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Abstract

Balance control of a simulated inverted pendu-
lum attached to a circular base is presented.
This type of platform is analogous to a biped
robot with circular soled feet in single support
phase. Circular feet have been shown to be
more energy efficient than flat feet during walk-
ing, and in this paper we present another ad-
vantage, where circular feet do not suffer from
ground separation when applying a large torque
at the ankle.

1 Introduction

The motivation for this type of platform is to investigate
the potential for circular soles on robotic biped feet, here-
after called circular feet. We use the word “base” and
“foot” interchangeably, depending on whether the focus
is on the pendulum model or its application to a biped
respectively. Although circular feet result in a point-
contact with the ground, the practical difference between
traditional point-contact feet (or single-point feet) is that
for circular feet this point is available for control via the
ankle joint. Throughout this paper we will assume that
the foot cannot slide along the ground due to friction.

Using flat feet with no actuation at the ankle is analo-
gous to point-contact feet, where the foot itself is consid-
ered a part of the ground, and the ankle represents the
ground contact point. Attempting to apply torque to
the ankle to introduce a degree of actuation requires the
torque to be bounded so that one edge of the foot does
not detach from the ground. If an edge detaches from
the ground this effectively eliminates the actuation at
the ground contact point. The range of this bound can
be calculated using the Foot-Rotation Indicator (FRI)
[Goswami, 1999], [Popovic et al., 2005]. If the FRI moves
outside the support area of the foot, then the opposite
side of the foot will detach from the ground, effectively
resulting in a single-point foot and loss of a degree of
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Figure 1: Left: effect of applying a torque at the ankle
outside of the bounds which keep the FRI within the
area of support for a flat foot. Ground contact point A
detaches from the ground. Right: a circular foot does
not suffer from this problem.

actuation. This is illustrated in Figure 1, showing point
A detaching from the ground.

Using a circular foot there is no such restriction on the
ankle torque. There is however a restriction on the angle
the foot can subtend with the ground. If this angle is too
large then the contact with the ground occurs at the edge
of the foot, effectively creating a single-point foot. Circu-
lar feet also have advantages in passive dynamic walking
[Asano and Luo, 2007], [Wisse et al., 2005], [McGeer,
1990], and actuated walking with the ankle fused [Hase
et al., 2009], [Kinugasa et al., 2009], [Morimoto et al.,
2004]. Examples of bipeds with round feet and actuated
ankles for walking can be found in [Yeon et al., 2006]

and [Hosoda et al., 2005]. If the ankle is located at the
centre of the circle from which the arc base is derived,
then the model resembles that of a planar robot on a
spherical or wheeled base such as [Lauwers et al., 2006]

and [Kalra et al., 2007]. Existing literature has focused
on the locomotion aspects of bipeds with circular feet.
In comparison, the contribution of this paper is a con-
trol mechanism to balance with circular feet when not
in locomotion.

Flat feet have an advantage over circular feet when
the biped is standing still. Static stability inherent in
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flat feet allows a biped to remain balanced without any
sensing and actuation, beyond keeping the ankle joint
from rotating. This paper focuses on a control method
useful in allowing a biped with curved feet to remain sta-
ble while standing. The method implemented is Linear
Quadratic Control (LQR) [Anderson and Moore, 1971],
which is the most popular method of control for linear
time-invariant systems due to its robustness.

In the next section we show how the torque bound
with a flat base motivated the investigation into a cir-
cular base. Section 3 describes the dynamic model of
an inverted pendulum on a circular base, with a discus-
sion on various radii of the base and their effects on the
ankle locus. Section 4 contains the linearised equations
of motion, results of a simulation under LQR balance
control, and a region of successful balance control for
various initial states. Section 5 briefly extends the study
to an inverted double pendulum, showing the results of
balance during a simulation similar to that conducted
for an inverted single pendulum. Section 6 contains the
conclusion.

