THE ROLE OF TRAIL-REGULATED SIGNALLING PATHWAYS AND TLR7 IN RHINOVIRUS-INDUCED EXACERBATION OF ALLERGIC AIRWAYS DISEASE

Luke Michael Hatchwell

B Biomed Sci (Hons)

Thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
(Immunology & Microbiology)

School of Biomedical Sciences and Pharmacy
University of Newcastle
February 2017
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968.

Luke Hatchwell
Statement of Authorship

I hereby certify that the work embodied in this thesis contains a published paper/s/scholarly work of which I am a joint author. I have included as part of my thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

Luke Hatchwell
Statement of Copyright

I warrant that I have obtained, where necessary, permission from the copyright owners to use any third party copyright material reproduced in the thesis (e.g. questionnaires, artwork, unpublished letters), or to use any of my own published work (e.g. journal articles) in which the copyright is held by another party (e.g. publisher, co-author).

Luke Hatchwell
Thesis by Publication

I hereby certify that this thesis is submitted in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author; and endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the jointly authored publications.

Luke Hatchwell
Acknowledgements

The completion of this thesis and the six years of my life it represents can only account for a fraction of how it changed me as a person through the experiences and lessons I have accumulated in that time. To all those I have had the pleasure of working with; my deep appreciation is addressed to you with a few notable standouts.

First and foremost, none of this would have been possible without the support and encouragement of my family, whose finances largely facilitated a university student lifestyle for many years. The freedom they gave in pushing me to follow this path under my own motivation is greatly appreciated. I hope to be a source of pride and reimbursement to Jeff, Sue, Chris and Kirsty in the future.

Next I would like to thank my supervisors Professor Joerg Mattes and Laureate Professor Paul Foster for their guidance and belief that not only would I succeed in my endeavours but thrive and mature into a confident and professional scientist. Akin to this, I would also like to thank Dr Adam Collison, my third supervisor in every practical sense, if not in title. Adam’s invaluable tutelage and steadfast patience under the strain of manuscript deadlines, conference travel and grant submissions was instrumental in staying the course and eventually getting over the finish line.

To all current and past members of the Experimental & Translational Respiratory Group; from the early days with Adam, Ana and Stuart, to the additions of Jason and Matt, as well as visiting members Caio, Junyao and Natalie; I was fortunate to have you all as comrades along this path. To the RAs who excelled day-in and day-out, thank you Jane and Heather for your assistance in keeping the lab running and picking up the slack when needed.

For my long-time best friend Pricey, I couldn’t have asked for a better companion to venture out into the adult world with. Thanks for keeping the pitfalls of independence fun and interesting.

And finally; my clever, funny and beautiful fiancé Suzie, without whom I wouldn’t have been able to retain my balance and sanity. Your unwavering empathy, enthusiasm and humour never fails to brighten my day and I know our journey together will be as enlightening and rewarding as it should be. Love you sweetie.
List of publications included as part of thesis

Publication 1:

THE E3 UBIQUITIN LIGASE MIDLINE 1 PROMOTES ALLERGEN AND RHINOVIRUS-INDUCED ASTHMA BY INHIBITING PROTEIN PHOSPHATASE 2A ACTIVITY

Adam Collison1,2*, Luke Hatchwell1,2*, Nicole Verrills3, Peter AB Wark2,4, Ana Pereira de Siqueira1,2, Melinda Tooze2,4, Helen Carpenter3, Anthony S Don5, Jonathan C Morris6, Nives Zimmermann7, Nathan W Bartlett8, Marc E Rothenberg7, Sebastian L Johnston8, Paul S Foster2, Joerg Mattes1,2,9

1Experimental & Translational Respiratory Group
2Priority Research Centre for Asthma and Respiratory Diseases
3Medical Biochemistry Department, School of Biomedical Sciences & Pharmacy
University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
4Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
5Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
6School of Chemistry, University of New South Wales, Sydney, Australia
7Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
8National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London, UK
9Paediatric Respiratory and Sleep Medicine Unit, Newcastle Children’s Hospital, Kaleidoscope Newcastle, Australia

*These authors contributed equally to this work
Publication 2:

TOLL-LIKE RECEPTOR 7 GOVERNS INTERFERON AND INFLAMMATORY RESPONSES TO RHINOVIRUS AND IS SUPPRESSED BY IL-5-INDUCED LUNG EOSINOPHILIA

Luke Hatchwell¹,²*, Adam Collison¹,²*, Jason Girkin¹,², Kristy Parsons²,³, Junyao Li¹,²,⁴, Jie Zhang⁴, Simon Phipps⁵, Darryl Knight², Nathan W Bartlett⁶, Sebastian L Johnston⁶, Paul S Foster², Peter AB Wark²,³ & Joerg Mattes¹,²,⁷

