)

(i -y) O - ¥)+ko(i -1) O -1 ) =(ko+n)(i -1,)70%( -1,)+

where an expression for 1 , will be given later. Furthermore as the rightmost term of (D.32) can be written as follows:
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Ko v \TAa1n o @ kin o 1n oy a10
—o (i ,- O(i,-y)=tr 0 I, - I, -y)O =
(k0+n)( 0 y) ( 0 y) g(ko+n)( 0 y) ( 0 y) g (D.33)

then the posterior from (D.31) can be rewritten as:

p(i, OYY,) B[O ™2 expl %§(k0+n)(‘| )OI - 1,)+ e e ss K gy, - ) %0t 3R
| e ee (ko+n) a djﬂ
2z _1|(vp-r-1J2 < < N < 1 A
|0 expl- 3k, (1 -1,)76 -1 ,)+ trw, MO)) (D.34)

As expected this posterior has the same parametric form as the conjugate prior density given in (D.30). The full list of updated parameter values

IS given:
n:—k0|0+n7 kn:k0+n
Ko+n
) k,n _ 6
W, =W, +SS+—S (i - )l - V) vy =vo+n
& ° (ko+n) o Y Hom Y5 ° (D.35)
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To sample from the joint posterior of (‘| ,O‘l), one must use the following procedure:

firstdraw O, ~W(n,,W,), andthendraw 1|0, Y, ~ N, (i ,.O/k,)

Again, the respective role of the priors and data which was shown in the univariate
cases, similarly follows for the multivariate case. The posterior mean is again the
weighted sum of the prior mean and data average, with weights proportional to the

number of prior measurements and data observations. If n, =1, then the prior
information is equivalent to one prior observation with squared deviation matrix,

W, *. As the number of prior measurements on the O scale is increased, then the

posterior of the mean will be concentrated at the prior mean, i , ® i,

An important thing to note with these multivariate distributions is that if improper
uninformative priors are chosen e.g. k,,n, =0, then the posteriors can be become
improper if the number of observations is less than the dimension of the distributions
n<r . Improper posteriors can also result if the priors are chosen such that n, <r.

This has important implications for the choice of hyperparameter values and is
further discussed in Section 10.2.1

D.5.4 Sampling the state mean and variance jointly

The univariate version of the multivariate posterior density given in (D.34) is the

conditional posterior of the state mean and variance assuming they are jointly

unknown. For the univariatecase r =1, i becomes i , O becomes s?, and hence

e 2 2 N
ey & € (i-1.)° n.szud
p(ms°Yy) u(s?) expg- $ ek, ——t—+
e S S Ug
2 .. 2 .
(I-1,)°0 ;, ,y(/2y @ NS20
U ex = (s?) expc- -
pg 252k, 3 X 25 (D.36)

with
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K,i,+ny
" " cI)<I0+rr11y Kn=kKo*n
0 D.37
ns?=n 32+nsz+ﬂ(‘| -¥)®> n_=n,+n (037
n~ n 0~ 0 (k0+n) 0 n 0

where n s? has replaced W, *, and n,s? has replaced W;*. The posterior density
given in (D.36) for the case where mand s are jointly unknown can be seen to have

similar form to the posterior densities given in (D.17) and (D.22), for the cases where

n is unknown conditioned on known s and s isunknown conditioned on known
respectively. Hence sampling from this univariate posterior is equivaent to sampling

s?|Y, ~Inv_ c?(n,,s?) and niY, ,s* ~ N(m,,s?/k,), with equivalent priors:

m~ N(m,.s*/k,)

D.38
s? ~Inv - c?(n,,s2) (B-38)

Note that the equation for calculating s’ is dightly different from that given in
(D.23). This is because in this case the mean and the variance are assumed to jointly
unknown. The third term in the equation for s represents the additional uncertainty

conveyed by the difference between the prior mean and the sample mean.
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Appendix E - Original Single Site Prior

Specification

E.1 Introduction

In the results published in Thyer and Kuczera [2000a] where the single site HSM model
was cdibrated to the rainfall data from Sydney, Brisbane and Melbourne the prior
specification used for the state rainfall parameters was different to the one given in
Section 5.2.4.a. In this Appendix it will be shown why it was deemed necessary to
change the prior specification for the state rainfall parameters in the single ste HSM
model.

E.2 Original Prior Specification

In the original prior specification, deemed the P1 prior specification, a conjugate prior

Gaussian distribution with prior mean m, and prior variance t ; was used. Hence:
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m ~ N(m,t2) (ED)

For both the wet and dry state the values m, =1000.0 and t, =1000.0 were used for
the prior as ssimulations revealed that it provided a suitably diffuse proper prior. For the
state variance a scaled inverse. ¢? distribution with prior scae sZ2 and n, prior

degrees of freedom, was used:
~1Inv- c?(n,.s2) (E.2)

As explained in Section 5.2.4.awhen n, =0 this represents an uninformative improper

prior. In the P1 prior this improper prior was used when at least two data points were
sampled in a particular state, as a proper posterior still results. However, when no data
was sampled in a particular state, then the posterior aso becomes improper. Also when
only one data point is sampled in a particular state, this can result in what is termed by
Gelman et al. [1995] as an “uninteresting” mode where there is one single data point
with no variance. For these cases a different set of hyperparameter values

(n, =2,s, =300.0) were used which resulted in a relatively diffuse proper prior. The

motivation for using this scheme was to alleviate the problem that improper priors could
not be used because the posterior becomes improper when no data was sampled in a
particular state. By changing to an uninformative improper prior when there was enough

data to ensure a proper posterior the aim was to let the data dominate the inferences.