2 Motivation

We investigate a planar inverted pendulum, modelling
the pendulum as a rod and the base as a circle arc. A
morphological comparison between a pendulum on a flat
base and one on a circular base is illustrated in Figure 2.
First, a description of the Foot-Rotation Indicator and
how it applies to an inverted pendulum on a flat base is
given. From [Goswami, 1999] the FRI “is the point on
the foot/ground-contact surface where the net ground-
reaction force would have to act to keep the foot sta-
tionary. To ensure no foot rotation, the FRI point must
remain within the convex hull of the foot-support area.”
For a planar robot, the FRI point is calculated as

FRIx =
m1C1xg −

∑N
i=2 Ii�̈i

m1g +
∑N
i=2mi

(
C̈iy + g

)
+

∑N
i=2mi

{
Cix

(
C̈iy + g

)
− CiyC̈ix

}
m1g +

∑N
i=2mi

(
C̈iy + g

) (1)

where g is the acceleration due to gravity, and for link
i; mi is the mass, Cix is the centre of mass in the x
(horizontal) direction, Ciy is the centre of mass in the
y (vertical) direction, Ii is the moment of inertia about
the centre of mass, �̈i is the angular acceleration about
link i’s centre of mass. Link 1 represents the foot.

In the case of a planar inverted pendulum on a flat
base in its initial state, that is, when the base is sta-
tionary and both ends are touching the ground, and the
pendulum is stationary and completely upright, the FRI

point is given by

FRIinitx = − (Ib + l(ℎ+ l)mb) �̈b
g(mf +mb)

(2)

where Ib is the moment of inertia of the pendulum about
its centre of mass, l is half the length of the pendulum rod
(and the distance of the centre of mass from each end), ℎ
is the height of the revolute joint from the base, g is the
acceleration due to gravity, mf and mb are the masses
of the base (foot) and the pendulum (body) respectively,
�̈b is the angular acceleration of the pendulum about its
centre of mass, and the centre of the base is at the origin.

Given w is the width of the foot then, in the initial
state, one side of the foot will detach from the ground if∣∣FRIinitx

∣∣ > w

2
(3)

converting the inverted pendulum on a flat base into
an underactuated inverted serial double pendulum. See
Figure 1 for an illustration of this effect. The bound on
the maximum angular acceleration for states other than
the initial can be calculated by substituting in (1).

This bound on the angular acceleration of the pen-
dulum, and hence the torque about ankle, is the limit
at which flat feet are no longer useful for flat support.
Circular feet have no bound on the torque, as long as
the foot radius r is larger than or equal to the height
of the ankle (r ≥ ℎ) so that the robot does not become
airborne by lifting its foot from the ground.

Irrespective of the torque applied at the ankle, even
the smallest rotation of a flat foot results in one end of
the foot detaching from the ground. If no rotation is
desired then the FRI point must remain strictly within
the area of support. In comparison, a circular foot is
always in rotation when the FRI point doesn’t exactly
coincide with the ground contact point. However, rota-
tion of a circular foot does not result in the dynamical
model change to an inverted double pendulum, as long
as the rotation doesn’t move the ground contact point
to the edge of the foot. Thus, in order to maintain dy-
namics of each model, a flat base is limited to 0 rotation
and a circular base is limited to a maximum rotation of
�, where � is half the central angle of the arc the base
subtends.

3 Model

In this section the equations of motion of an inverted
pendulum on a circular base are presented. The vari-
ables in the following equations are shown in Figure 3
for reference. The generalised coordinates of the sys-

tem are the column vector q =
(
' �

)⊤
. Lagrangian
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Figure 2: Flat base and circular base inverted pendulum
models, where l is the distance from the ankle (shown
as a small circle) to the centre of mass of the pendulum
rod.
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Figure 3: Parameters and state variables of an inverted
pendulum on a circular base. Parameters and state vari-
ables are shown in black and blue respectively.

mechanics is used to solve for accelerations in these co-
ordinates.

Some derived variables useful in simplifying the equa-
tions for kinetic and potential energy are

p = 'r (4)


 = � − ' (5)

x = p− (r − ℎ) sin(') (6)

y = r − (r − ℎ) cos(') (7)

c =
r sin(�)

�
(8)

Cbx = x− l sin(
) (9)

Cby = y + l cos(
) (10)

Cfx = p− c sin(') (11)

Cfy = r − c cos(') (12)

where c is the distance from the centre of the circle to the
centroid, and � is half the central angle of the arc base.