¹Experimental & Translational Respiratory Medicine
²Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
³Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
⁴Norman Bethune Medical Science Centre, Jilin University, Changchun, China
⁵The School of Biomedical Sciences, University of Queensland, Queensland, Australia
⁶Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London, UK
⁷Paediatric Respiratory and Sleep Medicine Unit, Newcastle Children’s Hospital, Kaleidoscope, Newcastle, Australia

Thorax. 2015 Sep; 70(9):854-861. doi: 10.1136/thoraxjnl-2014-205465

*These authors contributed equally to this work
Publication 3:

SALMETEROL ATTENUATES CHEMOTACTIC RESPONSES IN RHINOVIRUS-INDUCED EXACERBATION OF ALLERGIC AIRWAYS DISEASE BY MODULATING PROTEIN PHOSPHATASE 2A

Luke Hatchwell\(^1\,^2\), Jason Girkin\(^1\,^2\), Matthew D Dun\(^3\,^4\), Matthew Morten\(^1\,^2\), Nicole Verrills\(^3\,^4\), Hamish D Toop\(^5\), Jonathan C Morris\(^5\), Sebastian L Johnston\(^6\), Paul Foster\(^1\,^2\), Adam Collison\(^1\,^2\), Joerg Mattes\(^1\,^2\,^7\)

\(^1\)Experimental & Translational Respiratory Medicine
\(^2\)Priority Research Centre for Asthma and Respiratory Diseases
University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
\(^3\)Medical Biochemistry Department, School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, Australia
\(^4\)Hunter Medical Research Institute, Cancer Research Program and Hunter Cancer Research Alliance, Newcastle, Australia
\(^5\)School of Chemistry, University of New South Wales, Sydney, Australia
\(^6\)Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London, UK
\(^7\)Paediatric Respiratory & Sleep Medicine Unit, Newcastle Children’s Hospital, Kaleidoscope, Newcastle, Australia

Journal of Allergy and Clinical Immunology. 2014 Jun; 133(6):1720-1727.
doi: 10.1016/j.jaci.2013.11.014
Contribution to Publications

Publication 1:

Adam Collison and Luke Hatchwell designed and performed mouse and cell culture experiments, analysed data, generated figures and edited the manuscript. Nicole Verrills and Helen Carpenter performed and analysed PP2Ac quantification and immunoprecipitation and designed in-vitro experiments. Nicole Verrills also edited the manuscript. Peter Wark and Melinda Tooze performed and supervised studies on clinical samples collected from healthy subjects and subjects with asthma and performed cell culture experiments. Ana Pereira de Siqueira coordinated and supervised mouse and human studies. Anthony Don and Jonathan Morris synthesized AAL$_{(S)}$ for use as an activator of PP2A and developed the dosing regiment. Nives Zimmermann and Marc Rothenberg coordinated and assisted in microarray array analysis. Nathan Bartlett and Sebastian Johnston assisted in design of experiments, provided stocks of RV1B for further propagation and cDNA standards and edited the manuscript. Paul Foster supervised mouse studies, interpreted data and edited the manuscript. Joerg Mattes conceptualized, coordinated, designed and supervised mouse and human studies, interpreted and analysed data, and drafted and edited the manuscript. All authors contributed to data discussion and revised the manuscript during the resubmission period.

Joerg Mattes
Publication 2:

Luke Hatchwell and Adam Collison designed and performed mouse and cell culture experiments, analysed data, generated figures and edited the manuscript. Jason Girkin and Junyao Li performed experiments and analysed data. Jie Zhang assisted in supervision. Peter Wark and Kristy Parsons performed and supervised studies on healthy subjects and subjects with asthma, collected and processed biopsies, and performed cell culture experiments. Simon Phipps assisted in the design and conceptualization of some mouse experiments. Darryl Knight supervised and interpreted cell culture experiments. Nathan Bartlett and Sebastian Johnston assisted in design of mouse experiments, provided RV1B for further propagation and cDNA standards. Paul Foster assisted in design, supervision and interpretation of mouse studies. Joerg Mattes conceptualized, coordinated, designed and supervised mouse and human studies, interpreted and analysed data, and drafted and edited the manuscript. All authors contributed to data discussion and revised the manuscript during the resubmission period.