Further investigations undertaken during the development of the calibration procedure

for the multi-site HSM model revealed that a different prior formulation, called the P3

prior specification, was required for successful implementation of the Gibbs sampler in

a multi-site context. Refer to Chapter 10 for further details and an explanation of what

happened to the P2 prior specification. The single site equivalent of this P3 prior

specification is given in Equations (5.10) and (5.11). It is repeated here for convenience:
m~N(m, =y.s?)

(E3)
s2~1Inv-c?(n, =2,s2=5?)
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where ¥ isthe empirical mean and s° is empirical variance (average squared deviation

from the empirical mean) of the entire data series Y, .

It is worth noting that the P1 prior slightly changes the conditional posteriors given in
Equation (5.9) for sampling the state rainfall parameters in the single site context. The

P3 prior assumes mm and s are jointly unknown, hence their conditional posterior is
p(ms|Y,). This can be further broken down using the relationship
p(ms|Y,) = p(nts,Y, ) p(slY,). Herce the conditional posterior for s is only
conditioned on the data Y,, . In contrast using the P1 prior formulation the conditional
posterior for s is conditioned on known m and the data, p(s|mY,). For m the

conditional posterior is still  p(ms,Y, ). Therefore using the P1 prior the conditional

posteriors for the state rainfall parameters given in Equation (5.9) change to:

m = p(m |Sy.s:hY,)

) o EA4
st~ p(s, [Sh.mY,) K

These are the conditional posteriors given in Thyer and Kuczera [2000a]. Either one of
the formulations given in Equations (5.9) or (E4) is alowable in the Gibbs sampler
framework. The methodology for sampling from the conditional posteriors given in
(E.4) is described in Appendix D.

E.3 Comparison of Results

The Sydney rainfall data was reanalyzed with the P3 prior and compared to the results
given in Thyer and Kuczera [2000a] for the original P1 prior to determine whether the
results were sensitive to the choice of the prior. A comparison between the posteriors
that resulted from the P1 and P3 prior for al the single ste HSM model parameters for
the Sydney annua (June to May water year) rainfal data is given in Figure E.1. The
June to May water year was used because Thyer and Kuczera [2000a] stated it had the
strongest wet and dry state signal.

The results indicate that the inferences are sensitive to the choice of the prior, especially

for the wet state rainfall parameters, m, and s,,, and the wet to dry state transition
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probability, p,,- It is believed thisis mainly due to the scheme used in the P1 prior for

the state variance. The s, posterior using the P1 prior is shown to be bimodal, whereas

using the P3 prior it is unimodal [Figure E.1(f)]. The reasons for this bimodality are
believed to be because the prior on the state variance is changed from an informative

prior to an uninformative prior depending on the number of datain the state with the P1

prior. In the s, posterior using the P1 prior the mode that corresponds to the larger
parameter value is similar to the mode for s, posterior using the P3 prior and is

therefore believed to be caused by the data. The other mode in the s,, posterior using

the P1 prior (corresponding to the smaller parameter value) is believed to be due to the
P1 prior scheme for the informative proper, which is denoted as SD prior P1 in Figure
E.1(f). The difference between the location of the mode is because the curve denoted as

SD prior P1 is not actualy the true SD prior as it does not include the uninformative

casewhere p(s?)p 1/s?.

— P(Dry-Wet) Posterior (P1 Prior) — P(Wet-Dry) Posterior (P1 Prior)
—P(Dry-Wet) Posterior (P3 Prior) ——P(Wet-Dry) Posterior (P3 Prior)

Probability Density
Probability Density

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Parameter Value Parameter Value
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Figure E.1 — Comparisons of the posterior densitiesfor the single site HSM model
parameters for the Sydney annual rainfall data (June to May water year) for the
P1 and P3 prior specifications. Also shown are the P1 and P3 prior densities (SD
stands for standard deviation).

E.4 Implications

Sensitivity of the inferences to the choice of prior is not desirable in a Bayesian
framework. Given the above result the P1 prior specification was re-examined and it

was realized that it is not permitted in the Gibbs sampler framework to change the prior
depending on the hidden state time series S,, . The hidden states are part of the data for
the conditional posteriorsof mand s . In Bayesan inference it is not allowed to have

the prior change dependent on the data. The prior should remain constant and be

independent of the data. Because the priors used were diffuse, this flaw only affected
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the inferences when the number of data in a particular state was generally low. As
Figure E.1 illustrates, the posteriors for the dry state parameters changed very little
whether prior P1 or P3 was used because the number of data classified in the dry state
was quite high.

It is important note that the overall conclusions from the inferences remained the same.
Therefore the important findings given in Thyer and Kuczera [20004] still stand. A two-
state persistence structure was identified for the Sydney rainfall data. It was only the

strength of the persistence structure and the wet state rainfall parameters that changed
dightly.