From Figure 3 we can deduce that � = cos−1 ((r − ℎ)/r),
although the central angle’s condition on r and ℎ is not
necessary and can be adjusted to reduce or extend the
maximum allowed foot rotation. The following two as-
sumptions are maintained: the condition ' ≤ � always
holds, that is, the foot never rolls past its ends, and the
foot is always in contact with the ground.

The kinetic energy of the system is

Tb =
1

2
Ib
̇

2 +
1

2
mb

(
Ċ 2
bx + Ċ 2

by

)
(13)

Tf =
1

2
If '̇

2 +
1

2
mf

(
Ċ 2
fx + Ċ 2

fy

)
(14)

T = Tb + Tf (15)

where the moments of inertia are given by

Ib =
1

12
mb(2l)

2 (16)

If = mf (r2 − c2) (17)

and the potential energy of the system is

V = g (mbCby +mfCfy) (18)

Applying this to the Lagrange formula

ℒ = T − V (19)

d

dt

(
�ℒ
�q̇

)
− �ℒ
�q

=

(
0
�

)
(20)

for each generalised coordinate gives the following equa-
tions of motion1

D(q)q̈ + C(q, q̇) + G(q) =

(
0
�

)
(21)

where the elements of the matrices D, C, and G are

d11 = Ib + If + ℎ2mb + l2mb + c2mf

+2 cos(�)lmb(ℎ− r)− 2ℎmbr

+2 cos(')ℎmbr + 2 cos(
)lmbr

−2 cos(')cmfr + 2mbr
2

−2 cos(')mbr
2 +mfr

2

d12, d21 = lmb(cos(�)(r − ℎ)− cos(
)r − l)− Ib
d22 = Ib + l2mb

c1 = ar'̇2 − 2b'̇�̇ + b�̇2

c2 = lmb(ℎ− r) sin(�)'̇2

g1 = ag

g2 = −glmb sin(
)

a = lmb sin(
) + (−ℎmb + cmf +mbr) sin(')

b = lmb(r(sin(
)− sin(�)) + ℎ sin(�))

where mb represents the mass of the pendulum (body),
and mf represents the mass of the base (foot).

1derived with the Mathematica [Wolfram Research, Inc.,
2008] computer algebra system.
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3.1 Circular Base Radius

The choice of radius for the circular base affects the ankle
locus. For passive dynamics walkers it is advised not to
use a radius larger than the leg length, with suggestions
of a third of the leg length [Kinugasa et al., 2009]. Effects
of various radii on the metabolic costs of walking were
explored in [Adamczyk et al., 2006]. In this section we
mention how the difference in distance Δd between the
ankle and the original centre of mass of the pendulum
changes as the foot rolls over the ground, varying '. The
difference in distance is given by

Δd = l −
√
x2 + (y − (ℎ+ l))2 (22)

This allows one to choose an arc radius of the foot such
that the rolling of the foot minimises the change in cen-
tre of mass of the pendulum due to the ankle pulling
or pushing on the pendulum. Figure 4 shows Δd for a
range of foot radii as ' changes. It can be thought of as
the ankle locus as seen from the initial-state pendulum
centre of mass. Equation (22) is chosen as the negative
of an intuitive distance difference to better illustrate the
locus of the ankle. In Figure 4 we can see that as the
radius increases the locus approaches the cusp of a flat
foot ankle locus.

Figure 4: Difference in distance between the ankle at
various ' and the pendulum centre of mass at ' = 0 for
various r, where l = 1 and ℎ = 0.3. Negative Δd repre-
sents a larger distance and positive a smaller distance.

4 LQR Balance Control

One disadvantage of circular feet is that the robot re-
quires constant control to remain upright even when
standing practically still. This section addresses this

issue by presenting a balance controller for the robot,
allowing a stationary upright state to be maintained in
the presence of minor disturbances.

