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Abstract
Objective
To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large
population-based cohorts.

Methods
We performed meta-analyses of genome-wide association studies (GWAS) and examined
associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI
and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n =
20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7
population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations
with related phenotypes including ischemic stroke and pathologically defined BI.

Results
The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci
showed genome-wide significant association with BI: FBN2, p = 1.77 × 10−8; and LINC00539/
ZDHHC20, p = 5.82 × 10−9. Both have been associated with blood pressure (BP)–related
phenotypes, but did not replicate in the smaller follow-up sample or show associations with related
phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits
(p value for BI, p[BI] = 9.38 × 10

−25; p[SSBI] = 5.23 × 10
−14 for hypertension), smoking (p[BI] = 4.4 ×

10−10; p[SSBI] = 1.2 × 10−4), diabetes (p[BI] = 1.7 × 10−8; p[SSBI] = 2.8 × 10−3), previous cardio-
vascular disease (p[BI] = 1.0 × 10

−18; p[SSBI] = 2.3 × 10
−7), stroke (p[BI] = 3.9 × 10

−69; p[SSBI] = 3.2 ×
10−24), and MRI-defined white matter hyperintensity burden (p[BI] = 1.43 × 10−157; p[SSBI] =
3.16 × 10−106), but not with body mass index or cholesterol. GRS of BP traits were associated with
BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy.

Conclusion
In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants,
we identified genetic risk loci for BI requiring validation once additional large datasets become
available. High BP, including genetically determined, was the most significant modifiable, causal
risk factor for BI.

Introduction
Brain infarcts (BI) detected on MRI are commonly seen in
older persons, being described in 8%–28% of participants in
population-based cohort studies.1 Most MRI-defined BI are
covert, not being associated with overt, clinical stroke
symptoms.2,3 Nonetheless, they cannot be considered silent
or benign, as they are often associated with subtle neurologic
symptoms and with increased risk of future stroke, cognitive
decline, and in some studies dementia.4,5 Most MRI-defined
BI are small subcortical BI (SSBI), believed to be primarily
caused by small vessel disease (SVD).6

Mechanisms and predictors of BI and SSBI remain incompletely
understood. No genetic risk variants for BI and SSBI have been
consistently identified to date,7–16 and findings with vascular
risk factors have been inconsistent.1 Partly reflecting this un-
certainty, recommendations to direct clinicians on how to best
manage covert MRI-defined BI are lacking.

To enhance understanding of risk factors for BI and SSBI, we
first conducted a large meta-analysis of genome-wide

association studies (GWAS) from 18 population-based
studies, comprising 20,949 participants from 5 ethnic
groups, using the 1000 Genomes reference panel (1000G),
more than doubling the size of a prior GWAS.16 Second, we
examined the association of vascular risk factors with BI and
SSBI in this large sample, using both vascular risk factor
measurements and their genetic risk scores (GRS).

Methods
Study design and samples
The meta-analyses included 18 prospective population-based
cohorts participating in the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) consortium
(table e-1 and additional Methods e-1, doi.org/10.5061/
dryad.hk07677). Although the cohorts contributing partic-
ipants are longitudinal, this study is cross-sectional, based on
the analysis of BI and SSBI at one timepoint in the subset of
cohort participants with brain MRI. These cohorts comprised
5 ethnic groups and ancestries: European (n = 17,956), Af-
rican (n = 1,834), Hispanic (n = 737), Malay (n = 215), and

Neurology.org/N Neurology | Volume 92, Number 5 | January 29, 2019 e487

https://doi.org/10.5061/dryad.hk07677
https://doi.org/10.5061/dryad.hk07677
http://neurology.org/n


Chinese (n = 207). Some cohorts contributed to data for
more than one ethnic group, resulting in a total of 23 datasets
(tables e-1 to e-3, doi.org/10.5061/dryad.hk07677). Out of
a total of 20,949 participants, 3,726 had MRI-defined BI. We
did not exclude participants with a history of overt, clinically
defined stroke prior to the MRI, except in 4 cohorts where
patients with history of stroke were excluded by design. Three
datasets did not contribute to the SSBI analysis either due to
small numbers or absence of BI subtyping. Out of a total of
19,073 participants in the remaining 20 datasets, 3,533 had BI,
of whom 2,021 (57.2%) had SSBI.

Variable definitions
Detailed MRI scanning protocols, as well as BI and SSBI
definitions, for each study are described in table e-4 (doi.org/
10.5061/dryad.hk07677). All protocols comprised at least T1,
T2, and proton density or fluid-attenuated inversion recovery
(FLAIR) sequences. On MRI, BI were defined as an area of
abnormal signal intensity lacking mass effect with a size
≥3–4 mm; in the white matter, they were required to be
hypointense on T1-weighted images, approaching the hypo-
intensity of CSF, to distinguish them from diffuse white
matter lesions; and they were distinguished from dilated
perivascular spaces based on their irregular shape, presence of
a hyperintense rim in FLAIR, and absence of a typical vascular
shape following the orientation of perforating vessels.17 SSBI
corresponded to BI with a size <15–20 mm, located in the
basal ganglia, the white matter, or the brainstem. Participants
with large BI or BI located in the cerebral cortex or cerebellum
were excluded from analyses of SSBI. We also measured
burden of white matter hyperintensities (WMH), a quantita-
tive MRI marker of SVD, corresponding to signal abnormal-
ities of variable size in the white matter, appearing as
hyperintensity on T2-weighted or FLAIR images, but without
cavitation. Details of WMH measurements have been de-
scribed previously.18