Joerg Mattes
Publication 3:

Luke Hatchwell designed and performed mouse and cell culture experiments, analysed data, generated figures, drafted and edited the manuscript. Jason Girkin and Matthew Morten performed experiments and analysed data. Matthew Dun and Nicole Verrills designed experiments and performed and analysed PP2Ac measurements and immunoprecipitations. Nicole Verrills also edited the manuscript. Hamish Toop and Jonathan Morris synthesized AAL(S) for use as an activator of PP2A and developed the dosing regimen. Sebastian Johnston assisted in design of mouse experiments, provided RV1B for further propagation and cDNA standards. Paul Foster assisted in design, supervision and interpretation of mouse studies. Adam Collison designed and performed mouse and cell culture experiments, analysed and interpreted data, and edited the manuscript. Joerg Mattes conceptualized, coordinated, designed and supervised mouse and cell culture studies, analysed and interpreted data, and edited the manuscript. All authors contributed to data discussion and revised the manuscript during the resubmission period.

Joerg Mattes
Statement of Contribution of Others

The co-authors listed below attest that Research Higher Degree candidate Luke Michael Hatchwell was the primary contributor (first or co-first author) to the following papers/publications:

1) The E3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2A activity.
Collison, A.*, Hatchwell, L.*, Verrills, N., Wark, PA., de Siqueira, AP., Tooze, M., Carpenter, H., Don, AS., Morris, JC., Zimmermann, N., Bartlett, NW., Rothenberg, ME., Johnston, SL., Foster, PS., Mattes, J.

*These authors contributed equally to this work.

2) Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia.
Thorax. 2015 Sep; 70(9):854-861. doi: 10.1136/thoraxjnl-2014-205465

*These authors contributed equally to this work.

3) Salmeterol attenuates chemotactic responses in rhinovirus-induced exacerbation of allergic airways disease by modulating protein phosphatase 2A.
Hatchwell, L., Girkin, J., Dun, M., Morten, M., Verrills, N., Toop, H., Morris, JC., Johnston, SL., Foster, PS., Collison, A., Mattes, J.
Journal of Allergy and Clinical Immunology. 2014 Jun; 133(6):1720-1727. doi: 10.1016/j.jaci.2013.11.014
Bartlett, NW.
Signature of Co-Author:
Date: 08/12/2013

Carpenter, H.
Signature of Co-Author:
Date: 10/12/2013

Collison, A.
Signature of Co-Author:
Date: 13/1/2014

de Siqueira, AP.
Signature of Co-Author:
Date: 09/12/2013

Don, AS.
Signature of Co-Author:
Date: 09/12/2013

Dun, M.
Signature of Co-Author:
Date: 09/12/2013
Foster, PS.
Signature of Co-Author:
Date: 14/12/2014

Girkin, J.
Signature of Co-Author:
Date: 09/12/2013

Johnston, SL.
Signature of Co-Author:
Date: 06/12/2013

Knight, D.
Signature of Co-Author:
Date: 15/12/2013.

Li, J.
Signature of Co-Author:
Date: 14/12/2013

Mattes, J.
Signature of Co-Author:
Date: 16/12/2013
Morris, JC.
Signature of Co-Author:
Date: 16/12/13

Morten, M.
Signature of Co-Author:
Date: 17/12/13

Parsons, K.
Signature of Co-Author:
Date: 06/12/2013

Phipps, S.
Signature of Co-Author:
Date: 06/12/13

Rothenberg, ME.
Signature of Co-Author:
Date: 04/12/2013

Toop, H.
Signature of Co-Author:
Date: 07/12/2013
Tooze, M.
Signature of Co-Author:
Date: 16DEC13

Verrills, N.
Signature of Co-Author:
Date: 09/01/2014

Wark, PA.
Signature of Co-Author:
Date: 27/12/2013

Zhang, J.
Signature of Co-Author:
Date: 14/12/2013

Zimmermann, N.
Signature of Co-Author:
Date: 06/12/2013

Assistant Dean Research Training (ADRT)
Professor Robert Callister
Date: 15/01/2014
Signature:
Table of Contents

Statement of originality ... 2
Statement of authorship ... 3
Statement of copyright ... 4
Thesis by publication ... 5
Acknowledgements .. 6
List of publications included as part of thesis ... 7
Contribution to publications ... 10
Statement of contribution of others .. 13
Abstract of thesis .. 21

CHAPTER 1: LITERATURE REVIEW AND STUDY DESIGN 22

1.1 Asthma ... 23
 1.1.1 Clinical presentation ... 23
 1.1.2 Disease burden .. 25
 1.1.3 Pathogenesis ... 27
 1.1.3.1 Asthma pathology and predisposition ... 27
 1.1.3.2 Early-phase response to allergen by resident innate immune cells and structural lung cells ... 29
 1.1.3.3 Adaptive immune elements during the late-phase response 31
 1.1.4 Asthma phenotypes and treatments ... 33