The continuous-time linear time-invariant system ob-
tained by linearising the equations of motion (21) about(
' � '̇ �̇

)⊤
= 0 is given by

ẋ = Ax +B� (23)

where

A =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
a31 a32 0 0
a41 a42 0 0

⎞⎟⎟⎠ (24)

B =

⎛⎜⎜⎝
0
0
b31
b41

⎞⎟⎟⎠ (25)

x =
(
' � '̇ �̇

)⊤
(26)

a31 =
g
(
ℎIbmb −

(
Ib + l2mb

)
(cmf +mbr)

)
d

a32 =
gℎl2m2

b

d

a41 = −g
d

(cIbmf + ℎmb(−Ib + clmf + lmbr)

+ mb

(
Ibr + l

(
Ift + c2mf + cmf (l − 2r)

+ r(lmb +mfr))))

a42 =
glmb(Ift + ℎ(ℎ+ l)mb +mf (c− r)2)

d

b31 =
Ib + l(ℎ+ l)mb

d

b41 =
Ib + Ift + (ℎ+ l)2mb +mf (c− r)2

d

d = l2mb(Ift +mf (c− r)2)

+Ib(Ift + ℎ2mb +mf (c− r)2)

The value of the gain K which minimises the quadratic
cost function

J =

∫ ∞
0

(
x⊤Qx +R�2

)
dt (27)

for the state-feedback control law

� = −Kx (28)

can be found by solving the continuous-time algebraic
Riccati equation for P

A⊤P + PA− PBR−1B⊤P +Q = 0 (29)

and setting

K = R−1B⊤P (30)
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The Matlab [MathWorks, Inc., 2008] ‘lqr’ function was
used in solving equation (29), which at the time of use
implemented [Arnold III and Laub, 1984].

4.1 Balance Simulation

An inverted pendulum was simulated using equa-
tion (21), by applying torque specified by equation (28).
Figure 5 shows results of the first 1.2 seconds of simula-
tion. Model parameters used are shown in Table 1, and
the weight matrices for the cost function in equation (27)
were set to Q = diag(10, 1, 0.1, 0.1) and R = 1. The Q
weight matrix was designed by hand to emphasise the
cost of ' deviating from 0, in order to help prevent the
base from rotating such that the ground contact point
coincides with the edge of the base.

l r ℎ mb mf g
0.5 0.0625 0.025 1 0.1 9.81

Table 1: Parameters used for simulation.

The value of the gain feedback matrix for these pa-
rameters was calculated to be

K ≈
(
−81.4 78.2 21.6 21.9

)
(31)

Although not visible from Figure 5, the torque started
at a value of � ≈ 6.1N, then rapidly decreased to it’s
local minimum at around 0.004 seconds, then the gradual
increase and eventual decline is visible in the plot.

To measure the efficacy of the balancing controller
where the pendulum is subject to disturbances from the
the equilibrium point, the pendulum was initialised to
various states and then simulated under LQR control
with the same parameters as described above. An un-
successful balance was defined as the foot rotating past
its edge (∣'∣ > �), or the pendulum subtending an angle
greater than �

2 from the vertical (∣
∣ > �
2 ). Otherwise

the balance was considered successful. Each simulation
was run for 2 seconds, which was enough to determine
whether the balance control would succeed, since for an
unsuccessful balance the pendulum would either topple
or the foot would rotate past its ends well before the
2 second simulation finished. The longest unsuccessful
balance simulation lasted 0.434 seconds before the afore-
mentioned failing criteria were satisfied. Figure 6 shows
initial states leading to successful balances under control
of the LQR balancing controller.