Vascular risk factors
Vascular risk factor levels measured closest to brain MRI ac-
quisition were used. Hypertension was defined as systolic
blood pressure (SBP) ≥140 mm Hg or diastolic blood pres-
sure (DBP) ≥90 mmHg or use of one or more blood pressure
(BP)–lowering medications. We defined pulse pressure (PP)
as the difference between SBP and DBP and mean arterial
pressure (MAP) as DBP + 1/3 × PP. Diabetes was defined as
a previous diagnosis of diabetes, a fasting plasma glucose >7.0
mmol/L, or antidiabetic drug use. Fasting serum total

cholesterol, high-density lipoprotein (HDL) cholesterol, and
triglycerides were measured using enzymatic methods. Low-
density lipoprotein (LDL) cholesterol was calculated using
the Friedewald formula. Body mass index (BMI) was defined
as the ratio of weight (kg) to the square of height (m). Active
smoking was defined according to study-specific criteria.
History of overt, clinically defined stroke and other cardio-
vascular events was based on ongoing surveillance prior to
brain MRI acquisition in most studies since participant re-
cruitment had started prior to the initial brain MRI. In studies
that had brain MRI scanning at the initial visit, the history and
examination at this visit were used to identify prior overt,
clinically defined stroke. History of cardiovascular events in-
cluded history of angina, myocardial infarction, cardiac bypass
surgery, angioplasty, or peripheral vascular disease.

Genotypes
All participating discovery cohorts had genome-wide geno-
types imputed on the 1000G (phase 1, version 3).19 Genome-
wide genotyping platforms, quality control measures, and
imputation parameters used in each study are presented in
tables e-5–e-7 (doi.org/10.5061/dryad.hk07677).

Genome-wide association analyses with BI and
small subcortical BI
For genome-wide association analyses with BI and SSBI, each
study performed logistic regression under an additive genetic
model after adjusting for age, sex, principal components of
population stratification, and additional study-specific cova-
riates, such as study site or family structure, as needed (ad-
ditional Methods e-2, doi.org/10.5061/dryad.hk07677, for
centralized quality control description). Our primary multi-
ethnic GWAS meta-analysis was performed using MANTRA,
based on a Bayesian framework.20 In secondary analyses, we
also ran the multiethnic GWAS meta-analysis with 2 alter-
native methods (additional Methods e-2, doi.org/10.5061/
dryad.hk07677): (1) using fixed effects inverse variance
weighting with METAL21,22 and (2) using the random effects
meta-analysis model implemented in METASOFT.23 During
meta-analysis, genomic control correction was applied to the
individual studies and ethnic-specific results to remove any
residual inflation of association statistics. We did not observe
any systematic inflation of association statistics (figure e-1,
doi.org/10.5061/dryad.hk07677). Statistical measures from
MANTRA, the primary meta-analysis method, were used to
define genome-wide significance (Log10 of Bayesian factor
[L10BF] > 6)24 and to choose single nucleotide

Glossary
1000G = 1000 Genomes reference panel; BI = brain infarcts; BMI = body mass index; BP = blood pressure; DBP = diastolic
blood pressure; FLAIR = fluid-attenuated inversion recovery; GRS = genetic risk scores; GWAS = genome-wide association
studies;HDL = high-density lipoprotein; IS = ischemic stroke; IS-SVD = small vessel disease subtype of ischemic stroke; IVW =
inverse-variance weighting; L10BF = Log10 of Bayesian factor; LD = linkage disequilibrium; LDL = low-density lipoprotein;
MAP = mean arterial pressure; PP = pulse pressure; SNP = single nucleotide polymorphism; SBP = systolic blood pressure;
SSBI = small subcortical brain infarcts; SVD = small vessel disease; WMH = white matter hyperintensities.
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polymorphisms (SNPs) for follow-up (L10BF > 4.5) in either
the BI or SSBI meta-analysis. Details of functional annotation
of top loci are provided in additional Methods e-3 (doi.org/
10.5061/dryad.hk07677).

Follow-up and extension
For follow-up and extension studies, genotypes imputed to
the 1000G reference panel were available in most instances
for in silico look-up of the selected risk variants. Three
follow-up studies performed de novo genotyping of the top
6 loci (additional Methods e-1, doi.org/10.5061/dryad.
hk07677). The lead variant (with lowest p value) was gen-
otyped at each suggestive or genome-wide significant locus,
and if not feasible, another variant in strong linkage dis-
equilibrium (LD, r2 > 0.8) was genotyped. A p value
<0.0083, correcting for 6 loci, was considered significant
evidence for replication.

The follow-up sample, in which we sought to confirm asso-
ciations observed in the discovery analysis, included 6,862
participants, of whom 1,483 had BI and 630 had SSBI, from 6
community-based studies of European origin and one of
Japanese origin (table e-1, doi.org/10.5061/dryad.hk07677).

As an extension, to test whether genetic variants associated
with MRI-defined BI or SSBI in the discovery analysis are also
associated with correlated phenotypes, we first explored their
association with ischemic stroke (IS) overall and the small
vessel disease subtype (IS-SVD) when available in 4 collab-
orative studies (table e-1, doi.org/10.5061/dryad.hk07677).
Second, we explored whether genetic variants associated with
MRI-defined BI and SSBI were associated with neuro-
pathologically defined BI based on 2,940 brain autopsies in
participants without dementia from the Alzheimer’s Disease
Genetics Consortium (ADGC). Participants with large
infarcts or lacunes (n = 857, 29%) were compared to partic-
ipants without any infarcts or having only microscopic infarcts
(n = 2,083).25

We calculated power of the follow-up and extension studies
using Quanto V1.2.3 (biostats.usc.edu/software; table e-8 and
figure e-2, doi.org/10.5061/dryad.hk07677).

