
The Dehn function of Stallings’ group

To appear in Geometric and Functional Analysis

Will Dison

Department of Mathematics,
The University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom

w.dison@bristol.ac.uk

Murray Elder

Mathematics,
The University of Queensland, Brisbane, Queensland 4072, Australia

m.elder@uq.edu.au

Timothy R. Riley∗†

Department of Mathematics,
The University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom

tim.riley@bris.ac.uk

Robert Young

Institut des Hautes Études Scientifiques,
Le Bois Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette, France

rjyoung@ihes.fr

Mathematics Subject Classification: 20F65

Keywords: Dehn function, Stallings’ group, isoperimetric function, finiteness properties

Dedicated to John Stallings.

Abstract

We prove that the Dehn function of a group of Stallings that is finitely

presented but not of type F3 is quadratic.

1 Introduction

A group is of type F1 when it can be finitely generated, F2 when it can be finitely
presented, and more generally Fn when it admits an Eilenberg–Maclane space
with finite n-skeleton. In the early 1960s Stallings [9] constructed a group S that
is F2 but not F3. Bieri [2] recognised S to be

Ker(F (α, β) × F (γ, δ) × F (ǫ, ζ) →→ Z) (1)

∗The third author is grateful for support from NSF grant DMS–0540830 and for the hospitality

of the Institut des Hautes Études Scientifiques in Paris during the writing of this article.
†Corresponding author

1

http://arXiv.org/abs/0712.3877v2

where the map is that from the product of three rank-2 free groups to Z = 〈t〉
which sends all six generators to t, and he showed that replacing (F2)

3 by (F2)
n

gives a family of groups (the Bieri–Stallings groups) of type Fn−1 but not Fn [2].
Isoperimetric functions (defined below) for S have been established by a number

of authors. Gersten proved that for n ≥ 3, the Bieri–Stallings groups admit quintic
isoperimetric functions [5]; this was sharpened to cubic by Baumslag, Bridson,
Miller & Short in the case of S [1, §6]. Bridson [4] showed that the Bieri-Stallings
groups were examples of a construction called doubling and argued that a class of
doubles including these groups should also have quadratic isoperimetric functions.
But Groves found an error in his proof [3, 6], and it seems that Bridson’s approach,
in fact, gives a cubic isoperimetric function, generalising the result in [1]. In
this article we establish a quadratic isoperimetric function for S, and as S is not
hyperbolic (as it is not of type F3, for example) this is best possible. And so we
prove:

Theorem 1.1 The Dehn function of Stallings’ group is quadratic.

More precisely, this theorem says that the Dehn function (defined below) of
any finite presentation of Stallings’ group is equivalent to n 7→ n2 in the following
sense. For f, g : N → N, we write f � g when ∃C > 0, ∀n ∈ N, f(n) ≤ Cg(Cn +
C) + Cn + C, and we write f ≃ g when f � g and g � f . As is well-known, any
two finite presentations of the same group have equivalent Dehn functions.

Our theorem fulfils Bridson’s aim in [4] of exhibiting wild behaviour within the
class of groups with quadratic Dehn functions —

Corollary 1.2 There exists a group with quadratic Dehn functions that is not of
type F3.

Combined with results in [7, 8], the theorem also has the following corollaries.

Corollary 1.3 The asymptotic cones of Stallings’ group are all simply connected,
but not all are 2-connected.

Corollary 1.4 Stallings’ group admits a linear isodiametric function. Indeed, its
filling length function is linear (that is, equivalent to n 7→ n).

We will work with the presentation

〈 a, b, c, d, s | [a, c], [a, d], [b, c], [b, d], sa = sb = sc = sd 〉 (2)

for S of [1, 5]. Our notation is [x, y] := x−1y−1xy, xy := y−1xy, x−y := y−1x−1y,
and sa = sb = sc = sd is shorthand for the six defining relations sas−b, sas−c,
sas−d, sbs−c, sbs−d, scs−d. Note that these six relations can be rewritten as
[s, ab−1], [s, ac−1], and so on. One can view S as an HNN-extension of the product
of free groups F (a, b) × F (c, d) with stable letter s commuting with all elements
represented by words on a±1, b±1, c±1, d±1 of zero exponent-sum. The first four
relations in the presentation are then the relations coming from F (a, b)× F (c, d),
which we call commutator relations. [Gersten [5] showed that this is related to the

2

description of S as a kernel (1) via a = ǫα−1, b = ǫβ−1, c = ǫγ−1, d = ǫδ−1, s =
ζǫ−1.]

We prove Theorem 1.1 by presenting an algorithm (Algorithm 7) which takes
as input a null-homotopic word of length n and transforms it to the empty word
ε by applying relations from the presentation (2). We call the number of relations
applied the cost and we wish to design the algorithm so that this is bounded by a
constant multiple of n2.

To understand the structure of the algorithm, it helps to understand the struc-
ture of a word which represents the identity. Since S is an HNN-extension of
F (a, b) × F (c, d) by a generator s, by Britton’s Lemma, a word w representing
the identity contains “pinches”, or pairs of letters s and s−1 separated by a word
which commutes with s. (We will later call such words balanced.) Reducing w to
the identity involves removing these pinches by bringing s’s and s−1’s together.

Using the presentation, one can show that s commutes with words of the form
xy−1, where x, y ∈ {a, b, c, d}; we will call a product of such words an alternating
word. Then s can easily be commuted past a product of such words. The basic
strategy of the algorithm is to identify a pinch, convert the balanced word inside
to an alternating word, and cancel an s and s−1. If there is a larger pinch con-
taining the alternating word, we can repeat the process. Once we have removed
all occurrences of the letters s and s−1 from w the resulting word will represent
the identity in F (a, b)×F (c, d) and we will be able to apply commutator relations
to convert this to the empty word. Provided that the process up to this point has
not increased the length of the word significantly, the cost of this final step will be
proportional to n2.

The step which has the highest cost is converting a balanced word to an al-
ternating word. One way to do this involves first separating a’s and b’s from c’s
and d’s, then inserting a’s and c’s to produce an alternating word. For a word
in a, b, c, d of length l, this has cost approximately l2. If the pinches are deeply
nested, we will need to repeat the process up to n/2 times, and as the second step
largely undoes the first the total cost could be up to n3.