5 Double Pendulum

The single-rod pendulum presented so far has been use-
ful in illustrating the differences between a circular foot

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.2
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Figure 5: Simulation of balancing an inverted pendulum
on a circular base for 1.2 seconds (see Video 1). Initial
angle of the pendulum was � = −0.075 rad, and all other
state values were initialised to 0. Top: Frames from
the video in chronological order. Bottom: State and
torque vs time, vertically aligned with the top image.
The coloured solid curves show the progression of the
corresponding state and input values. The blue dashed
horizontal line represents �, that is, when the ground
contact point would coincide with the edge of the foot.

and a flat foot. Humanoid robots usually have hip joints,
which allow for a greater range of initial states from
which the robot is able to balance. In this section a
simulation of a double pendulum on a circular base is
presented, where the joint between the two pendulum
rods represents the hip (see Figure 7).

The equations of motion are more complex than those
for the single pendulum. To keep clutter to a minimum
the same symbols will be used as for the single pen-
dulum, but redefined for this section. The generalised

coordinates are q =
(
' �1 �2

)⊤
. The equations of

motion are given by

D(q)q̈ + C(q, q̇) + G(q) =

⎛⎝ 0
�1
�2

⎞⎠ (32)

where the elements of the matrices D, C, and G are too
verbose to be presented here and can be found in the
Appendix.

5.1 LQR Balance Control and Simulation

Calculating the gain feedback matrix for the double pen-
dulum was performed in the same way as for the single
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Figure 6: The black region indicates a successful LQR
balance for various initial 
 and �̇, where ' and '̇ were
initialised to 0. The translucent blue region indicates a
successful LQR balance for various initial 
 and ', where
�̇ and '̇ were initialised to 0. Note that ∣'∣ ≤ �, where
� ≈ 0.93 represents a foot rotation such that the ground
contact point coincides with the edge of the foot.
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Figure 7: Parameters and state variables of an inverted
double pendulum on a circular base. Parameters and
state variables are shown in black and blue respectively.

pendulum. The cost function is given by

J =

∫ ∞
0

(
x⊤Qx + u⊤Ru

)
dt (33)

for the state and input vectors

x =
(
' �1 �2 '̇ �̇1 �̇2

)⊤
(34)

u =
(
�1 �2

)⊤
(35)

where the cost matrices were set to

Q = diag(10, 1, 1, 0.1, 0.1, 0.1) (36)

R = diag(1, 1) (37)

For parameters given in Table 2, the value of the LQR
gain feedback matrix was calculated to be

K ≈
(
−65 69 19 −18 18 6
34 −34 −6 9 −9 −2

)
(38)

The first 1.5 seconds of simulation are shown in Fig-
ure 8. Not visible in the plot, the torques started at
�1 ≈ 6.2N and �2 ≈ −3N. Similar to the single pendulum
simulation, the �1 declined rapidly to about 0.004 sec-
onds into the simulation, then gradually rose and even-
tually decline as can be seen in the plot. The torque �2
increased monotonically for the period outside the plot’s
range.

l1, l2 r ℎ m1, m2 mf g
0.25 0.0625 0.025 0.5 0.1 9.81

Table 2: Double pendulum parameters used for simula-
tion, where l1, m1, and l2, m2 represent half the lengths
and the masses of the first and second pendulum rods
respectively, counting from the ankle.

6 Conclusion

A benefit of circular feet over flat feet is that the limit of
available control shifts from being both state and torque
bound with a flat foot to only state bound with a cir-
cular foot. In addition to this and the benefits already
mentioned in literature, a circular foot with an actuated
ankle allows a biped to maintain partial control of the
ground-contact point, similar to the complete control of-
fered by robots on wheels. However, a circular footed
pendulum is always unstable, and requires constant bal-
ance control to remain standing.

If the benefits mentioned in this paper, and the bene-
fits to energy efficiency and smooth rolling motion men-
tioned in other literature out-weigh this restriction then
circular or rounded feet should be considered as an al-
ternative to flat feet.

Australasian Conference on Robotics and Automation (ACRA), December 2-4, 2009, Sydney, Australia



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.5

0.0

0.5

1.0

1.5

t HsecondsL

j

Γ1

Γ2

Τ1

Τ2

Α

Figure 8: Simulation of balancing an inverted double
pendulum on a circular base for 1.5 seconds (see Video
2). Initial angle of the pendulum was �1 = −0.09 rad,
and all other state values were initialised to 0. Top:
Frames from the video in chronological order. Bottom:
State and torque vs time, vertically aligned with the top
image. The coloured solid curves show the progression
of the corresponding state and input values. The blue
dashed horizontal line represents �, that is, when the
ground contact point would coincide with the edge of
the foot.