Association of vascular risk factors with BI
and SSBI
Individual studies performed logistic regression to test for
association of vascular risk factor measurements with pres-
ence or absence of at least one BI or SSBI. Analyses were
performed with and without adjustments for age and sex.
Analyses with BP or lipid traits as the main independent
variable were additionally adjusted for treatment with disease-
specific medications, and association analyses with fasting
plasma glucose were limited to participants without type
2 diabetes. Except for WMH burden, the regression coef-
ficients and standard errors for risk factors in the individual
studies belonging to one ethnic group were combined us-
ing fixed-effects inverse variance-weighted meta-analysis

and subsequently the betas and standard errors obtained in
each ethnic group were combined using fixed-effects in-
verse variance-weighted meta-analysis, in the absence of
heterogeneity (p < 1 × 10−6), to derive the multiethnic
meta-analysis estimates. For WMH burden, the statistics
were combined using the Z score–based sample size
weighted meta-analysis as WMH burden was measured on
different scales in participating studies.18

We then explored whether genetic variants previously
shown in published GWAS to be associated with specific
vascular risk factors were, in aggregate, also associated with
BI and SSBI. This approach was selected to assess to what
extent genetically determined vascular risk factor levels are
associated with BI and SSBI and to provide evidence for
a causal relation between a given vascular risk factor and risk
of BI or SSBI, provided that Mendelian randomization
assumptions are fulfilled.26 We combined known genetic
risk variants for each individual vascular risk factor into
a weighted GRS, using effect estimates from the largest
published GWAS of that risk factor as weights. We then
tested for association of these GRS with BI and SSBI using
the inverse-variance weighting (IVW) method. Construc-
tion of the GRS, selection of variants for the GRS analysis, as
well as effect estimates used as weights are detailed in ad-
ditional Methods e-4 and tables e-9–e-12 (doi.org/10.
5061/dryad.hk07677). For significant GRS associations
with BI or SSBI, we further conducted sensitivity analyses
using the MR-Egger method implemented as an R package
(TwoSampleMR),27 which unlike the IVW method esti-
mates the intercept term as part of the analysis. An intercept
term significantly differing from zero suggests the presence
of directional (unbalanced) pleiotropy, meaning that the
pleiotropic effects of genetic variants are not balanced about
the null.27 We used a conservative significance threshold of
p < 0.05 for the intercept.

After Bonferroni correction for 12 independent vascular
phenotypes tested for association with BI and SSBI, p <
0.0042 was considered significant for associations with vas-
cular risk factor measurements or GRS. The number of in-
dependent vascular phenotypes, taking into account
correlation between the phenotypes considered, was esti-
mated based on individual level data from the 3C-Dijon study
using the online tool matSpDlite (neurogenetics.qimr-
berghofer.edu.au/matSpDlite/).

Standard protocol approvals, registrations,
and patient consents
Institutional review boards approved all of these studies, and
all participants provided informed consent.

Data availability
Summary statistics of the top SNPs are available from Dryad
for both BI and SSBI. Other data that support the findings of
this study are available from the corresponding authors upon
reasonable request.
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Results
In this large population-based dataset comprising 18 cohort
studies, the frequency of MRI-defined BI ranged from 4% to
38% in participating cohorts (table e-1, doi.org/10.5061/
dryad.hk07677). A description of demographic characteristics
in all participants with BI (n = 3,726), with SSBI (n = 2,021),
and without BI (n = 17,223) is provided in tables e-2 and e-3
(doi.org/10.5061/dryad.hk07677) for individual studies.
Participants with BI and SSBI were on average 6 years older
and more often men compared to those without BI. In age-
stratified analyses, the prevalence of BI and SSBI increased
with age, most prominently beyond age 65, after which
a 25.8% (range 13.9%–37.0%) increment in BI prevalence was
observed compared to participants younger than 65 years
(figure 1). Overall, the prevalence of BI ranged from less than
5% before age 50 to over 30% beyond age 80, with similar
findings when we analyzed men and women separately (fig-
ures e-3 and e-4, doi.org/10.5061/dryad.hk07677). Only 11%
of those with BI and 9% of those with SSBI had a history of
stroke (12.5% and 9.8% when removing cohorts that excluded
participants with history of stroke by design); hence, the vast
majority of MRI-defined BI were covert.

Genome-wide association plots for GWAS of BI and SSBI are
displayed in figures e-5 and e-6 (doi.org/10.5061/dryad.
hk07677). Two loci were associated with risk of BI at genome-
wide significant level (L10BF > 6): rs39938 in FBN2 (chr5q23)
and rs12583648 in LINC00539 and near ZDHHC20
(chr13q12). In addition, 2 SNPs were associated with BI at

a suggestive level of significance (L10BF >4.5): rs12373108 near
CALB2/ZNF23 (chr16q22) and rs74587705 in SV2B
(chr15q26) (table 1). No genome-wide significant association
was observed for SSBI, but 2 loci reached the threshold for
suggestive association (L10BF > 4.5): rs9371194 in PLEKHG1
(chr6q25) and rs75889566 in FRMD1 (chr6q27, table 1).
These 6 loci were taken forward for the follow-up stage
(table 2). For all SNPs reaching Log10BF > 4.5 in the discovery
stage, association statistics are shown in table e-13 and figure e-7
(doi.org/10.5061/dryad.hk07677).

In the substantially smaller population-based follow-up
studies, we could not replicate the 2 genome-wide signifi-
cant or the 4 suggestive loci associated with BI or SSBI (table
2). Of the 6 loci that we followed up, we had limited power for
2 of the loci for BI (52%) and 4 of the loci for SSBI
(50%–58%) (table e-8, doi.org/10.5061/dryad.hk07677).
Power estimates in the follow-up study are even lower when
accounting for the winner’s curse phenomenon, which leads
to inflated effect estimates in the discovery cohort.28 One
suggestive locus for SSBI (PLEKHG1) showed nominal as-
sociation with BI and SSBI in the follow-up studies (pBI = 0.03
and pSSBI = 0.02), but in the opposite direction (table 2).