We improve this by employing two key techniques. First, we utilise a divide-
and-conquer strategy to convert balanced words to alternating form. We partition
a balanced word into subwords and separate a’s and b’s from c’s and d’s in each
subword, rather than in the whole word, before inserting a’s and c’s to make it
alternating. We will say that the resulting word is in partitioned alternating form.

A typical intermediate stage in our process is a word with several subwords in
partitioned alternating form. Indeed, we will specify intermediate stages by a list
of subwords of the original word and partitions of these subwords; the intermediate
stage will then be the original word with the specified subwords replaced by their
partitioned alternating forms. As the algorithm progresses, these subwords grow
and we merge adjacent subwords and adjacent pieces of the partitions. When two
pieces in a partition of a balanced subword are merged, the cost is proportional to
the square of the length of the words.

A priori, these merges could have a heavy total cost. To overcome this problem
we employ a second key technique: we only use a particular type of partitioned
alternating form, which we call dyadic alternating form. In this form, the partition

3

of a balanced word only involves subwords of length 2k, where k ∈ N. Since once
two pieces are merged together, they are never separated, there can be at most
n/2k merges of pieces of length 2k−1, and thus the total cost of all mergings will
be proportional to

⌈log n⌉
∑

k=1

n

2k
(2k−1)2 ≃ n2.

This article is organised as follows. In Section 2 we define alternating and
balanced words, and we establish some basic facts about them. In Section 3 we
define dyadic alternating form — this involves breaking up balanced words using a
dyadic partition. Our main algorithm is in Section 5 and is analysed in Section 6. It
proceeds by converting more and more of the input word w into dyadic alternating
form by calling a number of subroutines (given in Section 4) to combine smaller
subwords in dyadic alternating form into larger ones.

Article history. A number of prior versions of this article were made public. In
the first, Elder and Riley established that n5/2 is an isoperimetric function for S.
Dison realised the result could be improved to n7/3 and produced a new version of
the paper in collaboration with Elder and Riley. Later Young contributed further
insights that achieve the definitive n2 result, and he, together with the other three
authors, produced this version.

Acknowledgements. We are grateful to Noel Brady, Martin Bridson, Daniel Groves
and Steve Pride for discussions on this problem, and to an anonymous referee for
a careful reading.

2 Preliminaries

Write u = u(a1, . . . , ak) when u is a word on a1
±1, . . . , ak

±1. Write u[i] for the
i-th letter of u. The length of u as a word (with no free reductions performed) is
ℓ(u). The sum of the exponents of the letters in u is denoted by ξ(u), which we
call the exponent sum of u. Unless otherwise indicated, we consider two words to
be equal when they are identical letter-by-letter. A partition of u is any way of
expressing u as a concatenation u1 . . . uk of subwords. We denote the empty word
by ε.

Definition 2.1 (Cost, Dehn function, isoperimetric function) Given words
w, w′ representing the same element of a group with finite presentation 〈A | R〉,
one can convert w to w′ via a sequence of words W = (wi)

m
i=0 in which w0 = w,

wm = w′ and for each i, wi+1 is obtained from wi by free reduction (wi =
αaa−1β 7→ αβ = wi+1 where a ∈ A±1), by free expansion (the inverse of a free
reduction), or by applying a relator (wi = αuβ 7→ αvβ = wi+1 where a cyclic con-
jugate of uv−1 is in R±1). The cost of W is the number of i such that wi 7→ wi+1

is an application-of-a-relator move. For words w that represent the identity (i.e.

4

null-homotopic words), Area(w) is the minimal cost amongst all W converting w
to ε. The Dehn function δ : N → N of 〈A | R〉 is

δ(n) := max{Area(w) | w represents 1 and ℓ(w) ≤ n}.

An isoperimetric function for 〈A | R〉 is any f : N → N such that δ(n) ≤ f(n) for
all n.

Definition 2.2 (Alternating words) A word u = u(a, b, c, d) is alternating if
u has even length and u[i] is in {a, b, c, d} for all odd i and in {a−1, b−1, c−1, d−1}
for all even i.

[The reader familiar with van Kampen diagrams and corridors (also known as
bands) may find it helpful to note that alternating words are those which, after
removing all aa−1, bb−1, cc−1 and dd−1 subwords, can be read along the sides of
s-corridors in van Kampen diagrams over S.]

Definition 2.3 (Balanced words) A word u = u(a, b, c, d, s) is balanced if there
exists an alternating word v = v(a, b, c, d) with u = v in S.

Lemma 2.4 For a word u = u(a, b, c, d, s), the following are equivalent.

(i) u is balanced.

(ii) u represents an element of 〈a, b, c, d〉 in S that commutes with s.

(iii) u represents an element of 〈a, b, c, d〉 in S and ξ(u) = 0.

Proof: The equivalence of (i) and (ii) is straight-forward.
Alternating words have exponent-sum zero so (i) implies (iii) by the follow-

ing observation. Every relation of presentation (2) has exponent-sum zero, so
exponent-sum is preserved whenever a relation is applied to a word and hence if
two words on a±1, b±1, c±1, d±1, s±1 represent the same element in S, then they
have the same exponent sum.

To see that (iii) implies (i) we can convert a word w = w(a, b, c, d) with
ξ(w) = 0 to a word in alternating form as follows. Commute all a, b letters to the
front to give a word ρ(a, b)σ(c, d). For each letter of ρ(a, b), replace a, b, a−1, b−1 by
ac−1, bc−1, ca−1, cb−1, respectively. For each letter of σ(c, d), replace c, d, c−1, d−1

by ca−1, da−1, ac−1, ad−1, respectively. In the middle insert (ca−1)ξ(ρ(a,b)) which
cancels out the c, a letters that were added. �

Lemma 2.5 Suppose a word w = w(a, b, c, d, s) is expressed as w = αvβ in which
v is a balanced subword. Then w is balanced if and only if αβ is balanced.

