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Abstract

In this paper, we investigate achievable rates on the multiple access channel
with feedback and correlated sources (MACFCS). The motivation for studying the
MACFCS stems from the fact that in a sensor network, sensors collect and transmit
correlated data to a common sink. We derive two achievable rate regions for the
three-node MACFCS.

1 Introduction

We consider a sensor network in which every sensor is capable of transmitting as well as
receiving. Each sensor collects data and aims to send them to a single destination. We
note that the data collected by the sensor nodes might be correlated, e.g., if they are
located close to one another. Taking into account these facts, we model the two-sensor
single-sink network by the channel depicted in Fig. 1. We term this channel the multiple
access channel with feedback and correlated sources (MACFCS).

This channel is a combination of the multiple access channel with correlated sources
(MACCS) and the multiple access channel with feedback (MACF). The MACCS (with a
common part) was studied by Slepian and Wolf [1], who derived an achievable rate region.
In their paper, separate source coding and channel coding are used, where source coding
is first performed to remove the correlation between the two sources and then channel
coding for the multiple access channel (MAC) with independent sources is employed.
The MACCS (with possibly no common part) was considered by Cover et al. [2]. They
showed, by using a simple example, that separating source and channel coding is not
optimal and derived an achievable rate region for the MACCS.

The MACF (with independent sources) was investigated by Cover and Leung [3]. In
their model, there are two sources and all nodes, i.e., the two sources and the destination,
receive the same channel output. A year later, Carleial [4] further generalized the channel
to the case where each node receives a different channel output signal.

The three-node discrete memoryless MACFCS is denoted by
(
S1 ×S2, p(s1, s2),X1 ×

X2, p
∗(y1, y2, y3|x1, x2),Y1×Y2×Y3

)
. s1 ∈ S1 and s2 ∈ S2 are the source messages to node

1 and 2 respectively and they are drawn from the discrete bivariate distribution p(s1, s2).
Here, S1,S2,X1,X2,Y1,Y2, and Y3 are seven finite sets. p∗(y1, y2, y3|x1, x2) defines the
channel transition probability on Y1 × Y2 × Y3 for each (x1, x2) ∈ X1 × X2. x1 and x2

are the inputs to the channel from nodes 1 and 2 respectively. y1, y2, and y3 are the



Figure 1: The three-node multiple access channel with feedback and correlated sources.

channel outputs to nodes 1, 2, and the destination respectively. We say that (s1, s2) can
be reliably transmitted to the destination if the probability that the destination wrongly
decodes a pair of (s1, s2) ∈ Sn

1 ×Sn
2 in each n channel uses can be made arbitrarily small,

for large n.
To the best of our knowledge, only Murugan et al. [5] have considered such a channel.

However, they only considered Gaussian channels. Their approach is based on joint
source-channel coding using time division multiple access (TDMA). Our work differs
from [5] in that arbitrary channels (not only Gaussian channels) are considered. In
addition, we consider the case where the source nodes can transmit and receive at the
same time, meaning we do not restrict the transmission scheme to TDMA.

We classify coding strategies for the MACFCS into two categories. We now describe
these strategies in more detail.

1.1 Full Decoding at Sources

For full decoding at sources, the general idea is for the sources to communicate so that
each source has full information about what the other sources have. They then cooperate
to send the combined signal to the destination. A scheme was proposed in [5], where
the transmissions are split into two phases. In the first phase, the source nodes commu-
nicate with each other using TDMA. At the end of the first phase, each source has full
information of what all other sources have. In the second phase, all sources cooperate to
transmit to the destination. In this paper we offer an alternative solution (see Section 2)
for full decoding at sources. Each source node transmits cooperative information of the
previous block (which it decodes from other nodes) and new information (which is to
be decoded by other sources and the destination) simultaneously. Since all nodes agree
on the same fully decoded information of the previous block, coherent combining can be
achieved. Under certain channel conditions, that all nodes fully decode the information
of all other nodes might not be desirable. One example is when node 1 is far from the
destination and node 2 is near to the destination. In this case, it is not necessary for
node 1 to decode node 2’s information. This leads us to the second strategy, in which
full decoding is only done at the destination.