Likewise, none of the genome-wide significant or suggestive
loci for BI and SSBI showed association with IS (overall or IS-
SVD) or pathologically defined BI in the extension studies
after correcting for multiple testing (table 2 and table e-14,
doi.org/10.5061/dryad.hk07677). Whereas the sample size

Figure 1 Prevalence of MRI-defined brain infarcts (BI) and small subcortical brain infarcts (SSBI) by different age groups

CI = confidence interval.
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Table 1 Loci reaching Log10 of Bayesian factor (L10BF) >4.5 in the discovery stage of the genome-wide association studies with brain infarcts (BI) or small subcortical brain
infarcts (SSBI)

Genes
Lead SNP
(chr:position)

Chr
region

Function
(distance
from gene)

Minor allele
frequency Phenotype

Multiethnic fixed-effects
meta-analysis

Multiethnic
random-effects
meta-analysis

Bayesian-
based
approach of
MANTRA

Cases/
controls, nOR (95% CI) pFE p-het pRE L10BF p-het

FBN2 rs39938 (5:127663579) 5q23 Intronic T (0.21) BI 1.21 (1.13–1.30) 1.77 × 10−8a 0.42 4.83 × 10−8 6.52a 0.31 3,603/16,464

SSBI 1.23 (1.13–1.34) 3.93 × 10−6 0.58 1.43 × 10−5 4.28 0.25 1975/13,260

PLEKHG1 rs9371194 (6:151034730) 6q25 Intronic T (0.46) BI 1.12 (1.06–1.18) 5.94 × 10−5 0.47 4.28 × 10−4 3.10 0.16 3,726/17,223

SSBI 1.19 (1.11–1.28) 1.90 × 10−6 0.50 3.63 × 10−5 4.54 0.18 2,112/15,432

FRMD1 rs75889566 (6:168476856) 6q27 Intronic T (0.08) BI 0.82 (0.73–0.92) 7.71 × 10−4 0.47 2.03 × 10−3 1.99 0.27 3,181/12,731

SSBI 0.65 (0.55–0.78) 1.82 × 10−6 1.00 4.40 × 10−5 4.63 0.17 1,584/8,538

LINC00539/ZDHHC20 rs12583648 (13:21900055) 13q12 Intronic C (0.33) BI 1.21 (1.13–1.29) 5.82 × 10−9a 0.29 2.33 × 10−7 7.00a 0.22 3,685/17,085

SSBI 1.20 (1.10–1.30) 2.95 × 10−5 0.26 7.66 × 10−5 3.07 0.30 1985/14,705

SV2B rs74587705 (15:91764992) 15q26 Intronic T (0.03) BI 1.85 (1.46–2.34) 3.36 × 10−7 0.62 5.69 × 10−6 5.25 0.29 2,291/6,072

SSBIb — — — — — — —

CALB2/ZNF23 rs12373108 (16:71432507) 16q22 Intergenic
(8.1 kb)

T (0.17) BI 1.21 (1.12–1.31) 5.02 × 10−7 0.66 1.53 × 10−5 4.90 0.21 3,418/15,607

SSBI 1.23 (1.12–1.36) 1.40 × 10−5 0.47 1.37 × 10−4 3.61 0.18 1,851/12,794

Abbreviations: chr = chromosome (chromosomal positions are based on GRCh37); CI = confidence interval; FE = fixed effect; OR = odds ratio; p-het = p for heterogeneity; RE = random effect; SNP = single nucleotide
polymorphism.
a Loci reaching genome-wide significance, L10BF >6.
b Due to the lowminor allele frequency of this variant and the small number of cases with SSBI, this variant was excluded for association analyses with SSBI after applying the filter on “2 × minor allele frequency × imputation
quality × number of cases ≤10.”
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Table 2 Follow-up and clinical extension of loci reaching Log10 of Bayesian factor (L10BF) >4.5 in the discovery stage of the genome-wide association studies

Gene (lead SNP) Phenotype

Follow-up (BI, n = 1,452 and
SSBI, n = 600) Meta-analysis discovery + follow-up

Clinical extension ischemic stroke
(IS, n = 21,608 and IS-SVD, n = 4,325)a

Pathologically defined infarcts
(n = 857)b

OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value OR (95% CI) p Value

FBN2 (rs39938) BI 0.98 (0.91–1.05) 0.61 1.10 (1.05–1.15) 1.65 × 10−4 1.01 (0.985–1.04) 0.61 1.09 (0.94–1.27) 0.27

SSBI 1.01 (0.93–1.09) 0.88 1.10 (1.04–1.16) 1.58 × 10−3 1.00 (0.94–1.07) 0.9

PLEKHG1 (rs9371194) BI 0.94 (0.89–0.99) 0.03 1.03 (0.99–1.07) 0.2 1.02 (0.99–1.05) 0.08 0.98 (0.87–1.11) 0.72

SSBI 0.93 (0.88–0.99) 0.02 1.03 (0.99–1.08) 0.17 1.01 (0.96–1.06) 0.75

FRMD1 (rs75889566) BI 1.06 (0.96–1.18) 0.23 0.95 (0.88–1.03) 0.19 0.99 (0.94–1.04) 0.67 1.04 (0.82–1.31) 0.77

SSBI 1.03 (0.92–1.15) 0.61 0.90 (0.82–0.99) 0.03 0.97 (0.87–1.07) 0.52

LINC00539/ZDHHC20 (rs12583648) BI 0.98 (0.91–1.06) 0.63 1.11 (1.05–1.16) 4.08 × 10−5 1.01 (0.98–1.04) 0.53 0.95 (0.84–1.08) 0.46

SSBI 0.97 (0.89–1.06) 0.55 1.08 (1.02–1.15) 8.95 × 10−3 1.01 (0.95–1.06) 0.86

SV2B (rs74587705) BI 1.07 (0.92–1.24) 0.41 1.25 (1.10–1.42) 5.82 × 10−4 1.01 (0.92–1.09) 0.9 1.19 (0.80–1.79) 0.39

SSBI 1.01 (0.86–1.18) 0.92 NA 1.07 (0.91–1.27) 0.41

CALB2/ZNF23 (rs12373108) BI 1.01 (0.94–1.10) 0.73 1.12 (1.06–1.18) 8.99 × 10−5 1.00 (0.97–1.04) 0.87 0.94 (0.80–1.10) 0.44