Proof: Induct on the number of s letters in w. The base case where w = w(a, b, c, d)
is immediate and the induction step an application of Britton’s Lemma. Alterna-
tively, this result is an observation on the layout of s-corridors in a van Kampen
diagram demonstrating that w equates to some alternating word in S. �

5

Lemma 2.6 If w is a balanced word of length at least 2, it contains a subword xy
such that either xy = s±1s∓1 or x, y ∈ {a, b, c, d}±1 with x and y having opposite
exponents.

Proof: By Britton’s Lemma, w contains either a subword s±1s∓1 or a non-empty
balanced subword u = u(a, b, c, d). In the second case, since u is balanced it has
exponent-sum zero and so must contain a subword u[i]u[i+1] where u[i] and u[i+1]
have opposite exponent; take xy = u[i]u[i + 1]. �

3 Dyadic alternating form

The main algorithm will systematically convert subwords of the input word into a
special alternating form, which we describe in this section.

By an interval in Z, we mean Z ∩ [λ, µ] for some λ, µ ∈ R. For r, j ∈ Z with
r ≥ 0, define the dyadic interval Dr,j to be Z ∩ [j2r, (j + 1)2r), as illustrated in
Figure 1. Note that Dr+1,j = Dr,2j ∪ Dr,2j+1 and any two Dr,j and Dr′,j′ are
either disjoint or one contains the other. The height of Dr,j is r.

0 1 2 3 4 5 6 7

D0,0 D0,1 D0,2 D0,3 D0,4 D0,5 D0,6 D0,7

D1,0 D1,1 D1,2 D1,3

D2,0 D2,1

D3,0

Figure 1: Dyadic partitions of the integers.

Given an interval U ⊂ Z, a cover of U is a collection {Ui}n
i=1 of disjoint intervals

Ui ⊆ U with ∪n
i=1Ui = U . We say that the indexing on {Ui}

n
i=1 is ascending if

min (Ui+1) = 1 + max (Ui) for each i. Given a subword v of a word w, let V ⊂ Z

be the interval consisting of the positions of the letters of v in w. Then there is
an obvious 1-1 correspondence between partitions of v and covers of V .

A dyadic cover of an interval U ⊂ Z is a cover consisting of dyadic intervals.
Define the minimal dyadic cover MDC(U) of U to be the set of maximal elements
(with respect to containment) of {Dr,j|Dr,j ⊆ U}. It is clear that this set is a
dyadic cover of U . In fact, as a consequence of Lemma 3.2, it is the dyadic cover
with the minimal number of elements. As an example, if U = Z ∩ [5, 20], then
{Dr,j|Dr,j ⊆ U} is

{D0,5, D0,6, . . . , D0,20, D1,3, D1,4, . . . , D1,9, D2,2, D2,3, D2,4, D3,1}

and

MDC(U) = {D0,5, D1,3, D3,1, D2,4, D0,20}

= {5} ∪ {6, 7} ∪ {8, . . . , 15} ∪ {16, 17, 18, 19}∪ {20}.

In Figure 2 we display MDC(Z ∩ [5, 20]) indicating the heights of its elements.

6

8, 9, 10, 11, 12, 13, 14, 15
16, 17, 18, 19

6, 7
5 20

Figure 2: The minimal dyadic cover of Z ∩ [5, 20].

Lemma 3.1 Let U be an interval in Z. Say MDC(U) = {U1, . . . , Un} where the
Ui are indexed in ascending order. Then for each k either

∣

∣

∣

∣

∣

k−1
⋃

i=1

Ui

∣

∣

∣

∣

∣

< |Uk| or

∣

∣

∣

∣

∣

n
⋃

i=k+1

Ui

∣

∣

∣

∣

∣

< |Uk|.

Proof: Let r := height(Uk). Assume k is not 1 or n, as otherwise the result is
trivial. At most two consecutive Ui have the same height, so either Uk−1 or Uk+1

is at a different height to Uk. By the maximality of the elements of MDC(U), if
one of Uk−1 or Uk+1 has height greater than r then the other must have height
less than r. So height(Uk−1) < r or height(Uk+1) < r.

As suggested by the example of Figure 2, MDC(U) resembles a pyramid, in
that there is some m such that the sequence height(U1), . . . ,height(Um) is strictly
increasing and the sequence height(Um+1), . . . ,height(Un) is strictly decreasing.
So if height(Uk−1) < r then the sequence height(U1), . . . ,height(Uk−1) is strictly
increasing and

∣

∣

∣

∣

∣

k−1
⋃

i=1

Ui

∣

∣

∣

∣

∣

≤
r−1
∑

i=0

2i < 2r = |Uk|.

The case where height(Uk+1) < r is similar. �

In order to control the merging process mentioned in the introduction, we will
use the following lemmas. The first is an observation on how dyadic covers can be
converted to minimal dyadic covers.

Lemma 3.2 Let U ⊆ Z be an interval and X0 be a dyadic cover of U . Then there
is a sequence X0, . . . , Xn of dyadic covers of U with Xn = MDC(U) and, for all
i, Xi+1 is obtained from Xi by merging two adjacent dyadic intervals — that is, if
Xi = {S1, . . . , Sr}, where the Sj are indexed in ascending order, then there exists
k such that |Sk| = |Sk+1| and Xi+1 = {S1, . . . , Sk ∪ Sk+1, . . . , Sr}. In particular,
if S ∈ Xi, then there exists W ∈ X0 such that W ⊆ S.

Proof: If X0 = MDC(U), we are done. Otherwise, by the definition of MDC(U),
there are dyadic intervals W ∈ X0 and D ⊆ U such that W (D. Choose a
minimal length such W ∈ X0. The dyadic intervals containing W are well-ordered
by containment; let D be the dyadic interval of minimal length strictly containing
W . We then have W (D ⊆ U and ℓ(D) = 2ℓ(W).

We claim that W ′ := D r W is in X0. We know that W ′ is a dyadic interval
of the same length as W . Since W ′ ⊆ U and X0 covers U , there must be an

7

interval Z ∈ X0 such that Z ∩ W ′ is nonempty. We claim that Z = W ′. Since Z
and W ′ are dyadic and have nonempty intersection, one must contain the other.
This containment, however, cannot be strict; on one hand, if W ′ (Z, it must also
contain W , so since X0 is a collection of disjoint sets, Z cannot strictly contain
W ′. On the other hand, by the minimality of W , the set Z cannot strictly contain
W ′. Thus W ′ = Z ∈ X0.