1.2 Full Decoding at Destination

For full decoding at the destination, source coding is first performed at every source node.
This does not require physical communication among the sources. From [1], each source
node performs source coding and forms independent inputs to the channel encoder. This
removes the correlation between the sources.

At this point, we have turned the problem into channel coding for the MACF with
independent sources. An achievable region of the MACF was obtained by Carleial [4]. We
call that the partial decode-forward strategy. In this paper, we find another achievable
region for the MACF using the compress-forward strategy (see Section 3.3). Combining
the rate constraints of the source coding (for correlated sources) and the channel coding
(for the MACF), we arrive at other achievable rate regions for the MACFCS. To the best
of our knowledge, the compress-forward strategy has not been studied on the MACF.

2 Full Decoding at Sources

In this strategy, every node decodes the information from all other nodes and they cooper-
ate to send information to the destination. We note that for the nodes to cooperate, they
must first agree on the messages. In order to do this, they must first decode transmissions
from the other nodes. We consider the following correlation structure in which the sources
have a common part to send. 1 Let D, E, and F be three independent random variables,
equi-probable in {1, 2, . . . , d} = D, {1, 2, . . . , e} = E , and {1, 2, . . . , f} = F respectively.
Node 1 receives S1 = (D, E) ∈ D × E and node 2 receives S2 = (D, F ) ∈ D × F .

We note that node 1 does not know F and node 2 does not know E. The idea here
is for node 1 to decode F (from node 2’s transmission) and for node 2 to decode E.
After decoding, both nodes have the full information (D, E, F ). They cooperate to send
the fully decoded information as well as new information that is unknown to and to be
decoded by other nodes. In summary, node 1 sends (E, D′, E ′, F ′) and node 2 sends
(F, D′, E ′, F ′), where prime denotes the previous block’s information.

2.1 An Achievable Rate Region

Theorem 1 Let
(
S1×S2, p(s1, s2),X1×X2, p

∗(y1, y2, y3|x1, x2),Y1×Y2×Y3

)
be a discrete

memoryless three-node MACFCS. (s1, s2) can be reliably transmitted to the destination if
the following holds.

H(S1|S2) < min[I(X1; Y2|W0, W1, W2, X2), I(W1; Y3|W0, W2) + I(X1; Y3|W0, W1, W2, X2)]
(1a)

H(S2|S1) < min[I(X2; Y1|W0, W1, W2, X1), I(W2; Y3|W0, W1) + I(X2; Y3|W0, W1, W2, X1)]
(1b)

I(S1; S2) < I(W0; Y3|W1, W2), (1c)

H(S1) < I(W0, W1; Y3|W2) + I(X1; Y3|W0, W1, W2, X2), (1d)

H(S2) < I(W0, W2; Y3|W1) + I(X2; Y3|W0, W1, W2, X1), (1e)

H(S1|S2) + H(S2|S1) < I(W1, W2; Y3|W0) + I(X1, X2; Y3|W0, W1, W2), (1f)

H(S1, S2) < I(X1, X2; Y3), (1g)

1We assumed here that sources have a common part to send for the purpose of illustration only. The
analysis in this section applies equally well to arbitrarily correlated sources.



where p(x1, x2, y1, y2, y3, w0, w1, w2) = p(w0)p(w1)p(w2)p(x1|w0, w1, w2)p(x2|w0, w1, w2)×
p∗(y1, y2, y3|x1, x2, x3). W0, W1 and W2 are auxiliary random variables.

In the next section, we give a brief outline of the proof for Theorem 1.

2.2 Encoding and Decoding

First, we describe the coding scheme. Using Slepian and Wolf’s Theorem 2 in [6], we
know that when node 1 only knows S1 = (D, E) and node 2 knows S2 = (D, F ), node 1
can encode E using H(S1|S2) bits and it can decoded by node 2. Similarly, node 2 can
use H(S2|S1) bits to encode F . The codebook generation is as follows:

1. Fix the probability mass functions p(w0), p(w1), p(w2), p(x1|w0, w1, w2), and
p(x2|w0, w1, w2).

2. Generate 2n[I(S1;S2)+ε] i.i.d. sequences w0 according to
∏n

i=1 p(w0i). Index them
w0(i), i ∈

{
1, 2, . . . , 2n[I(S1;S2)+ε]

}
.