SSBI 1.05 (0.95–1.14) 0.34 1.13 (1.06–1.21) 2.20 × 10−4 1.04 (0.97–1.11) 0.28

Abbreviations: BI = brain infarcts; CI = confidence interval; OR = odds ratio; SNP = single nucleotide polymorphism; SSBI = small subcortical brain infarcts.
Values are OR (95% CI) with respect to the minor allele followed by p value of association.
a For ischemic stroke,meta-analysis results ofMETASTROKE-IS, CHARGE-IS, and SiGN-IS are presented. For ischemic stroke due to small vessel disease,meta-analysis results ofMETASTROKE-IS-SVD, Young Lacunar Stroke DNA
Resource-SVD, and SiGN-IS-SVD are presented.
b Data presented for the following SNPs are for their proxies: rs75889566 = rs902393 (r2 = 0.96), rs12583648 = rs12584792 (r2 = 0.96), rs74587705 = rs7170681 (r2 = 0.67).
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for overall IS and IS-SVDwas relatively large, it was limited for
pathologically defined BI, and power was insufficient for 4 of
the loci (25%–70%) (table e-8, doi.org/10.5061/dryad.
hk07677).

Associations of vascular risk factors with risk of BI or SSBI
adjusted for age and sex are presented in table 3 (for un-
adjusted results, see table e-15, doi.org/10.5061/dryad.
hk07677). Both BI and SSBI were significantly associated
with all BP indices, the lowest p value being observed for SBP
and MAP. Smoking and diabetes were also associated with
both BI and SSBI. Triglycerides were significantly associated
with BI only. We did not observe significant associations with
levels of HDL cholesterol, LDL cholesterol, BMI, or fasting
plasma glucose in nondiabetic participants. Both BI and SSBI
were associated with history of cardiovascular disease and
history of stroke. The most significant association by far was
observed with WMH burden on brain MRI, both for BI and
SSBI. As hypertension is an important risk factor for WMH as
well, we additionally adjusted the regression model for hy-
pertension to rule out a confounding effect by this variable;
however, the association became even more significant (p =
5.71 × 10−172 for BI and p = 4.47 × 10−114 for SSBI) (table
e-16, doi.org/10.5061/dryad.hk07677). No significant het-
erogeneity was seen for these associations across participating
studies.

When exploring the relation of weighted genetic risk scores
for vascular risk factors with BI and SSBI, we found that GRS
for SBP and MAP were significantly associated with increased
risk of BI and SSBI after correction for multiple testing
(table 4). In sensitivity analyses using MR-Egger regression,
evidence for directional pleiotropy was lacking for these
associations between SBP or MAP GRS and BI or SSBI (p
intercept >0.36). GRS for DBP, BMI, coronary artery disease,
WMH burden, and IS were nominally associated with BI (p <
0.05, table 4), but these associations did not survive correction
for multiple testing.

Discussion
This multiethnic meta-analysis comprising over 20,000
community participants provides noteworthy insight into risk
factors for MRI-defined brain infarcts. The described BI dis-
tributions across different age groups and by sex may also
serve as a reference for comparison with BI and SSBI fre-
quency in other settings. Of note, about 90% of BI were
covert, not being associated with a history of stroke. In this
multiethnic GWAS of BI and SSBI, we identified 2 genome-
wide significant risk loci for BI, FBN2 on chr5q23 and
LINC00539/ZDHHC20 on chr13q12, although these could
not be replicated in a smaller follow-up sample. We further
describe the association of MRI-defined BI with vascular risk
factors, combining the vast majority of population-based co-
hort studies with BI and SSBI measurements available. We
find high BP, both phenotypically expressed high BP and

genetically determined risk for high BP, to be the most sig-
nificant modifiable risk factor for BI. No association with
cholesterol levels or BMI was found.

To identify novel genetic risk loci forMRI-defined BI and SSBI,
we have more than doubled the sample size compared to the
previously published GWAS of MRI-defined BI,16 used im-
puted genotypes based on the 1000G reference panel to in-
crease the marker coverage, and included samples from 5
ethnicities for a broader representation of individuals from
different origins. Moreover, we studied both BI and SSBI, while
only BI were analyzed in the previously publishedGWASmeta-
analysis.16 Our inability to replicate the genome-wide signifi-
cant and suggestive findings could reflect false-positive results
butmay also be explained by insufficient power in the follow-up
stage (table e-8, doi.org/10.5061/dryad.hk07677). Further
studies on larger samples with MRI-defined BI are required to
confirm or refute these findings. Moreover, while we could not
provide evidence for an association of genome-wide significant
and suggestive risk loci for BI and SSBI with IS, IS-SVD, or
pathologically defined BI, this inability could reflect differences
in the biology underlying these phenotypes, as well as limited
power in the extension studies.

The 2 loci that crossed the genome-wide significance
threshold, while requiring confirmation in larger independent
samples, do harbor plausible biological candidates. Fibrillin2
(FBN2) encodes a protein that is part of the connective tissue
microfibrils and elastic fiber assembly of the cell.29 Rare and
common variants in FBN2 have been associated with age-
related macular degeneration.30 Recent studies have also
implicated common variants in FBN2 to be associated with
SBP,31 although the variants differ (rs6595838-SBP and
rs39938-BI, r2 = 0.017). The LINC00539/ZDHHC20 locus
was a suggestive hit in a GWAS of adverse metabolic response
to hydrochlorothiazide, a drug commonly used to treat hy-
pertension.32 The lead SNP in the region could also influence
the expression of the long noncoding RNA LINC00539 (table
e-17, doi.org/10.5061/dryad.hk07677).