Then W and W ′ are adjacent intervals of equal length; without loss of gener-
ality, assume that W is to the left of W ′, so that X0 can be expressed as

X0 = {S1, . . . , W, W ′, . . . , Sr}

Then we let
X1 = {S1, . . . , W ∪ W ′, . . . , Sr}.

We repeat the process to construct X2, . . . , Xn. With each step, the number of
elements in the partition decreases by one, and so the process terminates, and
then every element of Xn is maximal among dyadic intervals contained in U , so
Xn = MDC(U).

The last assertion in the lemma follows by induction on n: if n = 0, it is
trivially true, and by construction, any element of Xi+1 contains an element of
Xi. �

We can now describe a process of merging two adjacent minimal dyadic covers.
Note that all of the changes occur at the boundary between the two covers.

Corollary 3.3 Let U, V ⊆ Z be adjacent intervals with min (V) = max (U) + 1.
Then there exists a sequence X0, . . . , Xn of dyadic covers of U ∪ V with

X0 = MDC(U) ∪ MDC(V) and Xn = MDC(U ∪ V)

and, for each i, expressing Xi as {S1, . . . , Sr} where the Sj are indexed in ascending
order, there exists k such that |Sk| = |Sk+1|, Xi+1 = {S1, . . . , Sk ∪ Sk+1, . . . , Sr}
and Sk ∪ Sk+1 is not a subset of U or V .

Proof: MDC(U) ∪ MDC(V) is a dyadic cover, so we may apply Lemma 3.2 to
obtain a sequence X0, . . . , Xn = MDC(U ∪ V) of dyadic covers. It remains only
to prove the final assertion. By contradiction, suppose that Sk ∪ Sk+1 ⊂ U . Then
there is some W ∈ MDC(U)∪MDC(V) such that W ⊆ Sk. In fact, we must have
W ∈ MDC(U). But this is impossible since Sk ∪ Sk+1 is a dyadic interval strictly
containing W and contained in U . Similarly, Sk ∪Sk+1 cannot be a subset of V .�

The following similar observation applies when one of the intervals consists of
a single integer.

Corollary 3.4 Suppose U ⊂ Z is an interval. Let s = min (U) − 1 and t =
max (U) + 1. Then:

8

1. There exists a sequence X0, . . . , Xn of dyadic covers of {s} ∪ U with

X0 = {{s}} ∪ MDC(U) and Xn = MDC({s} ∪ U)

and, for each i, expressing Xi as {S1, . . . , Sr} where the Si are indexed in
ascending order, we find |S1| = |S2| and Xi+1 = {S1 ∪ S2, S3, . . . , Sr}.

2. There exists a sequence Y0, . . . , Yn of dyadic covers of U ∪ {t} with

Y0 = MDC(U) ∪ {{t}} and Yn = MDC(U ∪ {t})

and, for each i, expressing Yi as {S1, . . . , Sr} where the Si are indexed in
ascending order, we find |Sr−1| = |Sr| and Yi+1 = {S1, . . . , Sr−2, Sr−1∪Sr}.

Definition 3.5 (Partitioned Alternating Form) Let v = v(a, b, c, d) be a bal-
anced word partitioned as v = v1 . . . vk. Let λi (resp. µi) be vi with all letters
c±1 and d±1 (resp. a±1 and b±1) deleted. Obtain ρi(a, b, c) from λi by replacing
each a, b, a−1, b−1 by ac−1, bc−1, ca−1, cb−1, respectively. Obtain σi(a, c, d) from µi

by replacing each c, d, c−1, d−1 by ca−1, da−1, ac−1, ad−1, respectively. The parti-
tioned alternating form of v with respect to v1 . . . vk is

τ := ρ1 (ca−1)ξ(λ1)σ1 (ac−1)ξ(λ1µ1) . . . ρk (ca−1)ξ(λ1µ1...λk)σk.

Lemma 3.6 Any partitioned alternating form for v equals v in F (a, b) × F (c, d).

Proof: We will use the notation of Definition 3.5. Each vi = λiµi in S and so
v = λ1µ1 . . . λkµk in F (a, b) × F (c, d).

Commutator relations can be used to convert a word cmλµ, where λ = λ(a, b),
µ = µ(c, d), and m ∈ Z, to ρ (ca−1)m+ξ(λ) σ (ac−1)m+ξ (λµ) cm+ξ(λµ), where ρ and
σ are obtained from λ and µ as per Definition 3.5. Making k successive such
transformations, working from left to right and beginning with m = 0, converts
λ1µ1 . . . λkµk to τ . (Note that ξ(λ1µ1 . . . λkµk) = 0 as v is balanced.) �

Lemma 3.7 In Definition 3.5, for all i, the prefix

ρ1 (ca−1)ξ(λ1)σ1 (ac−1)ξ(λ1µ1) . . . ρi (ca−1)ξ(λ1µ1...λi) σi (ac−1)ξ(λ1µ1...λiµi)

and suffix

ρi+1 (ca−1)ξ(λ1µ1...λi+1)σi+1 (ac−1)ξ(λ1µ1...λi+1µi+1) . . . ρk (ca−1)ξ(λ1µ1...λk) σk

of τ depend only on v1 . . . vi and vi+1 . . . vk, respectively.

Proof: In the case of the prefix, this is self-evident. It is true for the suffix, because
ξ(λ1µ1 . . . λkµk) = 0 as v is balanced, which allows one to express the exponents
of (ca−1) and (ac−1) in terms of µi+1, λi+2, µi+2, . . . , λk, and µk. �

9

Definition 3.8 (Dyadic Alternating Form) Let v = v(a, b, c, d, s) be a bal-
anced subword of a word w. Let v̂ and ŵ be v and w with all s±1 removed. Let
V be the set of positions of the letters of v̂ in ŵ. Define the dyadic partition of
v̂ to be the partition corresponding to the partition MDC(V) of V . The dyadic
alternating form of v is defined to be the partitioned alternating form of v̂ with
respect to the dyadic partition.