3. Generate 2n[H(S1|S2)+ε] i.i.d. sequences w1 according to
∏n

i=1 p(w1i). Index them
w1(j), j ∈

{
1, 2, . . . , 2n[H(S1|S2)+ε]

}
.

4. Generate 2n[H(S2|S1)+ε] i.i.d. sequences w2 according to
∏n

i=1 p(w2i). Index them
w2(k), k ∈

{
1, 2, . . . , 2n[H(S2|S1)+ε]

}
.

5. Define h′ = (i′, j′, k′). For each (w0(i
′),w1(j

′),w2(k
′)), generate 2n[H(S1|S2)+ε] se-

quences x1 according to
∏n

i=1 p(x1i|w0i(i
′), w1i(j

′), w2i(k
′)).

Index them x1(j, h
′), j ∈

{
1, 2, . . . , 2n[H(S1|S2)+ε]

}
.

6. Again for each (w0(i
′),w1(j

′),w2(k
′)), independently generate 2n[H(S2|S1)+ε] sequences

x2 according to
∏n

i=1 p(x2i|w0i(i
′), w1i(j

′), w2i(k
′)).

Index them x2(k, h′), k ∈
{
1, 2, . . . , 2n[H(S2|S1)+ε]

}
.

The encoding steps (refer to Fig. 2) are as follows:

1. Assume that node 1 correctly estimates the index k′ sent by node 2 in the previ-
ous block. Using its information of (i′, j′) from the previous block, it determines
h′ = (i′, j′, k′). Here, we use prime to indicate the index from the previous block.
Observing a new block of n input symbols s1 ∈ (D × E)n, node 1 selects j to rep-
resent En. It can find a unique j with probability tending to 1 if j is encoded with
no less than n(H(S1|S2) + ε) bits [1]. It then transmits x1(j, h

′
1).

2. Similarly, assuming that node 2 correctly decodes j′, it determines h′ = (i′, j′, k′).
It transmits x2(k, h′

2). It can find a unique k with probability tending to 1 if k is
encoded with no less than n(H(S2|S1) + ε) bits [1].

The decoding steps are as follows:

1. Upon observing the sequence y1, node 1 declares k̂ has been sent by node 2 if there

exists a unique k̂ such that
(
x1(j, h

′),w0(i
′),w1(j

′),w2(k
′),x2(k̂, h′),y1

)
∈ Aε. We

use hat to indicate the estimate. Here, Aε is the set of jointly typical sequences (pg.
195 in [7]). We note that node 1 knows h′ = (i′, j′, k′), which is the full information



Figure 2: Coding for the multiple access channel with feedback and correlated sources
using the decode-forward strategy.

from the previous block, and its own information j. It can determine the correct k
with diminishing error probability if

H(S2|S1) < I(X2; Y1|W0, W1, W2, X1). (2)

2. Similarly, observing the sequence y2, node 2 declares ĵ has been sent by node 1 if

there exists a unique ĵ such that
(
x1(ĵ, h

′),w0(i
′),w1(j

′),w2(k
′)x2(k, h′),y2

)
∈ Aε.

Node 2 can determine the correct j with diminishing error probability if

H(S1|S2) < I(X1; Y2|W0, W1, W2, X2). (3)

3. The destination (node 3) decodes (̂i, ĵ, k̂) over two blocks. In the first block, assum-
ing that it has already correctly decoded h′ = (i′, j′, k′) from the previous block, it

finds a set of (ĵ, k̂) ∈ L1 where
(
x1(ĵ, h

′),x2(k̂, h′),w0(i
′),w1(j

′),w2(k
′),y3

)
∈ Aε.