Our findings provide definitive evidence for a major and pre-
dominant association of increasing BP levels with increased risk
of BI and SSBI.1,33 Beside significant associations with hyper-
tension, a continuous association was observed for increasing
levels of all BP measurements (SBP, DBP, PP, MAP), consis-
tent with elevated BP being the major modifiable risk factor for
BI, as is the case for overt, clinically defined IS.34–36 The im-
portance and causal nature of the relation between high BP and
risk of BI and SSBI is further supported by the significant
association of BP genetic risk scores, for SBP and MAP, with
increased risk of BI, especially SSBI, with no indication of
directional pleiotropy using the MR-Egger approach.27

Previous publications on the association of BI and SSBI with
vascular risk factors other than elevated BP were
inconsistent.1,33,37 Our study provides evidence for a signifi-
cant association of current smoking and diabetes with risk of
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Table 3 Association of vascular risk factors with MRI-defined brain infarcts and small subcortical brain infarcts

Vascular risk factorsa

Brain infarcts Small subcortical brain infarcts

OR (95% CI) p Value p-het Cases/total, n OR (95% CI) p Value p-het Cases/total, n

Modifiable vascular risk factors

Hypertension status 1.62 (1.48–1.78) 9.38 × 10−25b 0.3 3,533/20,555 1.58 (1.40–1.78) 5.23 × 10−14b 0.63 2,015/17,521

Systolic blood pressure, mm Hg 1.01 (1.00–1.01) 7.50 × 10−9b 0.26 3,687/19,840 1.01 (1.00–1.01) 3.55 × 10−9b 0.59 2,017/16,816

Diastolic blood pressure, mm Hg 1.01 (1.00–1.01) 2.32 × 10−5b 0.74 3,686/19,838 1.01 (1.01–1.02) 1.38 × 10−6b 0.81 2,017/16,815

Mean arterial pressure, mm Hg 1.01 (1.01–1.01) 1.35 × 10−8b 0.45 3,686/19,838 1.01 (1.01–1.02) 1.18 × 10−9b 0.77 2,017/16,815

Pulse pressure, mm Hg 1.00 (1.00–1.01) 1.07 × 10−5b 0.25 3,686/19,838 1.01 (1.00–1.01) 2.63 × 10−5b 0.42 2,017/16,815

Triglycerides, mmol/L 1.15 (1.05–1.26) 0.0015b 0.31 3,229/16,220 1.15 (1.02–1.28) 0.0163 0.64 1,751/13,374

HDL cholesterol, mmol/L 0.90 (0.84–0.98) 0.0108 0.53 2,590/19,655 0.92 (0.80–1.05) 0.2116 0.14 1,584/16,704

LDL cholesterol, mmol/L 0.96 (0.92–1.01) 0.1441 0.88 3,038/15,449 0.95 (0.89–1.01) 0.1298 0.98 1,644/12,702

BMI, kg/m2 1.00 (0.91–1.01) 0.9515 0.24 2,773/20,509 1.00 (0.99–1.01) 0.5433 0.73 1,511/17,476

Diabetes status 1.40 (1.24–1.57) 1.66 × 10−8b 0.45 3,259/17,135 1.26 (1.08–1.47) 0.0028b 0.46 1,753/11,836

Fasting plasma glucose, mmol/L 1.00 (1.00–1.00) 0.4366 0.82 3,668/11,599 1.01 (0.99–1.02) 0.2139 0.71 2,007/9,430

Current smoking status 1.47 (1.30–1.66) 4.38 × 10−10b 0.29 2,911/15,438 1.37 (1.17–1.62) 1.18 × 10−4b 0.65 1,588/12,032

Vascular comorbidities

History of CVD 1.62 (1.46–1.81) 1.03 × 10−18b 0.03 3,202/14,712 1.46 (1.27–1.69) 2.27 × 10−7b 0.12 1,747/12,268

History of stroke 5.72 (4.71–6.95) 3.86 × 10−69b 0.61 2,212/1,1374 4.47 (3.35–5.96) 3.15 × 10−24b 0.75 5,89/4,657

WMH burden 26.74c 1.43 × 10−157b 3,620/13,499 21.89b 3.16 × 10−106b 1,990/9,917

Abbreviations: BMI = bodymass index; CI = confidence interval; CVD = cardiovascular disease; HDL = high-density lipid; LDL = low-density lipid; OR = odds ratio; p-het = p for heterogeneity; WMH =white matter hyperintensity.
a All association analyses presented were adjusted for sex and age and meta-analyses estimates presented are from fixed effects inverse variance weighted meta-analyses, except for WMH burden. Association analyses for
blood pressure factors were additionally adjusted for usage of blood pressure–lowering drugs. Association analyses for lipid factors were additionally adjusted for usage of lipid-lowering drugs. Association analysis for glucose
was performed only on participants without type 2 diabetes.
b Associations significant after correcting for the number of independent phenotypes (n = 12, p < 0.0042).
c Meta-analyses for WMH burden were performed using sample size weighted meta-analysis, which yielded Z scores as effect estimates and not ORs with CIs; this is because WMH burden was measured on different scales in
participating studies (quantitative measures in mL in all but 2 studies and semiquantitative measures on a 10-grade scale in the Atherosclerosis Risk in Communities study and the Cardiovascular Health Study [Additional
Methods 1, doi.org/10.5061/dryad.hk07677]).
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BI and SSBI, while no association with BMI and cholesterol
could be demonstrated, despite the very large sample size.
These findings are consistent with epidemiologic data on IS.35

Interestingly, in contrast with cholesterol levels, a significant
association of increasing triglyceride levels with BI risk was
observed, although for SSBI the association did not withstand
correction for multiple testing. Inconsistent results have been
reported regarding association of triglycerides with overt,
clinically defined IS,38,39 but the present results are in line with
evidence of an association in older community-dwelling per-
sons between high triglyceride levels and WMH burden, an-
other MRI marker of SVD.40

As previously described, we show a significant association of
WMH burden with BI and SSBI, reaching p < 10−100 in this

study. Surprisingly, shared genetic variation among the top loci
for WMH burden and BI was limited. While this observation
could be due to lack of power, it could also suggest that WMH
and BI share more environmental than genetic risk factors. A
more comprehensive search for shared genetic variation be-
tween WMH burden and BI or SSBI at the genome-wide level
using the LD score regression method41 could not be per-
formed in the present study due to low variance in the BI
GWAS, also hampering the calculation of BI heritability using
the same method. Of note, based on estimates from previously
published family-based studies, heritability for SSBI was de-
scribed to be low at 29%, in contrast with a moderate to high
heritability for WMH burden at 49%–80%.42–44 Hypertension
is a major risk factor for WMH as well, and a BP GRS was also
significantly associated with WMH burden in a prior study.18