E.5 Conclusion

Given the discovery of this violation in the P1 prior framework it was considered
unacceptable for use in the Gibbs sampler and the P3 prior was therefore adopted for the
use in the single site HSM model.
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Appendix F - Verification of Single Site
HSM Model Calibration Procedure

F.1 Introduction

To verify that the Gibbs sampler had been correctly formulated and the computer code
used to implement the Gibbs sampler was free of any gross errors, synthetic calibration
runs were used. Synthetic data was generated using the HSM model and then the Gibbs
sampler was used to determine if it could recover the true parameter values. The results
of this analysis are presented in this appendix for two different sets of parameters. The
first set of parameters (denoted as set S1) had wet and dry rainfall distributions which
were considered very well separated, i.e. examination of the marginal distribution of the
entire time series clearly showed two separate distributions [Figure F.1(a)]. The
transition probability values corresponded to an expected state residence of around 5
years. The second set of parameters (denoted as set S2) had wet and dry rainfall

distributions which were much close together, compared to set S1 [Figure F.1(b)]. For
this set the transition probability values were decreased dightly to correspond to an

expected state residence time of 10 years for the wet state and 7 years for the dry state.
Synthetic time series with 100, 1000, and 10,000 data points were applied because it
would be expected that as the number of data points increases the posterior should
converge to the true parameter value. The synthetic parameter values for set S1 and S2

aregivenin Table F.1.

Table F.1 - Synthetic parameter values.
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Parameter Wet State Dry State Transition Probabilities

Set m, Sw m, Sp Pwo Pow

S1 1000 5.0 500 5 0.2 (5) 0.2 (5)

S2 1200 240 800 160 0.1 (10) 0.15(7)
— Wet State — Wet State
— Dry State —Dry State

JIl 1 I L | 1 jIl L] 1 L | 1
400 500 600 700 800 900 1000 1100 1200 0 500 1000 1500 2000
Synthetic Rainfall (mm) Synthetic Rainfall (mm)
(a) S1 parameter set (b) S2 parameter set

Figure F.1 — Wet and dry state rainfall distributions for the synthetic eainfall
series.

F.2 Results

The posteriors for p,,, and m, are shown in Figure F.2 for the S1 set and Figure F.3

for the S2 set. The posteriors are compared using percentile box plots. The bottom and
top of the box correspond to the 8" and 95" percentiles respectively, the middle solid
line is the median (50" percentile) and the two dashed lines are the 25" and 75™
percentiles. It is clearly seen that as the number of the data points increases the
posterior of each parameter converges to the true parameter value. A similar result was

found for al the other HSM model parameters.
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Figure F.2 — Posteriorsfor selected HSM model parametersfor synthetic series
set S1 with varying number of data points. Dark line indicatestrue parameter
value.
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Figure F.3 — Posteriors for selected HSM model parameters for synthetic series
set & with varying number of data points. Dark line indicates true parameter
value.

F.3 Conclusion

The results indicated that as expected the posteriors shrunk towards the true parameter
values as the number of data points in the synthetic series was increased. These
synthetic calibration runs verify that the application of the Gibbs sampler to the HSM
model has been correctly formulated and the computer code used to generate these

results is working correctly.
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Appendix G - Comparison of Priors to
Posteriors for Single Site HSM Model

G.1 Introduction

In the calibration procedure for the single site HSM mode informative prior
distributions were used for the state rainfall parameters. The prior parameter values
were chosen to ensure the priors were as diffuse as possible. An important part of post-
calibration analysis is to ensure these priors were actually diffuse compared to the
posteriors. In this Appendix the priors are compared to the posteriors to verify this for

each of the sites.
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G.2 Results

For each of data sets used to calibrate the single site HSM model the prior and
posteriors for the state rainfall parameters are compared in Figure G.1 to Figure G.16.
Asthe same prior was used for both the wet and dry state only one prior is shown in the
diagrams, while both the posteriors for the wet and dry state means and standard
deviations are shown. These plots confirm that, as intended, the priors are relatively
diffuse compared to the posteriors. It is worth commenting that for the state standard
deviations for some of the sites, especially Melbourne, Adelaide, Perth, Clarence Town
and Dungog, the priors are not as diffuse compared to the results for the other sites.
However, as they do not dominate the posteriors they are not considered to have alarge
influence on the inferences. The priors for the state transition probabilities were not
compared because the prior parameter values chosen resulted in auniform prior [refer to
Appendix D for details].
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Figure G.1 — Sydney annual (September to August) rainfall — state mean and
standard deviation.
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Figure G.2 — Brisbane annual (July to June) rainfall data — state mean and
standard deviation.
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Figure G.9 — Taralga annual (January to December) rainfall data - state mean
and standard deviation.
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Figure G.11 — Cataract Dam annual (May to April) rainfall data - state mean and
standard deviation.
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Figure G.12 — Clarence Town annual (September to August) rainfall data - state
mean and standar d deviation.
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Figure G.13 — Dungog annual (September to August) rainfall data - state mean
and standard deviation.
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Figure G.14 — Raymond Terrace annual (September to August) rainfall data -
state mean and standard deviation.
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Figure G.15 - Stroud annual (February to January) rainfall data - state mean and
standard deviation.
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Figure G.16 — Branxton annual (December to January) rainfall data - state mean
and standard deviation.