In the second block, it then finds another set of (ĵ, k̂) ∈ L2 and a unique î where(
w0(̂i),w1(ĵ),w2(k̂),y3

)
∈ Aε. It declares (̂i, ĵ, k̂) has been sent if there is a unique

î and a unique pair of (ĵ, k̂) in L1 ∩ L2. This can be done with diminishing error
probability if

I(S1; S2) < I(W0; Y3|W1, W2), (4a)

H(S1|S2) < I(W1; Y3|W0, W2) + I(X1; Y3|W0, W1, W2, X2), (4b)

H(S2|S1) < I(W2; Y3|W0, W1) + I(X2; Y3|W0, W1, W2, X1), (4c)

H(S1) < I(W0, W1; Y3|W2) + I(X1; Y3|W0, W1, W2, X2), (4d)

H(S2) < I(W0, W2; Y3|W1) + I(X2; Y3|W0, W1, W2, X1), (4e)

H(S1|S2) + H(S2|S1) < I(W1, W2; Y3|W0) + I(X1, X2; Y3|W0, W1, W2), (4f)

H(S1, S2) < I(X1, X2; Y3). (4g)



We consider all possible error combinations. Assuming that (i, j, k) were sent, (4a)
guarantees that the Pr(̂i 6= i, ĵ = j, k̂ = k) < ε for any ε > 0. (4b) guarantees
that Pr(̂i = i, ĵ 6= j, k̂ = k) < ε, (4c) guarantees that Pr(̂i = i, ĵ = j, k̂ 6= k) < ε,
(4d) guarantees that Pr(̂i 6= i, ĵ 6= j, k̂ = k) < ε, (4e) guarantees that Pr(̂i 6= i, ĵ =
j, k̂ 6= k) < ε, (4f) guarantees that Pr(̂i = i, ĵ 6= j, k̂ 6= k) < ε, and (4g) guarantees
that Pr(̂i 6= i, ĵ 6= j, k̂ 6= k) < ε.

The total probability of error can be bounded for large n if (2), (3), and (4a) to (4g)
hold. Hence, we have Theorem 1.

We note that in our derivation, we use a correlation structure with a common part
for clearer illustration. However, the analysis can be generalized to the case where there
is no common part, and hence Theorem 1 is applicable to sources with any arbitrary
correlation structure.

3 Full Decoding at Destination

Now, we study the strategy when full decoding only occurs at the decoder. First, source
coding is performed at each individual source node to remove the correlation among
the signals at the nodes. Then we apply channel coding for the MACF to transmit
information from the independent sources to the destination.

3.1 Source Coding for Correlated Sources

First, we consider a noiseless channel. With node 1 knowing only s1, node 2 knowing
only s2, the destination can reconstruct (s1, s2) reliably if node 1 encodes s1 with rate
R1 and node 2 encodes s2 with rate R2 [1], where

R1 ≥ H(S1|S2), (5a)

R2 ≥ H(S2|S1), (5b)

R1 + R2 ≥ H(S1, S2). (5c)

3.2 Combine with Partial Decode-Forward for MACF

An achievable rate region for the MACFCS can be derived by combining the source
coding rate constraints ((5a)-(5c) in Section 3.1) and the channel coding constraints for
the MACF ((3a), (3b), (7a)-(7q) in [4]). We call the strategy used in [4] the partial
decode-forward strategy. The proof that this rate region is achievable is straightforward.

3.3 Combine with Compress-Forward for MACF

In this section, we derive an achievable rate for the MACF using the compress-forward
strategy. Combining this with the source coding rate constraints in Section 3.1, we derive
another achievable rate region for the MACFCS.

Using the compress-forward strategy, each node transmits independent information as
well as a quantized and compressed version of its received signal. Referring to Figure 3,
j and k are independent information after source coding. Consider node 1 as an example
first. From the received signal Y1, it produces a quantized version Ỹ1. It then compresses
Ỹ1 to U1. In the next block, it sends new information j as well as U1. We can view this



Figure 3: Coding for the multiple access channel with feedback (with independent
sources) using the compress-forward strategy.

as node 1 helping node 2 to send a noisy, quantized, and compressed version of node 2’s
signal, k, without needing to fully decode k. Node 2 does likewise.