Appendix: Double Pendulum Dynamics

The equations of motion2 for an inverted double pendu-
lum on a circular base are given by

D(q)q̈ + C(q, q̇) + G(q) =

⎛⎝ 0
�1
�2

⎞⎠
where the elements of the above matrices are given by

d11 = I1 + I2 + If + ℎ2m1 + l21m1 + ℎ2m2

+ 4l21m2 + l22m2 + c2mf − 2ℎ(m1 +m2)r

+ (2(m1 +m2) +mf )r2

+ 2l1(m1 + 2m2)(ℎ− r) cos(�1)

+ 4l1l2m2 cos(�2)

+ 2(l2m2(ℎ− r) cos(�1 + �2)

+ r(l1(m1 + 2m2) cos(
1)

+ l2m2 cos(
2)

+ (−cmf + (m1 +m2)(ℎ− r)) cos(')))

(39)

2derived with the Mathematica [Wolfram Research, Inc.,
2008] computer algebra system.

d12, d21 = −I1 − I2 − l21m1 − 4l21m2 − l22m2

− l1(m1 + 2m2)(ℎ− r) cos(�1)

− 4l1l2m2 cos(�2)− ℎl2m2 cos(�1 + �2)

+ l2m2r cos(�1 + �2)

− l1m1r cos(
1)− 2l1m2r cos(
1)

− l2m2r cos(
2)

d13, d31 = −Ib2 − l22m2

− l2m2(2l1 cos(�2) + (ℎ− r) cos(�1 + �2)

+ r cos(
2))

d22 = I1 + I2 + l22m2 + l21(m1 + 4m2)

+ 4l1l2m2 cos(�2)

d23, d32 = I2 + l22m2 + 2l1l2m2 cos(�2)

d33 = I2 + l22m2

c1 = ((ℎ− r + r cos('))(l1(m1 + 2m2) sin(�1)

+ l2m2 sin(�1 + �2))

− r(l1(m1 + 2m2) cos(�1)

+ l2m2 cos(�1 + �2)) sin('))�̇21

+ 2l2m2(2l1 sin(�2) + (ℎ− r) sin(�1 + �2)

+ r sin(
2))�̇1�̇2 + l2m2(2l1 sin(�2)

+ (ℎ− r) sin(�1 + �2) + r sin(
2))�̇22

+ (−2((ℎ− r + r cos('))(l1(m1 + 2m2) sin(�1)

+ l2m2 sin(�1 + �2))− r(l1(m1 + 2m2) cos(�1)

+ l2m2 cos(�1 + �2)) sin('))�̇1

− 2l2m2(2l1 sin(�2) + (ℎ− r) sin(�1 + �2)

+ r sin(
2))�̇2)'̇+ r(l1(m1 + 2m2) sin(
1)

+ l2m2 sin(
2)

+ (cmf − (m1 +m2)(ℎ− r)) sin('))'̇2

c2 = −4l1l2m2 sin(�2)�̇1�̇2

− 2l1l2m2 sin(�2)�̇22 + 4l1l2m2 sin(�2)�̇2'̇

+ (ℎ− r)(l1(m1 + 2m2) sin(�1)

+ l2m2 sin(�1 + �2))'̇2

c3 = 2l1l2m2 sin(�2)�̇21 − 4l1l2m2 sin(�2)�̇1'̇

+ l2m2(2l1 sin(�2) + (ℎ− r) sin(�1 + �2))'̇2

g1 = g(l1(m1 + 2m2) sin(
1)

+ l2m2 sin(�1 + �2 − '(t)))

+ (cmf − (m1 +m2)(ℎ− r)) sin(')

g2 = −g(l1(m1 + 2m2) sin(
1) + l2m2 sin(
2))

g3 = −gl2m2 sin(
2)
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