G.3 Conclusion

The results given in this appendix confirm that the informative priors for the state
rainfall parameters in the calibration procedure for the single site HSM model were

diffuse compared to the posteriors. Hence they exert only a minor influence on the
inferences.
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Appendix H - Simulated Rainfall Results
for Single Site HSM Model

H.1 Introduction

The posterior predictive distribution of the replicated data p (y'* |YN) , as defined in

Section 6.4.1, is smulated for the single site HSM model using the posteriors as given
in Chapter 7. Comparison of the sampling distribution of drawing N samples from this
posterior predictive distribution to the observed data distribution provides an indication
whether the model is a good fit to the observed data. The results presented here are for
al the rainfall data sets that are not shown in the main body of this thesis. Inspection of
Figure H.1 to Figure H.13 shows that the observed data was within the 5% and 95%
confidence limits of the simulated data for all the data sets. This is considered to be a
good fit to the data.
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FigureH.1 — Melbourne annual (Sep. to Aug.) rainfall data.
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FigureH.2 — Adelaide annual (Juneto May) rainfall data.
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Figure H.3 — Perth annual (Juneto May) rainfall data.
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Figure H.4 — Mt. Victoria composite annual (Jan. to Dec.) rainfall data.

Page H-3



Appendix H - Simulated Rainfall Results for Single Site HSM Model

FI LE M/_ATSnSAMPLES. QUT SI TE

MW: Site No 1

HSM RAIN 1 Year OverLap Seq Avg, Start Year: 1 FULL PCSTER CR
2000 .
X (bserved Rainfall
1800 5% Confi dence Limt X
E —— 95% Confi dence Linit /
1600 © Medi an Pt
Z XN
2 1400
<
LL
E 1200
&
— 1000
2 800
(]
@ 600 -
2 400 X/
200 %
0
0.01 0.1 1 510 2030 50 7080 90 95 99 99.9 99.99
PERCENTI LE

FigureH.5—-Moss Vale annual (May to April) rainfall data.
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Figure H.6 — Taralga annual (Jan. to Dec.) rainfall data.
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FigureH.7 — Yarra composite annual (April to March) rainfall data.
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Figure H.8 — Cataract Dam annual (May to April) rainfall data.
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Figure H.9 — Clarence Town annual (Sep. to Aug.) rainfall data.

FILE: DOG AT9SAMPLES. QUT SITE DOG Site No 1
HSM RAIN 1 Year OverLap Seq Avg, Start Year: 1 FULL POSTERI OR

2000

X (Cbserved Rainfall
5% Confi dence Limt /
—— 95% Confidence Limt >

1800

1400 par

1200

1 RAINFALL (mm)

1000

800

o
600 :
%

DOG. Site No

400 (X

200 /

0.01 0.1 1 510 2030 50 7080 90 95 99 99.9 99.99
PERCENTI LE

Figure H.10 — Dungog annual (Sep. To Aug.) rainfall data.
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FigureH.11 — Raymond Terrace annual (Jan. to Dec.) rainfall data.
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Figure H.12 — Stroud annual (Feb. to Jan.) rainfall data.
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Figure H.13 — Branxton annual (Dec. to Jan.) rainfall data.
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Appendix I - Derivation of Likelihood
Function for AR(1) Model

.1 Introduction

In this Appendix the likelihood function for the AR(1) model given a time series of

rainfall data Yy, p(Yy|q) will be derived. This is not straightforward because of the

complications caused by the Box-Cox transformation. To motivate this derivation the

explantion of the AR(1) modelling framework given in Section 8.2 will be reiterated.

As given in Equation (8.1) the AR(1) model has the form:
Zt=m+f1(zt-1' n?"'et (1.1)

where z, isthe value of the time series at time step, t, m isthe mean of the time series,
f, is the lag-one autoregressive parameter e, is an uncorrelated Gaussian random

variable, with zero mean and variance, s2, suchthat e, ~ N(0,s2).

From Equation (1.1) it can be seen that given the value z _, the z also follows a

Gaussian distribution, such that z|z_, ~ N(m+f,(z_, - m),s2). Hence, to use the
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Appendix | - Derivation of Likelihood Function for AR(1) Model

AR(1) modd to simulate a rainfall time series Y, ={y,,...,Y,} itis first necessary to

ensure that the rainfall data follow a Gaussian distribution. If this is not the case a Box-
Cox transformation [Box and Cox, 1964] is commonly applied to the rainfall data such
that:

by -1 .
| 110 (.2)

logy, =0

471
T

where the transformation parameter | is usualy chosen to ensure the z's follow a

Gaussian distribution.

In this analysis the transformation parameter is treated as unknown, hence the vector of

unknown model parameters for the AR(1) mode is:
qé=(ms..f,.l) (1.3)
.2  Derivation of the Likelihood

The derivation of the likelihood function for the AR(1) model parameters for a time
series of rainfal data p(Y,|q) will first be derived in terms of the transformed data

p(Zy|9).