Note that the dyadic alternating form of v depends on its position in w.

Lemma 3.9 The dyadic alternating form produced in the above definition equals
v in S.

Proof: Since v is balanced in this definition, v = v̂ in S. The result then follows
from Lemma 3.6. �

One might think that the (ac−1)ξ(ρ1...) and (ca−1)ξ(ρ1...) inserted could dramat-
ically increase length, but the following estimates show this is not so for dyadic
alternating form.

Lemma 3.10 In the dyadic partition v1 . . . vk of v̂ arising in Definition 3.8, for
all i,

|ξ(v1 . . . vi)| < 2ℓ(vi) and |ξ(v1 . . . vi−1λi)| < 2ℓ(vi).

Proof: As the vi are defined using a minimal dyadic cover, Lemma 3.1 implies that
either ℓ(v1 . . . vi−1) < ℓ(vi) or ℓ(vi+1 . . . vk) < ℓ(vi).

In the first case, |ξ(v1 . . . vi)| ≤ ℓ(v1 . . . vi) = ℓ(v1 . . . vi−1) + ℓ(vi) < 2ℓ(vi) and
|ξ(v1 . . . vi−1λi)| ≤ ℓ(v1 . . . vi−1λi) = ℓ(v1 . . . vi−1) + ℓ(λi) < 2ℓ(vi).

In the second case, ξ(vi+1 . . . vk) = −ξ(v1 . . . vi) since ξ(v̂) = ξ(v) = 0 as v
is balanced. So |ξ(v1 . . . vi)| = |ξ(vi+1 . . . vk)| ≤ ℓ(vi+1 . . . vk) < ℓ(vi). Similarly,
ξ(µivi+1 . . . vk) = −ξ(v1 . . . vi−1λi) and so |ξ(v1 . . . vi−1λi)| = |ξ(µivi+1 . . . vk) ≤
ℓ(µivi+1 . . . vk) < 2ℓ(vi). �

Lemma 3.11 The dyadic alternating form of v defined in Definition 3.8 has
length at most 10ℓ(v).

Proof: In the dyadic alternating form, each letter of v̂ is matched with either an
a±1 or c±1. As ℓ(v̂) ≤ ℓ(v), this accounts for at most 2ℓ(v) letters.

There are 2(|ξ(λ1)|+ |ξ(λ1µ1)|+ . . .+ |ξ(λ1µ1 . . . λk)|) further letters appearing
in the powers of (ac−1)±1. But for all i,

|ξ(λ1µ1 . . . λi−1µi−1λi)| + |ξ(λ1µ1 . . . λiµi)|

= |ξ(v1 . . . vi−1λi)| + |ξ(v1 . . . vi)| < 4ℓ(vi)

by Lemma 3.10. So it suffices to add

2(|ξ(λ1)| + |ξ(λ1µ1)| + . . . + |ξ(λ1µ1 . . . λk)|) ≤
k

∑

i=1

8ℓ(vi) = 8ℓ(v̂) ≤ 8ℓ(v).

�

10

4 Subroutines

In this section we present the key subroutines that will be called by the main algo-
rithm. Algorithms 1–6 manipulate words using the relations of F (a, b) × F (c, d),
while Algorithm 7 uses the relators of the whole group S. Each algorithm gives a
method for converting one word to another word by applications of relators, free
expansions, and free reductions. Thus each algorithm has a cost in the sense of
Definition 2.1.

The first algorithm gives a rough-and-ready scheme for converting words when
one does not have any additional information about the structure of the input
word. As such the cost of the algorithm is high.

Algorithm 1 Shuffling between words F (a, b) × F (c, d)

Input: Words u = u(a, b, c, d) and v = v(a, b, c, d) representing the same
elements of F (a, b) × F (c, d)

Goal: Convert u to v.

Method: Shuffle the a’s and b’s in u to the front of the word and freely reduce
to produce a word w. The same procedure would convert v to w, so run it in
reverse to convert w to v.

Lemma 4.1 The cost (in the sense of Definition 2.1) of the transformation of
Algorithm 1 is at most ℓ(u)2 + ℓ(v)2.

Proof: Each letter in u or v is shuffled past fewer than ℓ(u) or ℓ(v) other letters
(respectively). �

Algorithm 2 Merging within partitioned alternating form

Input: A balanced word v = v(a, b, c, d), a partition v1 . . . vk of v, an integer
i ∈ {1, . . . , k − 1}, and the partitioned alternating form τ of v with respect to
v1 . . . vk

Goal: Convert τ to the partitioned alternating form τ̄ of v with respect to
the partition v1 . . . vi−1 v̄ vi+2 . . . vk where v̄ = vivi+1.

11

Method: We use the notation of Definition 3.5 and write

τ = ρ1 (ca−1)ξ(λ1)σ1 (ac−1)ξ(λ1µ1) . . . ρk (ca−1)ξ(λ1µ1...λk)σk.

Express τ as τ (0)τ (1)τ (2) where

τ (1) = ρi (ca−1)ξ(λ1µ1...λi)σi (ac−1)ξ(λ1µ1...λiµi)

ρi+1 (ca−1)ξ(λ1µ1...λi+1) σi+1 (ac−1)ξ(λ1µ1...λi+1µi+1).

Let
τ̄ (1) = ρ̄ (ca−1)ξ(λ1µ1...λi−1µi−1λ̄)σ̄ (ac−1)ξ(λ1µ1...λi−1µi−1λ̄µ̄)

where λ̄ (resp. µ̄) is v̄ with all c±1 and d±1 (resp. a±1 and b±1) removed. (So
λ̄ = λiλi+1 and µ̄ = µiµi+1.) It follows from Lemma 3.7 that τ̄ = τ (0)τ̄ (1)τ (2).
So τ (1) = τ̄ (1) in F (a, b) × F (c, d).

Obtain τ̄ from τ by changing the subword τ (1) to τ̄ (1) using Algorithm 1.

Lemma 4.2 The cost of Algorithm 2 is at most 136 (ℓ(vivi+1) + |ξ(v1 . . . vi−1)|)
2.

