- Title
- Predicting breaking wave conditions using gene expression programming
- Creator
- Robertson, Bryson; Gharabaghi, Bahram; Power, Hannah E.
- Relation
- Coastal Engineering Journal Vol. 59, Issue 3, no. 1750017
- Publisher Link
- http://dx.doi.org/10.1142/S0578563417500176
- Publisher
- Taylor & Francis
- Resource Type
- journal article
- Date
- 2017
- Description
- The forces and loading resulting from shallow water breaking waves are one of the most important drivers in coastal engineering design and morphological change. The importance of accurately and precisely predicting breaking wave conditions cannot be overstated. Using a novel dataset of laboratory and field scale breaking wave conditions, this study assesses the performance of widely applied empirical relationships for breaking waves and uses newly available artificial neural networks and gene expression programming (GEP) numerical methods to develop an accurate and easily applied predictor of breaking conditions for coastal engineers and planners. A novel GEP model is developed and shown to: provide excellent predictive ability at all scales, greatly improve prediction compared with previous works at laboratory scale, and clearly identify the relevant importance of seafloor slope and the water depth to wavelength ratio.
- Subject
- breaking waves; GEP; breaker index; coastal processes; ocean engineering
- Identifier
- http://hdl.handle.net/1959.13/1392065
- Identifier
- uon:33334
- Identifier
- ISSN:0578-5634
- Rights
- This is an Accepted Manuscript of an article published by Taylor and Francis in Coastal Engineering Journal on 12/02/18, available online: http://www.tandfonline.com/10.1142/S0578563417500176
- Language
- eng
- Full Text
- Reviewed
- Hits: 1261
- Visitors: 1363
- Downloads: 129
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT02 | Author final version | 780 KB | Adobe Acrobat PDF | View Details Download |