Table 4 Association of genetic risk scores (GRS) for vascular risk factors with brain infarcts and small subcortical brain
infarcts

Phenotype

Brain infarcts Small subcortical brain infarcts

SNPs, na OR (95% CI) p Value SNPs, na OR (95% CI) p Value

Modifiable vascular risk factors

Systolic blood pressure, GRS-1b 94 1.03 (1.01–1.04) 0.00053c 93 1.03 (1.01–1.05) 0.0014c

Systolic blood pressure, GRS-2d 72 1.03 (1.01–1.05) 0.00036c 71 1.03 (1.01–1.06) 0.0014c

Diastolic blood pressure, GRS-1b 109 1.03 (1.01–1.06) 0.011 109 1.05 (1.01–1.08) 0.0070

Diastolic blood pressure, GRS-2d 71 1.04 (1.01–1.07 0.0142 70 1.05 (1.02–1.09) 0.0057

Pulse pressure, GRS-1b 56 1.02 (0.99–1.05) 0.1234 55 1.01 (0.98–1.05) 0.4724

Pulse pressure, GRS-2d 23 1.03 (1.00–1.06) 0.0695 23 1.02 (0.98–1.07) 0.2969

Mean arterial pressure 30 1.06 (1.02–1.09) 0.0022c 30 1.09 (1.04–1.14) 0.00032c

Triglycerides 38 1.07 (0.89–1.29) 0.4578 37 1.21 (0.95–1.54) 0.1252

HDL cholesterol 71 0.95 (0.82–1.10) 0.4761 71 0.86 (0.71–1.05) 0.1373

LDL cholesterol 52 1.11 (0.96–1.29) 0.1633 52 1.09 (0.90–1.33) 0.3598

Body mass index 76 0.76 (0.59–0.99) 0.0412 76 0.81 (0.58–1.14) 0.2354

Type 2 diabetes 51 1.06 (0.97–1.16) 0.1710 51 1.11 (0.99–1.25) 0.0653

Fasting plasma glucose 36 1.44 (0.96–2.15) 0.0777 36 1.41 (0.83–2.39) 0.2038

Smoking (cigarettes per day) 3 1.00 (0.95–1.05) 0.9921 3 1.07 (1.00–1.14) 0.0624

Smoking (ever vs never smokers) 1 0.96 (0.89–1.03) 0.2769 1 0.95 (0.86–1.05) 0.3007

Smoking (former vs current smokers) 1 1.01 (0.91–1.13) 0.8028 1 1.03 (0.89–1.19) 0.6767

Vascular comorbidities

Ischemic stroke 12 1.49 (1.12–1.97) 0.0057 12 1.36 (0.94–1.97) 0.1011

Coronary artery disease 57 1.12 (1.00–1.25) 0.0441 57 1.08 (0.93–1.24) 0.3169

WMH burden 8 1.41 (1.01–1.96) 0.0416 8 1.49 (0.97–2.30) 0.0702

Abbreviations: CI = confidence interval; HDL = high-density lipoprotein; LDL = low-density lipoprotein; OR = odds ratio; SNP = single nucleotide polymorphism;
WMH = white matter hyperintensity.
a Number of independent SNPs (r2 < 0.01).
b Comprises only risk variants for systolic blood pressure, diastolic blood pressure, and pulse pressure that were previously reported as genome-wide
significant and validated in the UK biobank according to prespecified criteria.
c Associations significant after correcting for the number of independent phenotypes (n = 12, p < 0.0042).
d Comprises, in addition to previously reported variants, all novel variants identified as genome-wide significant for the first time in theUKbiobank (Additional
methods 4, doi.org/10.5061/dryad.hk07677).
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However, the association of WMH burden with BI and SSBI
was still significant after adjusting for hypertension status (table
3), or for SBP levels and BP-lowering treatment (table e-16, doi.
org/10.5061/dryad.hk07677), suggesting that BP is not the
only mediator of this association.

An important strength of the present study is that we have
gathered nearly all large population-based studies with
MRI-based identification of BI, genome-wide genotypes, and
detailed vascular risk factor and comorbidity assessment,
totaling over 20,000 participants covering 5 ethnic groups.
Despite the unprecedented sample size, we were underpow-
ered for the discovery of novel, robust genetic risk loci and
even more so for the follow-up of genome-wide significant
findings. Our ability to discover robust genetic risk variants
may also have been hampered by the heterogeneity in BI and
SSBI etiology, even though SVD is likely the predominant
mechanism,45 and by some heterogeneity in the way BI and
SSBI have been measured in participating studies. Finally,
although the majority of participants had covert BI, 10% had
a history of overt, clinically defined stroke, but including both
covert and overt BI also enables a better representation of the
spectrum of participants with MRI-defined BI in the general
population. Whereas history of stroke was more common in
participants with BI than those without, we do not believe that
this inclusion has driven the associations we observed, given
both the small number of participants with a stroke history
and the significance level of the observed associations.
Moreover, in this population-based setting, determining
whether an MRI-defined BI could be attributed to the history
of clinically defined stroke was not always possible.

In clinical practice, MRI-defined BI are commonly seen on
brain MRI scans performed for various reasons in older per-
sons. They have been shown to be powerful predictors of in-
cident stroke and incident dementia.1,4,46 Hence BI represent
an important marker for detection of high-risk individuals and
initiation of preventive interventions. However, no randomized
trials and no recommendations are currently available for the
management of covert MRI-defined BI. The observational ev-
idence is overwhelming for a strong causal relation between
high BP and risk of BI and SSBI. A randomized trial will be
needed to decide if persons with MRI-defined BI will benefit
from more intensive BP-lowering strategies than is recom-
mended currently for primary prevention.