3.3.1 An Achievable Rate Region

Theorem 2 Let
(
S1×S2, p(s1, s2),X1×X2, p

∗(y1, y2, y3|x1, x2),Y1×Y2×Y3

)
be a discrete

memoryless three-node MACFCS. The source symbols (s1, s2) can be reliably transmitted
to the destination if

H(S1|S2) < I(X1; Ỹ2, Y3|U1, X2), (6a)

H(S2|S1) < I(X2; Ỹ1, Y3|U2, X1), (6b)

H(S1, S2) < I(X1, X2; Ỹ1, Ỹ2, Y3|U1, U2), (6c)

where the mutual information is taken over all joint probability mass functions
p(u1)p(x1|u1)p(u2)p(x2|u2)p(ỹ1|y1, x1)p(ỹ2|y2, x2)p

∗(y1, y2, y3|x1, x2) such that Ỹ1 and Ỹ2

are independent, subjected to the following constraints

I(U1; Y3|U2) > I(Ỹ1; Y1|X1)− I(Ỹ1; Y3|Ỹ2, U1, U2), (7a)

I(U2; Y3|U1) > I(Ỹ2; Y2|X2)− I(Ỹ2; Y3|Ỹ1, U1, U2), (7b)

I(U1, U2; Y3) > I(Ỹ1; Y1|X1) + I(Ỹ2; Y2|X2)− I(Ỹ1, Ỹ2; Y3|U1, U2). (7c)

Here, U1, U2, Ỹ1, and Ỹ2 are auxiliary random variables.

In the next section, we give a brief outline of the proof for Theorem 2.



3.3.2 Encoding and Decoding

Figure 3 shows the information data after source coding. Channel encoder 1 receives
j ∈ {1, 2, . . . , 2nR1} for every s1 = [s11s12 · · · s1n]. Encoder 2 receives k ∈ {1, 2, . . . , 2nR2}
for every s2 = [s21s22 · · · s2n].

Now, we look at channel coding to ensure that the data bits after source coding can
be reliably transmitted to the destination. The codebook generation is as follows.

1. Fix p(u1), p(x1|u1), p(u2), p(x2|u2), p(ỹ1|y1, x1) and p(ỹ2|y2, x2), such that p(ỹ1, ỹ2) =
p(ỹ1)p(ỹ2).

2. Generate 2nR′
1 i.i.d. sequences u1 according to

∏n
i=1 p(u1i). Index them u1(p

′),
p′ ∈

{
1, . . . , 2nR′

1

}
. Generate 2nR′

2 i.i.d. sequences u2 according to
∏n

i=1 p(u2i).

Index them u2(q
′), q′ ∈

{
1, . . . , 2nR′

2

}
.

3. For each u1(p
′), generate 2nR1 sequences x1 according to

∏n
i=1 p(x1i|u1i(p

′)). Index
them x1(j, p

′), j ∈
{
1, . . . , 2nR1

}
. For each u2(q

′), generate 2nR2 sequences x2

according to
∏n

i=1 p(x2i|u2i(q
′)). Index them x2(k, q′), k ∈

{
1, . . . , 2nR2

}
.

4. For each x1(j, p
′), generate 2nR̃1 sequences ỹ1 according to

∏n
i=1 p(ỹ1i|x1i(j, p

′)). In-

dex them ỹ1(v|j, p′), v ∈
{

1, . . . , 2nR̃1

}
. For each x2(k, q′), generate 2nR̃2 sequences

ỹ2 according to
∏n

i=1 p(ỹ2i|x2i(k, q′)). Index them ỹ2(w|k, q′), w ∈
{

1, . . . , 2nR̃2

}
.

5. Randomly partition the set {1, 2, . . . , 2nR̃1} into 2nR′
1 cells Sp, p ∈ {1, . . . , 2nR′

1};
and partition the set {1, . . . , 2nR̃2} into 2nR′

2 cells Sq, q ∈ {1, . . . , 2nR′
2}.

The encoding steps are as follows. Basically, node 1 quantizes its received signal from
the previous block and compresses it. It sends the compressed information together with
its new signal in the new block. Node 2 does likewise.