To derive the likelihood function for a single tranformed data point z, it must be
realized that there are complications caused by the Box-Cox transformation. If Equation

(1.2) isrearranged in terms of  z,, then:

1.4
ep(z) | =0 (4

This places a constraint on the transformed rainfall values that z!| +1> 0. Hence the

z,’sactually follow a truncated Gaussian distribution, such that:

z|z., ~TN(m+f (7., - m,s?) (1.5)
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where TN(ms ?) denotes atruncated Gaussian distribution subject to some constraint,

inthiscase z| +1>0.

The corresponding probability density of asingle observation z, assumed to follow this

trunated Gaussian distribution, is written as:

s

]- 1 -1 1(Zt-1' m)dzu :
il - if zI +1>0
p(zlz a)uip o P g

f
t s ! (1.6)
t 0 otherwise

1
2

g, - m-
¢
e

D D

where P' is a normalising probability introduced to compensate for the truncation of
the distribution. For a distribution to be a proper probability distribution the integral of
its density must sum to 1. When a distribution is truncated the integral will not sum to 1.
Therefore P' represents the cumulative probability of the region of the distribution that
IS not truncated, such that:

Toa¥ x-mf,(z_,-m) 2 .
o 10y Vﬁs—eap[‘%(fs—f)] dx if 1 >0
v~ \']/l X-mf,(z4- 2 H

P10, 7= exp[- %(#)] dx if | <0

(1.7)

When the probability density is normalized by this P' factor then the integral will sum
to 1 and it becomes a proper probability distribution.

To determine the probability density of a single rainfall data point y, the following
change of variable transformation is applied to the density given in Equation (1.6):

% p(zlz.,,9)
-1

d

p(yt|yt-11q) _W
=y, " p(z|z.,.9)

H(y) (R's.) |- 2(emennf] itz +150

T

U
0 otherwise (1.8)

Now to calculate the full likelihood function for a time series of rainfall data Y, the

following relationship is used (as adopted by Chib [1996] the notation Y, ={y,,...y,} is
used):
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pP(Yyl @) = p(Y,lY,.1,09) p(Y, Q)

(yn|yn— 11q) p(Yn1| q)

T T

(1.9)

In the first line the conditiona probability theorem is applied and in the second the
assumed Markovian property of the rainfall data is used. By repeatedly applying these
two theorems to the right hand term, it can be seen that a recursive expression will

result. The summary of thisrecursionis:

P(Y| @) = P(YolYn1:Q)--- PO Vi1, 9Q)--P(Y| Y2 @) POV Q) (1.10)

The probability density of the typical term in this recursion p(y,|y,,,q) is given in
Equation (1.8).

When al the probability densities for each of the terms given in (1.9) are multiplied

together the following expression for the full likelihood results:

p n -~ RV )
14 (%) EIO(YJQ) zl +1>0" t=2,n

]
.:. (1.11)
1 0 otherwise

where P' and z are as given above. It is important to note that the normalizing factor

P' changes for each datapoint z becauseit is dependent on m+f (z_,- m.

In general terms, the likelihood for the terminal point p(y,|q) could be calculated based

on the margina density:

Pyl ) = OP(YilYo, A)P(Yola) dy, (1.12)

However, this marginal density is not easily derived. Instead, in this anaysis the
following expression is used:

_dz
p(y,[a) &, p(z/a)

=y, " p(z/q) (113)

which applies the change of variable used in Equation (1.8) to p(y,|q) . The density for

the termina point in transformed space p(z|q) can be calculated because if the
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truncation is ignored then the marginal density for z, as given by Box and Jenkins

[197Q], is.

p(zlq) ~ N(mfflz) (1.14)

Ignoring the truncation for only the terminal point is not expected to have a maor
impact on the inferences. Hence, this method was used to calculate the likelihood

function for the terminal point, p(y,|q).

.3 Relationship Between Parameters in Transformed and

Untransformed Space

Using first-order approximations it is possible to derive a relationship between the

parameters of the AR(1) model, mand s, which are in transformed space to their
equivalents in untransformed space, m, and s . This derivation begins by using the
knowledge that z = f(y,), as defined in Equation (1.2). Applying a Taylor series

expansion to this function gives:

z¢=f(ﬂy)+j—i{ : (v, - m)
cf)= €1+ Elly-m)
Elz]=E[f(m)]

_m -1

m=—-— (1.15)

y

where in the second line expectations are taken, in the third line because

E[(y, - m )] = Ely,]- E[m]=0 that term drops out and the fourth line follows because

of the relationship given in Equation (I.2). Hence, Equation (1.15) gives an expression

that relates the mean in transformed space 1T to its equivalent first order approximation

in untransformed space m, .

To derive a similar expression for s the Taylor series expansion is aso utilised, such

that:
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Yilz,=m,
el t1=Fa|  Zeltyom)]

Var(z) = (m" ) Var(y,)
s2= rQ,Z(l g2 (1.16)

y

where expectations are taken to produce the second line and the third line again uses the

2

relationship given in Equation (1.2). Using the knowledge that s = 15; >~ [Box and
1

Jenkins, 1970] then Equation (1.16) can rearranged to give an expression intermsof s_,
where:
se=si(l-f])
=m 521 17)
S, = r@("”sym (1.17)
Hence an expression that relates the standard deviation in transformed space s, toits

equivalent first order approximation in untransformed space s, again results.