This multiethnic, population-based study on 20,949 partic-
ipants sheds important new light on susceptibility factors of
MRI-defined brain infarcts, a marker of covert vascular brain
injury commonly observed in older persons.
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Arizona and also includes samples from the following sites:
Newcastle Brain Tissue Resource (funding via the Medical Re-
search Council [MRC], local NHS trusts, and Newcastle Uni-
versity), MRC London Brain Bank for Neurodegenerative
Diseases (funding via the Medical Research Council), South
West Dementia Brain Bank (funding via numerous sources in-
cluding the Higher Education Funding Council for England
[HEFCE], Alzheimer’s Research Trust [ART], BRACE, as well
as North Bristol NHS Trust Research and Innovation De-
partment and DeNDRoN), The Netherlands Brain Bank
(funding via numerous sources including Stichting MS Research,
Brain Net Europe, Hersenstichting Nederland Breinbrekend
Werk, International Parkinson Fonds, Internationale Stiching
Alzheimer Onderzoek), Institut de Neuropatologia, Servei
Anatomia Patologica, and Universitat de Barcelona). ADNI:
Funding for ADNI is through the Northern California Institute
for Research and Education by grants from Abbott, AstraZeneca
AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai
Global Clinical Development, Elan Corporation, Genentech, GE
Healthcare, GlaxoSmithKline, Innogenetics, Johnson & Johnson,
Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis
AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc,
Inc., Alzheimer’s Association, Alzheimer’s Drug Discovery
Foundation, the Dana Foundation, and the National Institute of
Biomedical Imaging and Bioengineering and NIA grants U01
AG024904, RC2 AG036535, and K01 AG030514. Support was
also provided by the Alzheimer’s Association (LAF, IIRG-08-
89720; MAP-V, IIRG-05-14147) and the US Department of
Veterans Affairs Administration, Office of Research and De-
velopment, Biomedical Laboratory Research Program. SiGN:
Stroke Genetic Network (SiGN) was supported in part by award
nos. U01NS069208 and R01NS100178 from NINDS. Genetics
of Early-Onset Stroke (GEOS) Study was supported by the NIH
Genes, Environment and Health Initiative (GEI) grant U01
HG004436, as part of the GENEVA consortium under GEI, with
additional support provided by the Mid-Atlantic Nutrition and
Obesity Research Center (P30 DK072488); and the Office of
Research and Development, Medical Research Service, and the
Baltimore Geriatrics Research, Education, and Clinical Center of
the Department of Veterans Affairs. Genotyping services were
provided by the Johns Hopkins University Center for Inherited
Disease Research (CIDR), which is fully funded through a federal
contract from theNIH to JohnsHopkinsUniversity (contract no.
HHSN268200782096C). Assistance with data cleaning was
provided by the GENEVA Coordinating Center (U01 HG
004446; PI Bruce S. Weir). Study recruitment and assembly of
datasets were supported by a Cooperative Agreement with the
Division of Adult and Community Health, Centers for Disease
Control and Prevention, and by grants from NINDS and the
NIH Office of Research on Women’s Health (R01 NS45012,
U01 NS069208-01). METASTROKE: ASGC: Australian pop-
ulation control data were derived from the Hunter Community
Study. This research was funded by grants from the Australian
National and Medical Health Research Council (NHMRC
Project Grant ID: 569257), the Australian National Heart
Foundation (NHF Project Grant ID: G 04S 1623), the Univer-
sity of Newcastle, the Gladys M Brawn Fellowship scheme, and
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Service, and the Baltimore Geriatrics Research, Education, and
Clinical Center of the Department of Veterans Affairs. Geno-
typing services were provided by the Johns Hopkins University
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funded through a federal contract from the NIH to the Johns
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ordinating Center (U01 HG 004446; PI Bruce S. Weir). Study
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operative Agreement with the Division of Adult and Community
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grants from NINDS and the NIH Office of Research on
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a grant to Oxford University and CNG from Merck and Co.
J.C.H. acknowledges support from the British Heart Foundation
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(ISGS)/Siblings With Ischemic Stroke Study (SWISS) was
supported in part by the Intramural Research Program of the
NIA, NIH project Z01 AG-000954-06. ISGS/SWISS used
samples and clinical data from the NIH-NINDS Human Ge-
netics Resource Center DNA and Cell Line Repository (ccr.
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Baltimore Longitudinal Study of Aging (BLSA) as controls. The
inclusion of BLSA samples was supported in part by the Intra-
mural Research Program of the NIA, NIH project Z01 AG-
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Milan: Milano–Besta Stroke Register Collection and genotyping
of the Milan cases within CEDIR were supported by the Italian
Ministry of Health (grant nos.: RC 2007/LR6, RC 2008/LR6;
RC 2009/LR8; RC 2010/LR8; GR-2011-02347041), FP6
LSHM-CT-2007-037273 for the PROCARDIS control samples.
WTCCC2: Wellcome Trust Case-Control Consortium 2
(WTCCC2) was principally funded by the Wellcome Trust, as
part of the Wellcome Trust Case Control Consortium 2 project
(085475/B/08/Z and 085475/Z/08/Z and WT084724MA).
The StrokeAssociation provided additional support for collection
of some of the St George’s, London cases. TheOxford cases were
collected as part of theOxford Vascular Study, which is funded by
the MRC, Stroke Association, Dunhill Medical Trust, National
Institute of Health Research (NIHR), and the NIHR Biomedical
Research Centre, Oxford. The Edinburgh Stroke Study was
supported by the Wellcome Trust (clinician scientist award to
C.L.M.S.) and theBinksTrust. Sample processing occurred in the
Genetics Core Laboratory of the Wellcome Trust Clinical Re-
search Facility, Western General Hospital, Edinburgh. Much of
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Brain Imaging Research Centre (https://www.ed.ac.uk/clinical-
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Council and the Chief Scientist Office. Collection of the Munich
cases and data analysis was supported by the Vascular Dementia
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