Proof: The length of τ (1) is at most

ℓ(ρiσiρi+1σi+1) + 2
(

|ξ(λ1µ1 . . . λi)| + |ξ(λ1µ1 . . . λiµi)|

+ |ξ(λ1µ1 . . . λi+1)| + |ξ(λ1µ1 . . . λi+1µi+1)|

)

.

As ℓ(ρiσiρi+1σi+1) = 2ℓ(λiµiλi+1µi+1) = 2ℓ(vivi+1) and each of the four other
terms differs from |ξ(λ1µ1 . . . λi−1µi−1)| = |ξ(v1 . . . vi−1)| by at most ℓ(λiµiλi+1µi+1),

ℓ(τ (1)) ≤ 10ℓ(vivi+1) + 8|ξ(v1 . . . vi−1)|.

Similarly,
ℓ(τ̄ (1)) ≤ 6ℓ(vivi+1) + 4|ξ(v1 . . . vi−1)|.

By Lemma 4.1 the cost of Algorithm 2 is at most ℓ(τ (1))2 + ℓ(τ̄ (1))2 — this then
gives the (crude) estimate we claim. �

Our next subroutine merges two subwords in dyadic alternating form into one.

12

Algorithm 3 Merge two dyadic alternating subwords

Input: Two balanced words u and v, such that uv is a subword of w =
w(a, b, c, d, s), with τu and τv the dyadic alternating forms of u and v with
respect to their positions in w.

Goal: Convert τuτv to the dyadic alternating form τ of uv.

Method: Note that uv is balanced as it is the concatenation of two balanced
words. Let û, v̂ and ŵ be u, v and w respectively with all occurrences of the
letters s±1 removed. Let U, V ⊂ Z be the sets of positions of the letters of û
and v̂ respectively in ŵ. Let X0, . . . , Xn be a sequence of dyadic covers of U∪V
as given by Corollary 3.3. Let σi be the partition of ûv̂ corresponding to Xi

and let τi be the partitioned alternating form of ûv̂ with respect to σi. Then
τ0 = τuτv and τn = τ . For each i, convert τi to τi+1 by calling Algorithm 2.

We postpone a full cost analysis of this algorithm to Section 6. In fact, there
we will estimate the total cost of all the calls of Algorithm 2 throughout our
main algorithm rather than their total cost within any single call on Algorithm 3.
However, we will pause to give the following lemma which will be crucial to that
analysis.

Lemma 4.3 We continue with the notation of Algorithm 3. Fix i and say that
the partition σi+1 is formed from σi by combining the two subwords θ and φ. Then
ℓ(θ) = ℓ(φ) and either θ is a subword of û or φ is a subword of v̂. Furthermore
the cost of the call to Algorithm 2 converting τi to τi+1 is at most 2176 ℓ(θ)2.

Proof: Say Xi = {S1, . . . , Sr} and Xi+1 = {S1, . . . , Sk ∪ Sk+1, . . . , Sr}, where the
indexing on the Si is ascending. Say that the partition σi of ûv̂ is π1 . . . πr. Then
θ = πk and φ = πk+1. By Corollary 3.3, ℓ(πk) = ℓ(πk+1) and πkπk+1 is not a
subword of either û or v̂.

By Lemma 4.2, the cost of the call to Algorithm 2 in question is at most
136(ℓ(πkπk+1) + |ξ(π1 . . . πk−1)|)2. Note that π1 . . . πk−1 is a subword of û, which
in turn is a subword of π1 . . . πk+1, and thus

|ξ(π1 . . . πk−1) − ξ(û)| ≤ ℓ(πkπk+1) = 2ℓ(πk).

Furthermore, since û is balanced, ξ(û) = 0. Thus |ξ(π1 . . . πk−1)| ≤ 2ℓ(πk) and

136(ℓ(πkπk+1) + |ξ(π1 . . . πk−1)|)
2 ≤ 136(2ℓ(πk) + 2ℓ(πk))2 ≤ 2176ℓ(πk)

2.

�

13

Algorithm 4 Shuffling and canceling a c±1

Input: A word τ of the form

ρ1 (ca−1)α1σ1 (ac−1)β1 . . . ρk (ca−1)αkσk(ac−1)βk

where αi, βi ∈ Z, ρi = ρi(a, b, c) and σi = σi(a, c, d). Let ǫ ∈ {±1} and define

τ̄ = ρ1 (ca−1)α1+ǫσ1 (ac−1)β1+ǫ . . . ρk (ca−1)αk+ǫσk(ac−1)βk+ǫ.

Goal: Convert cǫτc−ǫ to τ̄ .

Method: Working from left to right, shuffle cǫ through ρ1, replace cǫ by
(ca−1)ǫaǫ, shuffle aǫ through (ca−1)α1σ1, replace aǫ by (ac−1)ǫcǫ, and con-
tinue similarly. When cǫ emerges after (ac−1)βk cancel it with the c−ǫ.

Lemma 4.4 The cost of Algorithm 4 is at most 2k + ℓ(τ).

Proof: Replacing cǫ by (ca−1)ǫaǫ costs 1 when ǫ = −1 and costs 0 otherwise. The
same is true of replacing aǫ by (ac−1)ǫcǫ. The other contributions to cost stem
from carrying aǫ or cǫ past letters of τ . �

Our next subroutine expands a dyadic form subword by assimilating a letter on
each side to produce a word in partitioned (but not necessarily dyadic) alternating
form.

Algorithm 5 Assimilate x, y into a dyadic alternating word: I

Input: A subword of w = w(a, b, c, d, s) of the form xvy where x, y ∈
{a, b, c, d}±1 have opposite exponents and v = v(a, b, c, d, s) is balanced with
dyadic alternating form τ . Write v̂ and ŵ for the words v and w respectively
with all occurrences of the letter s±1 removed. Say v̂ has dyadic partition
v1 . . . vk in ŵ.

Goal: Convert xτy into partitioned alternating form τ̄ with respect to the
partition xv1 . . . vky.

Method: Using the notation of Definition 3.5,

τ = ρ1 (ca−1)ξ(λ1)σ1 (ac−1)ξ(λ1µ1) . . . ρk (ca−1)ξ(λ1µ1...λk)σk.