For an explanation of why this derivation was undertaken refer to Section 8.3.2.
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Model Calibration Procedure

J.1 Introduction

To verify that the Metropolis algorithm and the likelihood function for the AR(1) model
had been correctly formulated and the computer code used was free of any errors
synthetic calibration runs were used. Initialy in the first batch of synthetic calibration
runs synthetic data generated from a bivariate Gaussian distribution was used to verify
that the Metropolis algorithm had been correctly coded. Because the jump distribution
used in the Metropolis algorithm was multivariate Gaussian, if the Metropolis algorithm
has been correctly formulated it should have no trouble recovering the true synthetic
parameter values for bivariate Gaussian data. The second batch of calibration runs
undertaken was to ensure that the likelihood function for AR(1) model was formulated
correctly. Synthetic data was generated using the AR(1) modelling structure with a Box-
Cox transformation as given in Section 8.2. The posteriors for both sets were examined
for time series of length 100, 1000 and 10,000 data points to verify that they converged
to the true parameter values as the number of data points increased.
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J.2 Results

J.2.1 Bivariate Gaussian synthetic data

To generate the synthetic bivariate Gaussian data the following parameter values were
used:

210.01;1.0 0.5(6
N, -

1000105 1.0bs (21)

It can be seen that both components have the same parameter values. Therefore the
posteriors for the bivariate Gaussian synthetic data are shown in Figure J.1 only for one
component and the correlation. Percentile plots were again used [refer Appendix F] to
compare the posteriors for varying length data series. It can be clearly seen that as the
number of data points increases the posteriors converge towards the true parameter
values. In addition the acceptance rate was within the optimal range [as given in Section
8.3.1.a. These results verified that the Metropolis agorithm has been correctly
formulated.
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Figure J.1 — Posteriors for the parameters of one component of the bivariate
Gaussan mode for a varying number of data points. Dark line indicates true
parameter value.

J.2.2 AR(1) synthetic data

To test that the likelihood function for the AR(1) model with Box-Cox transformation
had been formulated correctly synthetic data was generated using two different
parameter sets, denoted as the S3 and $4 set. Their values are summarized in Table J.1.
The procedure followed was to generate synthetic z, values using an AR(1) model and
then to transform it with a Box-Cox transformation The Metropolis algorithm was then
applied to determine if the true synthetic values of the AR(1) modelling parameters and
the transformation parameter could be recovered. During the generation of the synthetic
data it was checked whether any values generated by the AR(1) model violated
z| +1> 0 prior to applying the transformation If they did, they were resampled as this
is a congdtraint of this modelling structure - refer to Appendix | for more details. This

causes a truncation in the distribution of transformed values. The likelihood function
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was derived to alow for this truncation. The aim of these synthetic calibration runsis to

verify that this likelihood function is correct.

Table J.1 — Synthetic Parameter Values for AR(1) mode with Box-Cox
transformation.

Parameter Mean I Stan. dev. s, Lag-oneautoregressive  Transformation

Set coefficient f, parameter |
S3 10.0 3.0 0.5 0.5
A 3.0 4.0 0.5 0.5

It is possible to calculate the proportion of the transformed data distribution that is
truncated. Using the fact that the mean of the z values is smply the AR(1) mean

parameter, while the variance s?2 is celculated by s? =s?/(1- f 2) [Box and Jenkins,
1970] the proportion that violates the constraint zl +1>0 can be calculated. For the

S3 set of parameter values this proporationis very close to 0, while for set $4 it is closer
to 15%. Hence, set S3 verifies that the AR(1) model likelihood function is correct,
while set $4 verifies that the AR(1) model likelihood function with the truncation due to
the transformation is correct. This is the reason for choosing two different sets of

parameter values.

The posteriors for all the parameters are shown in Figure J.2 and Figure J.3 for set S3

and $4 respectively. It can be clearly seen that in al cases the posterios converge

towards the true parameter values as the number of data points increased.
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FigureJ.2 — Posteriors of the AR(1) model parametersfor synthetic parameter set
S3for avarying number of data points. Dark line indicates true parameter value.
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J.3 Conclusion

The results indicated that, as expected, the posteriors converged towards the true

parameter values as the number of data points in the synthetic series was increased.

These synthetic calibration runs verify that the

implementation of the Metropolis

algorithm and the derivation of the likelihood function for the AR(1) model with a Box-

Cox transformation was indeed correct.
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Appendix K - Simulated Rainfall Results
for AR(1) Model

K.1 Introduction

The posterior predictive distribution of the replicated data p (y'® |V, ) , as defined in

Section 6.4.1, is simulated for the AR(1) model using the posteriors as given in Chapter
8. Comparison of the sampling distribution of drawing N samples from this posterior
predictive distribution to the observed data distribution provides an indication whether
the model is a good fit to the observed data. Inspection of Figure K.1 to Figure K.10
shows that the observed data was within the 5% and 95% confidence limits of the

simulated data for al the data sets. Thisis considered to be a good fit to the data.
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Figure K.1— Sydney annual (Sep. to Aug.) rainfall data.
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Figure K.2 — Brisbane annual (July to June) rainfall data.
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FigureK.4 — Adelaide annual (Juneto May) rainfall data.
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Figure K.5— Perth annual (Juneto May) rainfall data.
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Figure K.6 —Mt. Victoria composite annual (Jan. to Dec.) rainfall data.
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FigureK.7—Moss Vale annual (May To April) rainfall data.
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FigureK.8 — Taralga annual (Jan. to Dec.) rainfall data.
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Figure K.9 — Yarra composite annual (April to March) rainfall data.
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Figure K.10 — Cataract Dam annual (May to April) rainfall data.
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Appendix L - Verification of
Multi-site HSM Model Calibration

