- Title
- All (k;g)-cages are k-edge-connected
- Creator
- Lin, Yuqing; Miller, M.; Rodger, C.
- Relation
- Journal of Graph Theory Vol. 48, no. 3, p. 219-227
- Publisher
- John Wiley & Sons
- Resource Type
- journal article
- Date
- 2005
- Description
- A (k;g)-cage is a k-regular graph with girth g and with the least possible number of vertices. In this paper, we prove that (k;g)-cages are k-edge-connected if g is even. Earlier, Wang, Xu, and Wang proved that (k;g)-cages are k-edge-connected if 9 is odd. Combining our results, we conclude that the (k;g)-cages are k-edge-connected. (C) 2005 Wiley Periodicals, Inc.
- Subject
- cages; (k; g); edge-connectivity; connectivity
- Identifier
- uon:299
- Identifier
- http://hdl.handle.net/1959.13/25337
- Identifier
- ISSN:1097-0118
- Language
- eng
- Reviewed
- Hits: 3142
- Visitors: 3438
- Downloads: 3
Thumbnail | File | Description | Size | Format |
---|