1. In the beginning of block t, remembering its previous transmission in block t − 1,
x1(j

t−1, qt−2); and observing its received signal in block t − 1, y1(t − 1), it finds
a unique vt−1 for which (x1(j

t−1, pt−2),y1(t − 1), ỹ1(v
t−1|jt−1, pt−2)) ∈ Aε. Using

lemma 2.1.3 in [8], node 1 can find such a vt−1 with probability tending to 1, with
a large enough n, if

R̃1 > I(Ỹ1; Y1|X1). (8)

Here, vt−1 is the quantized version of y1(t− 1).

2. Now, node 1 compresses vt−1 to pt−1. It finds pt−1 for which vt−1 ∈ Spt−1 . It then
sends x1(j

t, pt−1) in block t, where jt is the new message from the source. Here,
pt−1 is to be decoded and used by the destination to estimate vt−1. We see here
that node 1 helps node 2 to send a noisy, quantized, and compressed version of
node 2’s signal to the destination.

3. In block t, node 2 quantizes y2(t − 1) to wt−1. It can find a unique wt−1 with
probability tending to 1 if

R̃2 > I(Ỹ2; Y2|X2). (9)

It compresses wt−1 to qt−1, where wt−1 ∈ Sqt−1 . It then sends x2(k
t, qt−1) in block

t, where kt is the new information.



The decoding steps are as follows. The destination first decodes the compressed
information from nodes 1 and 2. It then estimates the quantized information of the
nodes. Using its received signal and the estimated quantized information, it decodes the
messages from nodes 1 and 2.

1. At the end of block t + 1, the destination receives y3(t + 1). It declares (p̂t, q̂t)
were sent by nodes 1 and 2 if it can find a unique pair of (p̂t, q̂t) for which
(u1(p̂

t),u2(q̂
t),y3(t + 1)) ∈ Aε. This can be done with an arbitrarily small error

probability if the following inequalities hold.

R′
1 < I(U1; Y3|U2), (10a)

R′
2 < I(U2; Y3|U1), (10b)

R′
1 + R′

2 < I(U1, U2; Y3). (10c)

2. At the end of block t, assume that the destination has correctly decoded (pt−1, qt−1)
and (pt, qt). It find a set L(t) of (vt, wt) such that(
ỹ1(v

t|j, pt−1), ỹ2(w
t|k, qt−1),u1(p

t−1),u2(q
t−1),y3(t)

)
∈ Aε.

It declares that (v̂t, ŵt) were sent if it can find a unique (v̂t, ŵt) ∈ {(v̂t, ŵt) : v̂t ∈
Spt and ŵt ∈ Sqt} ∩ L(t). This can be done reliably if

R̃1 < I(Ỹ1; Y3|Ỹ2, U1, U2) + R′
1, (11a)

R̃2 < I(Ỹ2; Y3|Ỹ1, U1, U2) + R′
2, (11b)

R̃1 + R̃2 < I(Ỹ1, Ỹ2; Y3|U1, U2) + R′
1 + R′

2. (11c)

3. At the end of block t, assume that the destination has correctly decoded (vt, wt)
and (pt−1, qt−1). It uses ỹ1(v

t|pt−1), ỹ2(w
t|qt−1), and y3(t). It declares (ĵ, k̂) were

sent if(
x1(ĵ

t, pt−1),x2(k̂
t, qt−1),u1(p

t−1),u2(q
t−1), ỹ1(v

t|j, pt−1), ỹ2(ŵ
t|k, qt−1),y3(t)

)
∈ Aε.

This can be done with diminishing error probability if

R1 < I(X1; Ỹ2, Y3|U1, X2), (12a)

R2 < I(X2; Ỹ1, Y3|U2, X1), (12b)

R1 + R2 < I(X1, X2; Ỹ1, Ỹ2, Y3|U1, U2). (12c)

Combining these rate constraints for the MACF using the compress-forward strategy
and the constraints for the source coding, (5a)-(5c), we get Theorem 2.

4 Conclusion

In this paper, we have found a new achievable rate region for the MACF and two new
achievable rate regions for the MACFCS. The former is applicable to cooperative wireless
communications while the latter is motivated by wireless sensor networks.
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