Procedure

L.1 Introduction

To verify that the Gibbs sampler had been correctly formulated for the multi-site HSM
model and the computer code used to implement the Gibbs sampler was free of any
gross errors, synthetic calibration runs were used. Multi-site synthetic data was
generated using the multi-site HSM model and the Gibbs sampler was used to determine
if the true parameter values could be recovered. Multi-site data from five sites was
generated because five is maximum of number of sites that will be used for calibration
in this thesis. The synthetic parameter values used for the state rainfall distributions
were similar to the expected values from the posterior for the Warragamba catchment
rainfall data [refer Table 7.2] because for these sites a two-state persistence structure
was identifiable. The spatia correlation between all the sites was set to 0.8 for both the
wet and dry states, as this was the approximately the average value of the spatial
correlation for the Warragamba catchment rainfall sites. The values for the transition
probabilities were chosen which corresponded to a medium wet and dry persistence
structure. Synthetic time series of 100, 1000, and 10,000 data points were used to
calibrate the HSM model to determine if the posteriors converged towards the true
synthetic parameter value as the number of data points increased.
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In addition, it was aso verified that the method for sampling missing data values was
correctly implemented. The method used was to take the synthetic rainfall data for one
of the sites and remove a portion of the data series to mimic that the data was missing.
This was completed for the 100 and 1000 time series lengths, where 10% and 5% of the
values were removed respectively. It was not done for 10,000 time series as removing
10% of the data for one site means 1000 missing data points and 1000 extra parameters.
The computer code developed to implement the Gibbs sampling procedure was not

designed to handle 1000 parameters.

L.2 Results

The posteriors for p,,, ahd py,, , the rainfall parameters for site 1 and the correlation

between site 1 and site 2 are shown in Figure L.1. Again, percentile box plots are used
to compare the posteriors [refer Appendix F]. It is clearly seen that as the number of
data points increases the posterior of each parameter converges to the true parameter

value. A similar result was found for al the other multi-site HSM model parameters.
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Figure L.1 — Posteriors for selected HSM model parameters for multi-site
synthetic series with varying number of data points. Dark line indicates true
parameter value.
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Figure L.1(cont.) — Posteriors for selected HSM model parameters for multi-site
synthetic series with varying number of data points. Dark line indicates true
parameter value.
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The results for the verification of the missing data procedure are shown in Figure L.2
for the 100 year case when 10% of the data was removed from one site. The posteriors
of selected parameters are shown for the site with the missing data. These are compared
to the case when the data was not missing for the 100 year time series. It canbe seen
that there was little difference in the posterior variance when the data was missing. Only
the dry state mean [Figure L.2(d)] showed a dlight increase in the posterior variance.
This is likely to be because there was a low proportion of missing data from only one
site and the rainfall information data from four other sites was used to estimate the

missing rainfall data values for that one site.

1 1
0.8 0.84
] ]
2 2
g  0.64 g  0.64
14 o
5 5
% 0.44 % 0.44
a a
0.24 0.24
0 T 0 T
No Missing Data Missing Data No Missing Data Missing Data
(@) pyp (truevalue=0.14) (b) p,,, (truevalue=0.14)
1500 1000
14004
9504
% 13004 S
o o
¢ ¢
5 12004 5 9004
o 8
0 %]
DO_ 11004 n’?
8504
1000
900 r 800: T
No Missing Data Missing Data No Missing Data Missing Data
() m, (truevalue=1240.0) (d) my, (truevalue=925.0)

Figure L.2 — Comparison of posteriors for selected HSM model parameters for
multi-site synthetic series with 10% missing data (one site) and without missing
data for the 100 year time series. Dark lineindicatestrue parameter value.
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Figure L.3 shows the posterior of the missing data values compared to the actual
synthetic value for the 100 year time series. This shows that the majority of the
posteriors for the missing data values are in the vicinity of the actual synthetic data
value. It would not be expected that the posterior should capture the true synthetic data
values because these values are estimated based on correlations from four data points
from four sites. However, these results do illustrate how close the missing data

posteriors are to the actual synthetic parameter value.
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500

Figure L.3 — Comparison of posteriors for the missing data values to the actual
synthetic values (shown as crosses) for the 100 year time series.

Similar results to the above were aso found for the 1000 year time series, the posteriors
did not show any distinct changes when missing data was sampled. These results
verified that the method for sampling the missing data values has been correctly

implemented.