Write x and y as λ0µ0 and λk+1µk+1, respectively, where λ0 and λk+1 are each
in {a, a−1, b, b−1, ε} and µ0 and µk+1 are each in {c, c−1, d, d−1, ε}.

14

Thus

τ̄ = ρ0 (ca−1)ξ(λ0)σ0 (ac−1)ξ(λ0µ0) . . . ρk+1 (ca−1)ξ(λ0µ0...λk+1)σk+1

= ρ0 (ca−1)ξ(λ0)σ0 (ac−1)ξ(x)ρ1 (ca−1)ξ(x)+ξ(λ1)σ1 (ac−1)ξ(x)+ξ(λ1µ1)

. . . ρk+1 (ca−1)ξ(x)+ξ(λ1µ1...λk+1)σk+1.

Transform xτy to τ̄ by applying Algorithm 1 to convert

x 7→ ρ0(ca
−1)ξ(λ0)σ0(ac−1)ξ(λ0µ0)cξ(x) and

y 7→ cξ(y)ρk+1(ac−1)ξ(µk+1)σk+1,

= c−ξ(x)ρk+1(ca
−1)ξ(x)+ξ(λ1µ1...λk+1)σk+1,

and then applying Algorithm 4 to the subword cξ(x)τc−ξ(x).

Lemma 4.5 In F (a, b) × F (c, d),

x = ρ0(ca
−1)ξ(λ0)σ0(ac−1)ξ(λ0µ0)cξ(x) and

y = cξ(y)ρk+1(ac−1)ξ(µk+1)σk+1,

in the notation of Algorithm 5. Moreover, the cost of transforming x or y in this
way is at most 2.

Proof: This is easily checked case-by-case. The reason the cost is so low is that
most of the moves involved are free-expansions rather than applications of com-
mutator relations. �

Lemma 4.6 We continue with the notation of Algorithm 5. The total cost of
calling this algorithm is at most 3ℓ(τ) + 4.

Proof: By Lemmas 4.4 and 4.5 the cost is at most 2k + ℓ(τ) + 4. But k ≤ ℓ(τ).�

The following routine builds on Algorithm 5. It assimilates a letter on either
side of a dyadic subword to produce the dyadic form of the concatenated subword.

Algorithm 6 Assimilate x, y into a dyadic alternating word: II

Input: The partitioned alternating form τ̄ of xvy from Algorithm 5.

Goal: Convert the partitioned alternating form τ̄ of xvy from the previous
algorithm to dyadic alternating form τ ′.

Method: First apply Algorithm 5 to τ . Let τ̄ be the output.

15

Let v̂ and ŵ be the words v and w respectively with all occurrences of the
letters s±1 deleted and let V be the set of positions of the letters of v̂ in ŵ.
Let s = min (V) − 1 and t = max (V) + 1. Thus s and t are the positions of
the letters x and y respectively in ŵ.

Let X0, . . . , Xn be a sequence of dyadic covers of {s} ∪ V , as given by part 1
of Corollary 3.4, converting X0 = {{s}} ∪ MDC(V) to Xn = MDC({s} ∪ V).
For each i, define Yi to be Xi ∪ {{t}}. Thus Y0, . . . , Yn is a sequence of dyadic
covers of {s} ∪ V ∪ {t} converting Y0 = {{s}} ∪ MDC(V) ∪ {{t}} to Yn =
MDC({s} ∪ V) ∪ {{t}}.

Let Yn, . . . , Ym be a sequence of dyadic covers of {s} ∪ V ∪ {t}, as given by
part 2 of Corollary 3.4, converting, converting Yn = MDC({s}∪ V)∪ {{t}} to
Ym = MDC({s} ∪ V ∪ {t}).

For each i = 0, . . . , m, let σi be the partition of xv̂y corresponding to Yi, and
let τi be the partitioned alternating form of xv̂y with respect to σi. Then
τ0 = τ̄ and τm = τ ′. For each i, call Algorithm 2 to convert τi to τi+1.

A lemma analogous to Lemma 4.3 will be important when we come to analyse
cost.

Lemma 4.7 We continue with the notation of Algorithm 6. Fix i and say the
partition σi+1 of xv̂y is formed from σi by combining the subwords θ and φ. Then
ℓ(θ) = ℓ(φ) and the cost of the call to Algorithm 2 which converts τi to τi+1 is at
most 2176ℓ(θ)2.

Proof: First consider the case that 0 ≤ i ≤ n− 1. Say that the partition σi of xv̂y
is π1 . . . πk. Then θ = π1 and φ = π2 and the partition σi+1 is π̄π3 . . . πk, where
π̄ = θφ. By part 1 of Corollary 3.4, ℓ(θ) = ℓ(φ) and by Lemma 4.2 the cost of the
call to Algorithm 2 is at most

136ℓ(θφ)2 = 136(2ℓ(θ))2 = 544ℓ(θ)2.

Now consider the case that n ≤ i ≤ m − 1. Say that the partition σi of xv̂y is
π1 . . . πk. Then θ = πk−1 and φ = πk and the partition σi+1 is π1 . . . πk−1π̄ where
π̄ = πk−1πk. By part 2 of Corollary 3.4, ℓ(θ) = ℓ(φ) and by Lemma 4.2 the cost
of the call to Algorithm 2 is at most

136(ℓ(θφ) + |ξ(π1 . . . πk−1)|)
2 = 136(2ℓ(θ) + |ξ(θφ)|)2

≤ 136(2ℓ(θ) + ℓ(θφ))2

= 136(2ℓ(θ) + 2ℓ(θ))2

= 2176ℓ(θ)2.

�

16

5 Our main algorithm

We are now ready to give our main algorithm, which converts a null-homotopic
word of length n in S to ε via n/2 intermediate words, each of length at most 10n,
by applying relations from the presentation (2).

Algorithm 7 Our main algorithm

Input: A word w = w(a, b, c, d, s) representing 1 in S

Goal: Reduce w to ε by applying defining relators of S.