1.2 Rhinovirus .. 35
 1.2.1 Virology .. 35
 1.2.2 Host response to infection ... 37
 1.2.2.1 Detection and innate immune responses .. 37
 1.2.2.2 Humoral responses to HRV ... 39

1.3 Rhinovirus-induced asthma exacerbation .. 40
 1.3.1 Prevalence and healthcare burden ... 40
 1.3.2 Clinical observations ... 41
 1.3.3 Experimental findings ... 42
 1.3.4 Therapeutic options ... 45
CHAPTER 2: THE E3 UBIQUITIN LIGASE MIDLINE 1
PROMOTES ALLERGEN AND RHINOVIRUS-INDUCED
ASTHMA BY INHIBITING PROTEIN PHOSPHATASE
2A ACTIVITY ... 54
 2.1 Manuscript .. 55
 2.2 Supplementary material .. 63

CHAPTER 3: TOLL-LIKE RECEPTOR 7 GOVERNS
INTERFERON AND INFLAMMATORY RESPONSES TO
RHINOVIRUS AND IS SUPPRESSED BY IL-5-INDUCED
LUNG EOSINOPHILIA ... 72
 3.1 Manuscript .. 73
 3.2 Supplementary material .. 81

CHAPTER 4: SALMETEROL ATTENUATES
CHEMOTACTIC RESPONSES IN RHINOVIRUS-INDUCED
EXACERBATION OF ALLERGIC AIRWAYS DISEASE BY
MODULATING PROTEIN PHOSPHATASE 2A 86
 4.1 Manuscript .. 87
 4.2 Supplementary material .. 95
CHAPTER 5: DISCUSSION ... 111

5.1 Elucidating the TRAIL-MID1-PP2A pathway .. 112
5.2 Suppression of TLR7-mediated IFN responses in asthma 114
5.3 PP2A-agonising effects of long-acting B2 agonists 116
5.4 Thesis summary .. 118

APPENDICES ... 119

Appendix A - Copyright policies ... 120
A.1 Journal: Nature Medicine ... 120
A.2 Journal: Thorax ... 122
A.3 Journal: Journal of Allergy and Clinical Immunology 124

Appendix B - List of additional publications .. 126
B.1 Journal Articles ... 126
B.2 Conference Abstracts ... 128
B.2.1 2014 ... 128
B.2.2 2013 ... 128
B.2.3 2012 ... 129
B.2.4 2011 ... 131
B.2.5 2010 ... 132

Appendix C - List of abbreviations and figures 133
C.1 Acronyms & abbreviations .. 133
C.2 List of Figures ... 135

BIBLIOGRAPHY .. 136
Abstract of Thesis

Asthma is a chronic inflammatory disease of the airways, associated with debilitating reversible airflow obstruction. The majority of healthcare costs from asthma-related hospitalisations are attributed to exacerbations by respiratory viruses, with rhinoviruses (RV) being the most commonly detected. This thesis presents original research papers detailing investigations to elucidate the mechanisms underlying RV-induced exacerbations of allergic airways disease (AAD).

The first manuscript (see Chapter 2) details the elucidation of a novel TRAIL signalling pathway where the TRAIL-regulated gene product Midline-1 (MID1), which inhibits protein phosphatase 2A (PP2A), was found to promote AAD through increased homing of myeloid dendritic cells (mDCs) to the airway via CCL20 release. Notably, inhibition of MID1 or reactivation of PP2A abolished airway hyperresponsiveness (AHR) and attenuated airways inflammation and mucus hypersecretion in mouse models of AAD and RV-induced exacerbation.

The second manuscript (see Chapter 3) investigates the importance of Toll-like receptor (TLR) 7-elicited interferon (IFN) responses during RV infection in an asthmatic setting. We show that following exposure to house dust mite (HDM), mice deficient in TLR7 display exaggerated eosinophilic inflammation and attenuated anti-viral responses when challenged with RV. TLR7 expression in the lungs of mice was found to be suppressed by interleukin-(IL)-5-induced eosinophilia, while human asthmatics with eosinophilic but not neutrophilic airways inflammation also showed reduced TLR7 and IFN expression.

The third manuscript (see Chapter 4) revisits established therapeutic agents, long-acting β2 agonists (LABAs), in light of recently described interactions with PP2A. This study extends those findings by reporting that administration of salmeterol, or other β2 agonists, protected mice against HDM- and RV-induced lung inflammation as effectively as the corticosteroid dexamethasone. Salmeterol but not dexamethasone mediated this via increased PP2A activity, the inflammatory phenotype recapitulated when PP2A was targeted by siRNA.

Taken together, these studies have identified new targets for the therapeutic intervention of asthma and RV-induced exacerbation.