L.3 Conclusion

It was found that as the number of the data points increased the posterior of every
parameter would converge to the true parameter value. This was as expected and
verified that the implementation of the Gibbs sampler for the multi-site HSM model,
including the procedure for handling the missing data, has been successfully formulated
and coded.
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Appendix M - Comparison of Priors to

Posteriors for Multi-site HSM Model

M.1 Introduction

Similar to Appendix G for the single ste HSM modedl in this Appendix the priors are
compared to the posteriors for the multi-site HSM model. This is to verify that these

priors were actually diffuse compared to the posteriors.
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M.2 Results

The priors and posteriors for the state mean and standard deviation for the Warragamba
catchment rainfall data four-site analysis are compared in Figure M.1 to Figure M.4.
Note that compared to the single site results given in Appendix G the priors are more
diffuse. The prior and posterior comparisons for the state correlation parameters are
given in Figure M.5. The priors can be seen to be diffuse. Interestingly it can be seen
that the dry state correlations are generally higher than the wet state correlations. For the
Warragamba catchment rainfall data five-site analysis al the priors will not be shown as
the results are similar to the four-site anaysis — the priors are relatively diffuse

compared to the posteriors. The priors for the extra site included in the analyss,

Cataract Dam, are shown in Figure M.6. The state rainfall correlations between that site
and the four other sites are shown in Figure M.7. Again, the priors can be seen to be
diffuse compared to the posteriors.

For the Williams River catchment three-site analysis the comparison of the priors to the
posteriors for the state mean and standard deviation is shown in Figure M.8 to Figure
M.10. For the state correlation this comparison is shown in Figure M.11. It can be seen

that the priors are diffuse compared to the posteriors.

In these results for the Warragamba and the Williams River catchments there is a
feature in the priors that warrants a comment. The priors for the state rainfall
correlations have a peak at a correlation of one. This result was unexpected, and it was
guestioned whether the priors had been correctly formulated. DeGroot [1970] provides
afunction to calculate the distribution of a correlation for the bivariate Gaussian case. It
was found to be of the same form as shown in this Appendix with the prior mode
located at a correlation of one. This is a minor concern and it may have to be
investigated if aternative priors are available as part of the future research. However,
given that generally the priors for the correlations were relatively diffuse over the range

of the posteriors this was considered adequate for this analysis.
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FigureM .1 —Mt. Victoria (MtV) staterainfall parameters, four-site analysis.
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FigureM .2 —MossVale (MV) staterainfall parameters, four-site analysis.
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FigureM .3 —-Taralga (TR) staterainfall parameters, four-site analysis.
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FigureM .4—Yarra (YA) staterainfall parameters, four-site analysis.
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Figure M.5 — State rainfall correlation parameters for the Warragamba
catchment four-site analysis.
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FigureM .6 — Cataract Dam (CD) staterainfall parameters, five-site analysis.
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Figure M.7 — State rainfall correlation parameters between Cataract Dam and
the four other Warragamba catchment sites, five-site analysis.
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FigureM .8 —Clarence Town (CT) staterainfall parameters.
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Figure M .9 — Dungog (DG) state rainfall parameters.
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Figure M .10 — Raymond Terrace (RT) state rainfall parameters.
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Figure M .11 — State rainfall correlation parameters for William River catchment

three-siteanalysis.

M.3 Conclusion

The results given in this Appendix confirmed that the informative priors for the state

rainfall parameters in the calibration procedure for the multi-site HSM model were

diffuse compared to the posteriors. Hence they exert only a minor influence on the

inferences.
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Appendix N - Williams River Catchment
Multi-site Results

N.1 Introduction

For the Williams River three-site analysis with Clarence Town, Dungog, and Raymond
Terrace it was found that the Gibbs sampler had difficulty converging for the majority
of water years. A similar result was also found for the Williams River five-site analysis,
except none of the water years were able to achieve convergence. In this Appendix
iterative sequences of parameter samples are used to provide a further explanation of

why the Gibbs sampler could not converge.
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N.2 Results

During the iterative sequence of the Gibbs sampler some of the chains would flip
between what seemed to be two different modes in the posterior. The two different
modes had hidden state time series which were the basically the inverse of one another.
This is shown in Figure N.1 for the Williams River three-site analysis, January to
December water year. Similar results were found for other water years, except for the
April to March water year, which was able to achieve convergence to the equivalent of
mode 1 shown in Figure N.1.

Iterative sequences of selected parameter samples show the differences between the two
modes. One mode corresponded to a strong wet and dry separation for Clarence Town
[Figure N.2] but not for Dungog [Figure N.3] or Raymond Terrace [Figure N.4]. The
other mode had the opposite, low separation for Clarence Town and high separation for
Dungog and Raymond Terrace. The standard deviation (SD) for Dungog would also flip
from the wet SD being higher than the dry to the dry SD being higher than wet [Figure
N.5]. There was little change in remaining parameters for the different modes.

N.3 Conclusion

As stated in Section 11.2.2 various techniques were trialled to alleviate this problem.
However none were able to facilitate convergence. The reasons for nonconvergence
remain unknown. It is likely that the high correlation (close to 0.9) between the sites
maybe a contributing factor. It is recommended that further investigations using
synthetic calibration runs be undertaken to develop a greater understanding of the multi-
site HSM model and its calibration procedure.
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Figure N.1 — State frequency time series for the two different modes in the
posterior of the Williams River three-site analysis.
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Figure N.3 — Iterative sequence of parameter samplesfor Dungog (DOG) wet and
dry mean showing a transition between the two modes.
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