Method: Define n := ℓ(w). As all the defining relators in the presentation (2)
of S are of even length, n is even. We will obtain a sequence of words wi and
a sequence Ti of subsets of {1, . . . , n} beginning with w0 := w and T0 := ∅.

In fact, w and Ti will define wi as follows. Express w as

w = u1v1u2 . . . vk−1uk, (3)

where Ti is the set of positions of the letters of the vj in w and v1, u2, . . . ,
uk−1, vk−1 6= ε. One sees inductively from the construction of successive Ti

below that the vj are balanced. Let τj be the dyadic alternating form of vj in
w. Then

wi = u1τ1u2 . . . τk−1uk. (4)

We will now explain how to obtain Ti+1 from Ti and then how to use relations
in S to transform wi, expressed as (4), to wi+1.

As w and the vj are all balanced, u1u2 . . . uk is also balanced by Lemma 2.5.
So Lemma 2.6 applies and tells us there is a subword xy in u1 . . . un that either
equals s±1s∓1 or is such that x and y are in {a, b, c, d}±1 and have opposite
exponents. Add the positions of x and y in w to Ti to obtain Ti+1.

In wi these x and y are either adjacent or separated by some τj .

If xy = s±1s∓1, then remove x and y by shuffling x through τj (if present) and
cancelling it with y.

If x, y ∈ {a, b, c, d}±1, then apply Algorithm 6 to replace xτjy with the dyadic
alternating form τ ′ of the subword xvjy of w.

Next, if (in either case) we have brought two or three dyadic alternating form
subwords together (that is, either uj = x and j 6= 1, or uj+1 = y and j +1 6= k,
or both) then merge them using Algorithm 3 (once or twice, as necessary).
The result is the word wi+1.

17

After n/2 iterations, Tn/2 = {1, . . . , n} and wn/2 contains no s±1 and represents
1 in F (a, b) × F (c, d). Reduce wn/2 to ε using Algorithm 1.

6 Cost analysis

We will estimate the cost of our main algorithm in terms of n = ℓ(w). Cost
is incurred in four ways: shuffling an s±1 to be cancelled with an s∓1, calls of
Algorithm 3, calls of Algorithm 6, and converting wn/2 to ε at the end.

Shuffling an s±1 to be cancelled with an s∓1 costs at most 5n because the τj

between them (if present) is alternating and so ℓ(τj)/2 relations are required, and
ℓ(τj)/2 ≤ 5ℓ(vj) ≤ 5n by Lemma 3.11. Since we do such shuffling at most n/2
times, this contributes no more than 5n2/2 to the total cost.

The final step, converting wn/2 to ε, costs at most ℓ(wn/2)
2 ≤ 100n2 by Lem-

mas 3.11 and 4.1.
Consider the call to Algorithm 6 converting xτjy to the dyadic alternating form

of xvjy. The cost of this call can be divided into the cost of calls to Algorithm 5
and the cost of calls to Algorithm 2. By Lemma 4.6 each call to Algorithm 5
costs at most 3ℓ(τj) + 4 and by Lemma 3.11 we have that ℓ(τj) ≤ 10n. Thus the
cost of each call to Algorithm 5 is at most 30n + 4. In total Algorithm 6, and
hence Algorithm 5, is called at most n/2 times and so the total cost of all calls to
Algorithm 5 is at most 15n2 + 2n.

This leaves just the calls to Algorithm 2 to consider. We will bound the total
cost of all calls to this algorithm arising from either Algorithm 3 or Algorithm 6.

Let ŵ be w with all s±1 deleted. Recall that Dr,j = Z ∩ [j2r, (j + 1)2r). For
integers r ≥ 0 and j ≥ 1, define vr,j to be the subword of ŵ whose letters are in
positions Dr,j in ŵ.

By Lemmas 4.3 and 4.7, each call on Algorithm 2 costs at most 2176 ℓ(vr,j)
2 =

2176 . (2r)2 for some r and j, where vr,j is the θ of those lemmas. The key point
is that this pair (r, j) never occurs in this way in any other call on Algorithm 2
— once that merge has been made it is never repeated. So the total cost of all
applications of Algorithm 2 is at most 2176

∑

D 22r, where D is the set of all pairs
(r, j) such that Dr,j ⊆ {1, . . . , ℓ(ŵ)}, and as ℓ(ŵ) ≤ n,

∑

D

22r ≤

⌈log2 n⌉
∑

r=0

n

2r
22r ≤ n

⌈log2 n⌉
∑

r=0

2r ≤ n
(

21+⌈log2 n⌉ − 1
)

≤ n(4n− 1).

Summing our estimates 5n2/2, 100n2, 15n2 + 2n and 2176n(4n − 1), we get
the upper bound on cost of 17643n2/2 − 2174n, which establishes our theorem.

References

[1] G. Baumslag, M. R. Bridson, C. F. Miller, and H. Short. Finitely presented
subgroups of automatic groups and their isoperimetric functions. J. London
Math. Soc. (2), 56(2):292–304, 1997.

18

[2] R. Bieri. Homological dimension of discrete groups. Queen Mary Lecture
Notes, 1976.

[3] M. R. Bridson. personal communication.

[4] M. R. Bridson. Doubles, finiteness properties of groups, and quadratic isoperi-
metric inequalities. Journal of Algebra, 214:652–667, 1999.

[5] S. M. Gersten. Finiteness properties of asynchronously automatic groups. In
R. Charney, M. Davis, and M. Shapiro, editors, Geometric Group Theory, vol-
ume 3 of Ohio State University, Mathematical Research Institute Publications,
pages 121–133. de Gruyter, 1995.

[6] D. Groves. personal communication.

[7] P. Papasoglu. On the asymptotic invariants of groups satisfying a quadratic
isoperimetric inequality. J. Differential Geom., 44:789–806, 1996.

[8] T. R. Riley. Higher connectedness of asymptotic cones. Topology, 42:1289–
1352, 2003.

[9] J. Stallings. A finitely presented group whose 3-dimensional integral homology
is not finitely generated. Amer. J. Math., 85:541–543, 1963.

19

	Introduction
	Preliminaries
	Dyadic alternating form
	Subroutines
	Our main algorithm
	Cost analysis

